

US008007926B2

## (12) United States Patent

## Thompson et al.

# (10) Patent No.: US 8,007,926 B2

## (45) **Date of Patent:** \*Aug. 30, 2011

# (54) LUMINESCENT COMPOUNDS WITH CARBENE LIGANDS

(75) Inventors: Mark E. Thompson, Anaheim, CA

(US); Arnold Tamayo, Glendale, CA (US); Peter Djurovich, Long Beach, CA (US); Tissa Sajoto, Los Angeles, CA

(US)

(73) Assignee: The University of Southern California,

Los Angeles, CA (US)

(\*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 489 days.

This patent is subject to a terminal dis-

claimer.

(21) Appl. No.: 12/131,458

(22) Filed: Jun. 2, 2008

#### (65) **Prior Publication Data**

US 2009/0140640 A1 Jun. 4, 2009

#### Related U.S. Application Data

- (63) Continuation of application No. 10/880,384, filed on Jun. 28, 2004, now Pat. No. 7,393,599, which is a continuation-in-part of application No. 10/849,301, filed on May 18, 2004, now Pat. No. 7,491,823.
- (51) Int. Cl. *H01L 51/54* (2006.01) *C09K 11/06* (2006.01)
- (52) **U.S. Cl.** ....... **428/690**; 428/917; 313/504; 257/E51.044

## (56) References Cited

## U.S. PATENT DOCUMENTS

| 4,769,292 | A *  | 9/1988  | Tang et al.     |
|-----------|------|---------|-----------------|
| 5,247,190 | A *  | 9/1993  | Friend et al.   |
| 5,703,436 | A *  | 12/1997 | Forrest et al.  |
| 5,707,745 | A *  | 1/1998  | Forrest et al.  |
| 5,834,893 | A *  | 11/1998 | Bulovic et al.  |
| 5,844,363 | A *  | 12/1998 | Gu et al.       |
| 6,013,982 | A *  | 1/2000  | Thompson et al. |
| 6,087,196 | A *  | 7/2000  | Sturm et al.    |
| 6,091,195 | A *  | 7/2000  | Forrest et al.  |
| 6,097,147 | A *  | 8/2000  | Baldo et al.    |
| 6,160,267 | A *  | 12/2000 | Kunugi et al.   |
| 6,294,398 | B1*  | 9/2001  | Kim et al.      |
| 6,303,238 | B1*  | 10/2001 | Thompson et al. |
| 6,310,360 | B1 * | 10/2001 | Forrest et al.  |
| 6,337,102 | B1 * | 1/2002  | Forrest et al.  |
| 6,383,666 | B1 * | 5/2002  | Kim et al.      |
| 6,420,057 | B1 * | 7/2002  | Ueda et al.     |
| 6,458,475 | B1 * | 10/2002 | Adachi et al.   |
| 6,468,819 | B1 * | 10/2002 | Kim et al.      |
| 6,548,956 | B2 * | 4/2003  | Forrest et al.  |
| 6,576,134 | B1 * | 6/2003  | Agner           |
| 6,602,540 | B2 * | 8/2003  | Gu et al.       |
| 7,154,114 | B2 * | 12/2006 | Brooks et al.   |
| 7,279,704 | B2 * | 10/2007 | Walters et al   |
|           |      |         |                 |

| 7,393,599    | B2*  | 7/2008  | Thompson et al 428/690  |
|--------------|------|---------|-------------------------|
| 7,445,855    | B2 * | 11/2008 | Mackenzie et al 428/690 |
| 7,534,505    | B2 * | 5/2009  | Lin et al 428/690       |
| 7,601,436    | B2 * | 10/2009 | Djurovich et al 428/690 |
| 7,655,323    | B2 * | 2/2010  | Walters et al 428/690   |
| 2001/0015432 | A1*  | 8/2001  | Igarashi et al.         |
| 2001/0019782 | A1*  | 9/2001  | Igarashi et al.         |
| 2002/0024293 | A1*  | 2/2002  | Igarashi et al.         |
| 2002/0034656 | A1*  | 3/2002  | Thompson et al.         |
| 2002/0048689 | A1*  | 4/2002  | Igarashi et al.         |
| 2002/0063516 | A1*  | 5/2002  | Tsuboyama et al.        |
| 2002/0064681 | A1*  | 5/2002  | Takiguchi et al.        |
| 2002/0071963 | A1*  | 6/2002  | Fujii                   |
| 2002/0121638 | A1*  | 9/2002  | Grushin et al.          |
| 2002/0182441 | A1*  | 12/2002 | Lamansky et al.         |
| 2002/0190250 | A1*  | 12/2002 | Grushin et al.          |
| 2003/0068526 | A1*  | 4/2003  | Kamatani et al.         |
| 2003/0068536 | A1*  | 4/2003  | Tsuboyama et al.        |
| 2003/0072964 | A1*  | 4/2003  | Kwong et al.            |
| 2003/0091862 | A1*  | 5/2003  | Tokito et al.           |
| 2003/0096138 | A1*  | 5/2003  | Lecloux et al.          |
| 2003/0141809 | A1*  | 7/2003  | Furugori et al.         |
| 2003/0162299 | A1*  | 8/2003  | Hsieh et al.            |
| 2004/0075096 | A1*  | 4/2004  | Grushin et al.          |
| 2006/0258043 | A1*  | 11/2006 | Bold et al.             |
|              |      |         |                         |

#### FOREIGN PATENT DOCUMENTS

| EP | 1191613      | ajk | 3/2002  |
|----|--------------|-----|---------|
| EP | 1191614      | aje | 3/2002  |
| EP | 1239526      | aje | 9/2002  |
| WO | WO 92/02714  | aje | 2/1992  |
| WO | WO 02/074015 | aje | 9/2002  |
| WO | WO 03/084972 | ajc | 10/2003 |
| WO | WO 03/088271 | *   | 10/2003 |
| WO | WO 03/099959 | *   | 12/2003 |

## OTHER PUBLICATIONS

Baldo et al., "Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices," Nature, vol. 395, pp. 151-154 (1998).\*

Baldo et al., "Very High-Efficiency Green Organic Light-Emitting Devices Based on Electrophosphorescence," Appl. Phys. Lett., vol. 75, No. 1, pp. 4-6 (1999). Adachi et al., "Nearly 100% Internal Phosphorescent Efficiency in an

Adachi et al., "Nearly 100% Internal Phosphorescent Efficiency in an Organic Light Emitting Device," J. Appl. Phys., vol. 90, pp. 5048-05051 (2001).

Koizumi et al., "Terpyridine-Analogous (N,N,C)-Tridentate Ligands: Synthesis, Structures, and Electrochemical Properties of Ruthenium (II) Complexes Bearing Tridentate Pyridinium and Pyridinylidene Ligands," Organometallics, vol. 22, pp. 970-975 (2003).

Ashkenazi et al., "Discovery of the First Metallaquinone," J. Am. Chem. Soc., vol. 122, pp. 8797-8798 (2000).

Cattoen, et al., "Amino-Aryl-Carbenes: Alternative Ligands for Transition Metals?" J. Am. Chem. Soc., vol. 126, pp. 1342-1343 (2004).

(Continued)

Primary Examiner — Marie R. Yamnitzky

(74) Attorney, Agent, or Firm — Kenyon & Kenyon LLP

## (57) ABSTRACT

257/40

An organic light emitting device is provided. The device has an anode, a cathode and an organic layer disposed between the anode and the cathode. The organic layer comprises a compound further comprising one or more carbene ligands coordinated to a metal center.

## 23 Claims, 44 Drawing Sheets

#### OTHER PUBLICATIONS

Wong et al., "Ruthenium (II) o-Acetylide and Carbene Complexes Supported by the Terpyridine-Bipyridine Ligand Set: Structural, Spectroscopic, and Photochemical Studies," Organometallics, vol. 23, pp. 2263-2272 (2004).

Klapars et al., "A General and Efficient Copper Catalyst for the Amidation of Aryl Halides and the N-Arylation of Nitrogen Heterocycles," J. Am. Chem. Soc., vol. 123, pp. 7727-7729 (2001).

Bourissou et al., "Stable Carbenes," Chem Rev. vol. 100, pp. 39-91 (2000).

Lai et al., "Carbene and Isocyanide Ligation at Luminescent Cyclometalated 6-Phenyl-2,2'-bipyridyl Platinum (II) Complexes: Structural and Spectroscopic Studies," Organometallics, vol. 18, pp. 3327-3336 (1999).

Xue et al., "Spectroscopic and Excited-State Properties of Luminescent Rhenium (I) N-Heterocyclic Carbene Complexes Containing

Aromatic Diimine Ligands," Organometallics, vol. 17, pp. 1622-1630 (1998).

Wang et al., "Facile Synthesis of Silver (I)-Carbene Complexes. Useful Carbene Transfer Agents," Organometallics, vol. 17, pp. 972-975 (1998).

Cardin et al., "Transition Metal-Carbene Complexes," Chem. Rev., vol. 72, pp. 545-574 (1972).

Kunkely et al., "Optical Properties of Transition Metal Complexes with N-Heterocyclic Carbenes as Ligands. 1,3-di-t-Butylimidazol-2-ylidene as Charge Transfer Donor and Acceptor," J. Organometallic Chem., vol. 684, pp. 113-116 (2003).

U.S. Appl. No. 09/931,948, to Lu et al., filed Aug. 20, 2001.

U.S. Appl. No. 10/233,470, to Shtein et al., filed Sep. 4, 2002.

U.S. Appl. No. 10/680,066, to Ren et al., filed Oct. 6, 2003.

U.S. Appl. No. 10/771,423, to Ma et al., filed Feb. 3, 2004.

U.S. Appl. No. 60/370,676, filed Apr. 2002.

\* cited by examiner

Emission of mer-(tpy)<sub>2</sub>lr(1-Ph-3-Me-imid) in 2-MeTHF —**>— 77**K em. —— RT em. Wavelength (nm) Figure 9 550 450 (.u.s) ytienetnl 1.0 0.8

110

109

| Cpd No.          | Ra1      | Ra2    | Ra3      | Ra4      | Ra5      | Rb1     | Rb2     | Rb3     | Rb4     | Rb5     | Rb6     | Rb7     | Rb8     |
|------------------|----------|--------|----------|----------|----------|---------|---------|---------|---------|---------|---------|---------|---------|
| 15-206           | Me       | Н      | Ph       | Н        | Н        | Me      | Н       | Н       | Н       | Н       | Н       | Н       | Н       |
| 15-207           | Me       | Н      | Ph       | Н        | Н        | Н       | Me      | Н       | Н       | Н       | Н       | Н       | Н       |
| 15-208           | Me       | H      | Ph       | Н        | Н        | Н       | Н       | Me      | Н       | H       | Н       | Н       | H       |
| 15-209           | Me       | H      | Ph       | Н        | H        | H       | Η       | H       | Me      | H       | Н       | Н       | H       |
| 15-210           | Me       | H      | Ph       | H        | H        | H       | H       | H       | H       | Me      | H       | H       | H       |
| 15-211           | Me       | Η      | Ph       | Η        | Η        | Η       | Η       | Η       | H       | H       | Me      | Η       | Η       |
| 15-212           | Me       | H      | Ph       | H        | H        | Η       | Η       | Η       | Η       | Η       | Η       | Me      | Η       |
| 15-213           | Me       | H      | Ph       | H        | H        | H       | Η       | H       | Η       | H       | H       | H       | Me      |
| 15-214           | Me       | H      | Ph       | H        | H        | Ph      | H       | H       | H       | H       | H       | H       | H       |
| 15-215           | Me       | H      | Ph       | H        | H        | H       | Ph      | H       | H       | H       | H       | H       | H       |
| 15-216<br>15-217 | Me<br>Me | H<br>H | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 15-217           | Me       | H      | Ph       | H        | H        | H       | H       | H       | Н       | Ph      | H       | Н       | H       |
| 15-219           | Me       | Н      | Ph       | Н        | Н        | Н       | Н       | H       | Н       | Н       | Ph      | Н       | H       |
| 15-220           | Me       | H      | Ph       | Н        | Н        | Н       | Н       | Н       | Н       | Н       | Н       | Ph      | H       |
| 15-221           | Me       | H      | Ph       | H        | H        | H       | H       | H       | H       | H       | H       | H       | Ph      |
| 15-222           | Ph       | Η      | Ph       | Η        | Η        | Η       | Η       | Η       | Η       | Η       | Η       | Η       | Η       |
| 15-223           | Ph       | H      | Ph       | H        | H        | Me      | Η       | Η       | H       | H       | H       | Η       | H       |
| 15-224           | Ph       | H      | Ph       | H        | Η        | Η       | Me      | Η       | Η       | Η       | H       | Η       | Н       |
| 15-225           | Ph       | H      | Ph       | H        | H        | H       | H       | Me      | Н       | H       | H       | H       | H       |
| 15-226           | Ph       | H      | Ph       | H        | H        | H       | Н       | H       | Me      | H       | H       | H       | H       |
| 15-227<br>15-228 | Ph       | H<br>H | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H | H       | H       | H<br>H  |
| 15-228           | Ph<br>Ph | Н      | Ph       | Н        | Н        | Н       | Н       | Н       | Н       | Н       | Me<br>H | H<br>Me | Н       |
| 15-220           | Ph       | Н      | Ph       | Н        | Н        | Н       | Н       | H       | H       | Н       | Н       | Н       | Me      |
| 15-231           | Ph       | H      | Ph       | Н        | Н        | Ph      | Н       | H       | Н       | Н       | Н       | H       | Н       |
| 15-232           | Ph       | H      | Ph       | Н        | H        | H       | Ph      | H       | H       | H       | Н       | Н       | Н       |
| 15-233           | Ph       | H      | Ph       | Н        | Н        | Η       | Η       | Ph      | H       | H       | Η       | H       | Η       |
| 15-234           | Ph       | H      | Ph       | H        | Η        | Η       | Η       | Η       | Ph      | Η       | Η       | Η       | Η       |
| 15-235           | Ph       | H      | Ph       | H        | H        | H       | Η       | Η       | H       | Ph      | Η       | H       | H       |
| 15-236           | Ph       | H      | Ph       | H        | H        | H       | H       | H       | H       | H       | Ph      | H       | H       |
| 15-237           | Ph       | H      | Ph       | H        | H        | Н       | H       | H       | H       | H       | Н       | Ph      | H       |
| 15-238           | Ph       | H      | Ph       | H        | H        | Н       | H       | H       | H       | H       | H       | H       | Ph      |
| 15-239<br>15-240 | Me<br>Me | H<br>H | H<br>H   | Ph<br>Ph | H<br>H   | H<br>Me | H<br>H  |
| 15-240           | Me       | Н      | Н        | Ph       | H        | H       | Me      | H       | H       | H       | Н       | H       | Н       |
| 15-242           | Me       | Н      | H        | Ph       | Н        | Н       | Н       | Me      | Н       | Н       | Н       | Н       | Н       |
| 15-243           | Me       | H      | H        | Ph       | H        | H       | H       | H       | Me      | H       | Н       | Н       | Н       |
| 15-244           | Me       | H      | Η        | Ph       | H        | H       | H       | H       | H       | Me      | H       | H       | H       |
| 15-245           | Me       | H      | H        | Ph       | Η        | Η       | Η       | H       | Η       | Η       | Me      | Η       | H       |
| 15-246           | Me       | Η      | H        | Ph       | Η        | Η       | Η       | Η       | Η       | Η       | Η       | Me      | Η       |
| 15-247           | Me       | H      | H        | Ph       | H        | H       | H       | H       | H       | H       | H       | H       | Me      |
| 15-248           | Me       | H      | H        | Ph       | H        | Ph      | H       | H       | Н       | Н       | Н       | H       | H       |
| 15-249           | Me       | H<br>H | H<br>H   | Ph<br>Ph | H<br>H   | H       | Ph      | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H       |
| 15-250<br>15-251 | Me<br>Me | Н      | Н        | Ph       | Н        | H<br>H  | H<br>H  | Н       | п<br>Ph | Н       | Н       | Н       | H<br>H  |
| 15-251           | Me       | Н      | Н        | Ph       | Н        | Н       | Н       | Н       | Н       | Ph      | Н       | Н       | H       |
| 15-253           | Me       | H      | H        | Ph       | H        | H       | Н       | H       | Н       | Н       | Ph      | H       | H       |
| 15-254           | Me       | H      | H        | Ph       | H        | H       | Η       | H       | H       | H       | Н       | Ph      | Н       |
| 15-255           | Me       | Η      | Η        | Ph       | Η        | Η       | Η       | Η       | Η       | Η       | Η       | Η       | Ph      |
| 15-256           | Ph       | H      | H        | Ph       | H        | Η       | Η       | H       | H       | H       | H       | Η       | H       |
| 15-257           | Ph       | Н      | H        | Ph       | H        | Me      | Н       | H       | Н       | Н       | Н       | H       | H       |
| 15-258           | Ph       | H      | H        | Ph       | H        | H       | Me      | H<br>M- | H       | H       | H       | H       | H       |
| 15-259<br>15-260 | Ph<br>Ph | H<br>H | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H  | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 15-261           | Ph       | H      | H        | Ph       | Н        | Н       | Н       | H       | Н       | Me      | Н       | Н       | Н       |
| 15-262           | Ph       | Н      | Н        | Ph       | Н        | Н       | Н       | Н       | Н       | Н       | Me      | Н       | Н       |
| 15-263           | Ph       | H      | H        | Ph       | H        | H       | Η       | H       | H       | H       | H       | Me      | Н       |
| 15-264           | Ph       | H      | H        | Ph       | H        | H       | H       | H       | H       | H       | H       | H       | Me      |
| 15-265           | Ph       | H      | Η        | Ph       | H        | Ph      | Η       | Η       | H       | H       | H       | Η       | H       |
| 15-266           | Ph       | Η      | H        | Ph       | Η        | Η       | Ph      | H       | Η       | Η       | Η       | Η       | Η       |
| 15-267           | Ph       | H      | H        | Ph       | H        | H       | H       | Ph      | H       | Н       | H       | H       | H       |
| 15-268           | Ph       | Н      | H        | Ph       | Н        | Н       | Н       | H       | Ph      | H       | Н       | Н       | H       |
| 15-269<br>15-270 | Ph<br>Ph | H<br>H | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  |
| 15-270           | Ph       | Н      | Н        | Ph       | Н        | Н       | Н       | Н       | Н       | Н       | Н       | Ph      | Н       |
| 15-272           | Ph       | Н      | H        | Ph       | Н        | Н       | Н       | H       | H       | H       | Н       | Н       | Ph      |
| 15-273           | Me       | Н      | Н        | Н        | Ph       | Н       | Н       | Н       | Н       | Н       | Н       | Н       | Н       |
| 15-274           | Me       | Н      | H        | Н        | Ph       | Me      | H       | H       | H       | H       | Н       | Н       | H       |
| 15-275           | Me       | Н      | Н        | Н        | Ph       | Н       | Me      | Η       | Η       | Η       | Η       | Η       | H       |
| 15-276           | Me       | Η      | Η        | Η        | Ph       | Η       | Н       | Me      | Η       | Η       | Η       | Η       | H       |
| 15-277           | Me       | Η      | Н        | Η        | Ph       | Η       | Η       | Η       | Me      | Η       | Η       | Η       | H       |
| 15-278           | Me       | H      | H        | H        | Ph       | H       | H       | H       | H       | Me      | Н       | H       | H       |
| 15-279           | Me       | H      | H        | H        | Ph       | H       | H       | H       | H       | H       | Me      | H       | H       |
| 15-280           | Me       | Н      | Н        | Н        | Ph       | Н       | Н       | Н       | Н       | Н       | Н       | Mе      | H<br>Mo |
| 15-281<br>15-282 | Me       | H<br>H | H<br>H   | H<br>H   | Ph<br>Ph | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Н       | Me      |
| 15-282           | Me<br>Me | Н      | Н        | Н        | Ph<br>Ph | rn<br>H | н<br>Ph | Н       | Н       | Н       | Н       | H<br>H  | H<br>H  |
| 15-205           | IVIC     | 11     | 11       | 11       | 111      | 11      | 111     | 11      | 11      | 11      | 11      | 11      | 11      |
|                  |          |        |          |          |          |         |         |         |         |         |         |         |         |

**111** TABLE 15-continued

| Cpd No. | Ra1 | Ra2 | Ra3 | Ra4 | Ra5 | Rb1 | Rb2 | Rb3        | Rb4 | Rb5 | Rb6 | Rb7 | Rb8 |
|---------|-----|-----|-----|-----|-----|-----|-----|------------|-----|-----|-----|-----|-----|
| 15-284  | Me  | Н   | Н   | Н   | Ph  | Н   | Н   | Ph         | Н   | Н   | Н   | Н   | Н   |
| 15-285  | Me  | H   | Η   | H   | Ph  | Η   | Η   | Η          | Ph  | Η   | Η   | Η   | H   |
| 15-286  | Me  | Η   | Η   | Η   | Ph  | Η   | Η   | Η          | Η   | Ph  | Η   | Η   | H   |
| 15-287  | Me  | Η   | Η   | Η   | Ph  | Η   | Η   | Η          | Η   | Η   | Ph  | Η   | H   |
| 15-288  | Me  | H   | Η   | H   | Ph  | Η   | Η   | Η          | H   | Η   | Η   | Ph  | H   |
| 15-289  | Me  | Η   | Η   | Η   | Ph  | Η   | Η   | Η          | Η   | Η   | Η   | Η   | Ph  |
| 15-290  | Ph  | Η   | Η   | Η   | Ph  | Η   | Η   | Η          | Η   | Η   | Η   | Η   | H   |
| 15-291  | Ph  | H   | Η   | H   | Ph  | Me  | Η   | Η          | H   | H   | Η   | Η   | H   |
| 15-292  | Ph  | Η   | Η   | Η   | Ph  | Η   | Me  | Η          | Η   | Η   | Η   | Η   | H   |
| 15-293  | Ph  | H   | Η   | Η   | Ph  | Η   | Η   | Me         | H   | Η   | Η   | Η   | Η   |
| 15-294  | Ph  | H   | Η   | H   | Ph  | H   | Η   | Η          | Me  | H   | Η   | Η   | H   |
| 15-295  | Ph  | Η   | Η   | Η   | Ph  | Η   | Η   | Η          | Η   | Me  | Η   | Η   | H   |
| 15-296  | Ph  | H   | Η   | Η   | Ph  | Η   | Η   | Η          | H   | Η   | Me  | Η   | Η   |
| 15-297  | Ph  | Η   | Η   | Η   | Ph  | Η   | Η   | Η          | Η   | Η   | Η   | Me  | H   |
| 15-298  | Ph  | Η   | Η   | Η   | Ph  | Η   | Η   | Η          | Η   | Η   | Η   | Η   | Me  |
| 15-299  | Ph  | H   | Η   | Η   | Ph  | Ph  | Η   | Η          | H   | Η   | Η   | Η   | Η   |
| 15-300  | Ph  | Η   | Η   | Η   | Ph  | Η   | Ph  | Η          | Η   | Η   | Η   | Η   | H   |
| 15-301  | Ph  | H   | Η   | Η   | Ph  | Η   | Η   | $_{ m Ph}$ | Η   | Η   | Η   | Η   | Η   |
| 15-302  | Ph  | H   | Η   | H   | Ph  | Η   | Η   | H          | Ph  | H   | Η   | Η   | H   |
| 15-303  | Ph  | Η   | Η   | Η   | Ph  | Η   | Η   | Η          | Η   | Ph  | Η   | Η   | H   |
| 15-304  | Ph  | H   | Η   | Η   | Ph  | Η   | Η   | Η          | H   | Η   | Ph  | Η   | Η   |
| 15-305  | Ph  | Η   | Η   | Η   | Ph  | Η   | Η   | Η          | Η   | Η   | Η   | Ph  | Η   |
| 15-306  | Ph  | Η   | Η   | Η   | Ph  | Η   | Η   | Η          | Η   | Η   | Η   | Η   | Ph  |

25 TABLE 16 TABLE 16-continued Cpd Cpd No. Ra1 Ra2 Ra3 Ra4 Ra5 Ra6 Ra7 Rb1 Rb2 No. Ra1 Ra2 Ra3 Ra4 Ra5 Ra6 Ra7 Rb1 Rb2 16-1 16-47 30 16-2 Me Н Н Н Н Н Н Me Η 16-48 Ρh Н Η Н Me Н Н Н Me 16-49 16-3 Me Η Η Η Η Η Η Η Me Ph Η Η Η Me Η Η Ph Η 16-4 Η Η Η 16-50 Ph Η Η Η Η 16-5 Η Η Η Η Η Η Н Ph 16-51 Me Н Η Н Η Me Н Η Η 16-6 Ph Η Н Η Η Н Η Н Η 16-52 Me Η Η Η Η Me Η Me H Η 16-7 Η 16-53 Н Н Ph Η Η Η Η Η Η Η Η Me Η Me Me Me Ph Η Η Η Η Η Me 16-54 Η Η Η Η Η Ph Η 16-8 Η Η Me Me 35 16-9 Η Η Η Η Η Η Ph Η 16-55 Me Η Η Н Η Me Η Η Ph 16-10 16-11 Ph Me Η Η Η Η Η H H Η Ph 16-56 Ph Η H H Η Η Me H H Η Η Η 16-57 Н Н Me Н Н Н Н Η Ph Н Me Me Η Me Η Η Η Η Η 16-58 Η Η Η Η Me Η Η 16-12 Me Η Me Ph Me 16-13 Me Me Η Η Η Η Η Η Me 16-59 Ph Н Η Η Η Me Η Ph Η Me Me  $_{\rm H}^{\rm H}$ 16-14 Me Н Η Н Η  $_{
m H}$ Ph Η 16-60 Ph Н H H Н Н Me Η Ph 40 Н 16-15 Me Η Η Η Η Ph 16-61 Me Η Η Η Η Me Η 16-16 Ph Η Η Н Η Η Η Η 16-62 Me Η Η Η Η Η Me Me Η Me 16-17 Me Η Η Η Η Η Me Η 16-63 Me Н Η Н Η Η Me Η Me 16-18 Ph Me Н Η Н Н H H Η Me H 16-64 Me Н H H Н Н Η Me Ph Н Н 16-19 Ph Η Н Η Ph 16-65 Me Η Η Η Me Ph Me Η Η 16-20 Ph Me Η Η Н Η Н Н Ph 16-66 Ph Н Η Н Η Н Me Н Η 45 16-67 16-21 Η Η Η Η Η Η Η Ph Η Η Η Η Η Me Η Me Me 16-22 Η Me Η Η Η Н Н Me Η 16-68 Ph Η Η Η Η Η Me Η Me 16-23 Н Me Н Η Η Η Η Η Η Me Ph Η Me 16-69 Ph Η Η 16-24 Η Η Η Η Ph Η 16-70 Η Η Η Η Me Η Ph Η Η Me Ph Me 16-25 Η Me Η Η Η Η Η Ph 16-71 Ph Η Η Η Η Η Η Η 16-72 16-73 16-26 Ph Η Me Η Η Η Η Η Η Me Ph Η Η Η Η Η Me Η 16-27 Ph Η Η Η Η Me Η Η Η Η Me Η Η Me Ph Η Η Me Η Η Η Η Me 16-74 Н Η Η Η Ph 16-28 Ph Me Η Η Me Ph Η Η 16-29 Н Me Η Н Н Η Ph Η 16-75 Ph Н Н Η Н Н Η 16-30 Ph Η Me Η Η Η Η Н Ph 16-76 Ph Ph Η Η Н Η Н Η Η 16-77 16-31 Me Н Η Me Η Η Η Η Η Ph Ph Η Η Η Η Η Me H Η Н Н Η Η 16-78 Н Η Η 16-32 Me Η Η Me Ph Ph Η Η Me Me Н Η 16-33 Me Η Η Me Н Н Me 55 16-79 Ph Ph Н Η Н Η Н Ph Н 16-34 Η Η Η 16-80 Η Η Η Η Me Ph Ph Ph Η Η Ph 16-35 Η Η Me Η Η Η Η Ph 16-81 Ме Η Ph Н Η Η Η Η Η 16-36 Η Η Н Η Η Η Η 16-82 Н Ph Η Η Η Η Me Η 16-37 Ph Η Η Me Н Η Η Me Η 16-83 Me Η Ph Н Η Н Η Η Me 16-38 Ph Η Η Me Η Η Η Η Me 16-84 Me Η Ph Η Η Η Η Ph Η 16-39 Ph Η Н Me Η Н Η Ph Η 60 16-85 Me Н Ph Н Н Η Η Η Ph 16-40 Ph Η Н Me Η Η Η Η Ph 16-86 Ph Н Ph Η Н Η Η Η Η 16-41 Η Н Me Н Н Н Me Н Н Η 16-87 Ph Η Ph Η Н Η Me Η 16-42 Me Η Η Η Me Η Н Me Η 16-88 Ph Η Ph Η Η Η Η Η Me 16-43 Me Н Н Н Me Н Н Н Me 16-89 Ph Η Ph Η Η Η Ph Η Η 16-44 Me Η Η Η Me Η Η Ph Η 16-90 Ph Η Ph Η Η Η Η Η Ph 16-45 Η 16-91 Η Me Η Η Η Η Η Ph Η Н Ph Η Η Η Me Me Η 16-46 Η Η Me Η Η Η 16-92 Me Ph Η Η Me

113
TABLE 16-continued

114
TABLE 16-continued

|            |     |     |     |     |     |     |     |     |     | •  |            |     |     |     |     |     |     |     |     |     |
|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Cpd<br>No. | Ra1 | Ra2 | Ra3 | Ra4 | Ra5 | Ra6 | Ra7 | Rb1 | Rb2 |    | Cpd<br>No. | Ra1 | Ra2 | Ra3 | Ra4 | Ra5 | Ra6 | Ra7 | Rb1 | Rb2 |
| 16-93      | Me  | Н   | Н   | Ph  | Н   | Н   | Н   | Н   | Me  | 5  | 16-113     | Me  | Н   | Н   | Н   | Н   | Ph  | Н   | Н   | Me  |
| 16-94      | Me  | Η   | Η   | Ph  | Η   | Η   | Η   | Ph  | Η   |    | 16-114     | Me  | Η   | Η   | Η   | Η   | Ph  | Η   | Ph  | Η   |
| 16-95      | Me  | Η   | Η   | Ph  | Η   | Η   | Η   | H   | Ph  |    | 16-115     | Me  | Η   | Η   | Η   | Н   | Ph  | Η   | Η   | Ph  |
| 16-96      | Ph  | H   | Η   | Ph  | Η   | Η   | Η   | H   | H   |    | 16-116     | Ph  | H   | H   | H   | Н   | Ph  | H   | Н   | H   |
| 16-97      | Ph  | Η   | Η   | Ph  | Н   | Н   | Η   | Me  | H   |    | 16-117     | Ph  | H   | Н   | Н   | Н   | Ph  | Н   | Me  | H   |
| 16-98      | Ph  | Η   | Η   | Ph  | Н   | Н   | Η   | Н   | Me  |    | 16-118     | Ph  | Н   | Н   | Н   | Н   | Ph  | Н   | Н   | Me  |
| 16-99      | Ph  | H   | H   | Ph  | H   | H   | H   | Ph  | H   | 10 |            | Ph  | Н   | Н   | H   | Н   | Ph  | Н   | Ph  | Н   |
| 16-100     | Ph  | Η   | Η   | Ph  | Η   | Η   | Η   | Η   | Ph  |    | 16-120     | Ph  | Н   | Н   | H   | Н   | Ph  | Н   | H   | Ph  |
| 16-101     | Me  | Η   | Η   | Η   | Ph  | Η   | Η   | Η   | H   |    | 16-121     | Me  | Н   | Н   | Н   | Н   | Н   | Ph  | Н   | Н   |
| 16-102     | Me  | Η   | Η   | Η   | Ph  | Η   | Η   | Me  | Η   |    | 16-122     | Me  | Н   | H   | H   | Н   | H   | Ph  | Me  | H   |
| 16-103     | Me  | Η   | H   | Η   | Ph  | Η   | H   | Η   | Me  |    | 16-123     | Me  | Н   | Н   | Н   | Н   | Н   | Ph  | Н   | Me  |
| 16-104     | Me  | Η   | Η   | Η   | Ph  | Η   | Η   | Ph  | H   |    | 16-124     | Me  | Н   | Н   | Н   | Н   | Н   | Ph  | Ph  | Н   |
| 16-105     | Me  | Η   | Η   | Η   | Ph  | Η   | Η   | Η   | Ph  | 15 |            | Me  | Н   | H   | H   | Н   | Н   | Ph  | Н   | Ph  |
| 16-106     | Ph  | Η   | Η   | Η   | Ph  | Η   | Η   | Η   | Η   |    | 10-123     | Ph  | Н   | Н   | Н   | Н   | Н   | Ph  | Н   | Н   |
| 16-107     | Ph  | Η   | Η   | Η   | Ph  | Η   | Η   | Me  | H   |    | 16-126     |     |     |     |     |     |     |     |     |     |
| 16-108     | Ph  | Η   | Η   | Η   | Ph  | Η   | Η   | Η   | Me  |    | 16-127     | Ph  | Н   | Н   | H   | Н   | Н   | Ph  | Me  | Η   |
| 16-109     | Ph  | Η   | H   | H   | Ph  | Η   | Η   | Ph  | H   |    | 16-128     | Ph  | Η   | H   | H   | H   | H   | Ph  | H   | Me  |
| 16-110     | Ph  | Η   | Η   | Η   | Ph  | H   | Η   | Η   | Ph  |    | 16-129     | Ph  | Η   | Η   | Η   | Η   | Η   | Ph  | Ph  | Η   |
| 16-111     | Me  | Η   | H   | Η   | Η   | Ph  | Η   | Η   | H   | 20 | 16-130     | Ph  | Η   | Η   | Η   | Η   | Η   | Ph  | Η   | Ph  |
| 16-112     | Me  | Η   | Η   | H   | H   | Ph  | H   | Me  | H   | 20 |            |     |     |     |     |     |     |     |     |     |

TABLE 17

|         |     |     |     |     | IADL | /L 1/ |     |     |         |     |     |
|---------|-----|-----|-----|-----|------|-------|-----|-----|---------|-----|-----|
| Cpd No. | Ra1 | Ra2 | Ra3 | Ra4 | Ra5  | Ra6   | Ra7 | Rb1 | Rb2     | Rb3 | Rb4 |
| 17-1    | Me  | Н   | Н   | Н   | Н    | Н     | Н   | Н   | Н       | Н   | Н   |
| 17-2    | Me  | H   | Η   | Η   | H    | Н     | H   | Me  | Η       | H   | Н   |
| 17-3    | Me  | H   | H   | H   | H    | H     | H   | H   | Me      | H   | H   |
| 17-4    | Me  | Н   | Н   | H   | H    | Н     | Н   | Н   | Н       | Me  | Н   |
| 17-5    | Me  | Н   | Н   | Н   | Н    | Н     | Н   | Н   | H       | Н   | Me  |
| 17-6    | Me  | Н   | Н   | H   | H    | Н     | Н   | Ph  | H       | H   | Н   |
| 17-7    | Me  | H   | H   | H   | H    | H     | Н   | Н   | Ph      | H   | H   |
| 17-8    | Me  | Н   | Н   | Н   | Н    | Н     | Н   | Н   | Н       | Ph  | Н   |
| 17-9    | Me  | Н   | Н   | Н   | Н    | Н     | Н   | Н   | Н       | Н   | Ph  |
| 17-10   | Ph  | H   | Н   | Н   | Н    | Н     | Н   | Н   | Н       | Н   | Н   |
| 17-10   | Ph  | Н   | Н   | H   | H    | H     | Н   | Me  | H       | H   | H   |
| 17-11   | Ph  | H   | Н   | H   | H    | H     | Н   | H   | Me      | H   | H   |
| 17-12   | Ph  | Н   | Н   | Н   | Н    | Н     | Н   | Н   | H       | Me  | Н   |
|         |     |     |     |     |      |       |     |     |         |     |     |
| 17-14   | Ph  | H   | H   | H   | H    | H     | H   | H   | H       | H   | Me  |
| 17-15   | Ph  | H   | H   | H   | H    | H     | H   | Ph  | H       | H   | Н   |
| 17-16   | Ph  | H   | H   | H   | H    | Н     | Н   | H   | Ph      | H   | Н   |
| 17-17   | Ph  | H   | H   | Н   | Н    | Н     | Н   | Н   | Н       | Ph  | H   |
| 17-18   | Ph  | Η   | Η   | H   | H    | H     | H   | Η   | H       | Η   | Ph  |
| 17-19   | Me  | Me  | Η   | Η   | H    | H     | H   | Η   | H       | Η   | Η   |
| 17-20   | Me  | Me  | H   | H   | H    | H     | H   | Me  | Η       | Η   | Η   |
| 17-21   | Me  | Me  | Η   | Η   | H    | Η     | Η   | Η   | Me      | Η   | Η   |
| 17-22   | Me  | Me  | Η   | Η   | H    | H     | H   | Η   | Η       | Me  | Η   |
| 17-23   | Me  | Me  | Η   | Η   | Η    | Η     | H   | Η   | Η       | Η   | Me  |
| 17-24   | Me  | Me  | Η   | Η   | Η    | Η     | Η   | Ph  | Η       | Η   | Η   |
| 17-25   | Me  | Me  | Η   | Η   | Η    | Η     | Η   | Η   | Ph      | Η   | Η   |
| 17-26   | Me  | Me  | Η   | Η   | Η    | Η     | Η   | Η   | Η       | Ph  | Η   |
| 17-27   | Me  | Me  | Η   | Η   | Η    | Η     | Η   | Η   | Η       | Η   | Ph  |
| 17-28   | Ph  | Me  | Η   | Η   | Η    | Η     | Η   | Η   | Η       | Η   | Η   |
| 17-29   | Ph  | Me  | Η   | Η   | Η    | Η     | Η   | Me  | Η       | Η   | Η   |
| 17-30   | Ph  | Me  | Η   | H   | H    | H     | H   | Η   | Me      | Η   | Η   |
| 17-31   | Ph  | Me  | H   | H   | H    | Н     | Η   | Η   | Η       | Me  | Η   |
| 17-32   | Ph  | Me  | Η   | Η   | Η    | Н     | Η   | Η   | Η       | Η   | Me  |
| 17-33   | Ph  | Me  | Η   | H   | H    | Н     | Н   | Ph  | H       | H   | Η   |
| 17-34   | Ph  | Me  | Н   | H   | Н    | Н     | Н   | Н   | Ph      | H   | Н   |
| 17-35   | Ph  | Me  | H   | H   | H    | H     | H   | H   | Н       | Ph  | Н   |
| 17-36   | Ph  | Me  | Н   | Н   | Н    | Н     | Н   | Н   | H       | Н   | Ph  |
| 17-37   | Me  | Н   | Me  | Н   | Н    | Н     | Н   |     |         |     |     |
| 17-37   | Me  | Н   | Me  | H   | H    | Н     | Н   | Me  | Н       | Н   | Н   |
| 17-36   | Me  | Н   | Me  | Н   | Н    | Н     | Н   | H   | п<br>Ме | Н   | Н   |
|         |     |     |     |     |      |       |     |     |         |     |     |
| 17-40   | Me  | H   | Me  | H   | H    | H     | H   | H   | H       | Me  | H   |
| 17-41   | Me  | Н   | Me  | Η   | Η    | Н     | Н   | H   | Н       | H   | Me  |
| 17-42   | Me  | Η   | Me  | Η   | Η    | Η     | Η   | Ph  | Η       | Η   | Η   |
| 17-43   | Me  | Η   | Me  | Η   | H    | H     | H   | Η   | Ph      | Η   | Η   |
| 17-44   | Me  | H   | Me  | H   | H    | H     | H   | H   | Η       | Ph  | Η   |
| 17-45   | Me  | Η   | Me  | H   | H    | Н     | Н   | Η   | Η       | Η   | Ph  |
| 17-46   | Ph  | Н   | Me  | Н   | Н    | Н     | Н   | Н   | H       | Н   | Н   |
| 17-47   | Ph  | Н   | Me  | Н   | Н    | Н     | Н   | Me  | Н       | Н   | Н   |
| 17-47   | Ph  | Н   | Me  | H   | H    | Н     | Н   | H   | Me      | Н   | Н   |
| 17-48   |     |     |     |     |      |       |     |     |         |     |     |
|         | Ph  | Η   | Me  | Η   | Η    | Η     | Η   | Η   | Η       | Me  | Η   |
| 17-49   | Ph  | Н   | Me  | H   | H    | Н     | Н   | Н   | H       | H   | Me  |

115
TABLE 17-continued

| Cpd No.          | Ra1      | Ra2      | Ra3    | Ra4      | Ra5      | Ra6      | Ra7      | Rb1     | Rb2     | Rb3     | Rb4     |
|------------------|----------|----------|--------|----------|----------|----------|----------|---------|---------|---------|---------|
| 17-51            | Ph       | H        | Me     | Н        | Н        | Н        | Н        | Ph      | H       | H       | Н       |
| 17-51            | Ph       | Н        | Me     | Н        | Н        | Н        | Н        | Н       | Ph      | Н       | Н       |
| 17-53            | Ph       | H        | Me     | H        | Н        | H        | H        | H       | H       | Ph      | H       |
| 17-54            | Ph       | H        | Me     | Η        | Η        | H        | H        | H       | H       | Н       | Ph      |
| 17-55            | Me       | H        | Η      | Me       | Η        | Η        | Η        | H       | H       | Η       | Η       |
| 17-56            | Me       | Η        | Η      | Me       | Η        | Η        | Η        | Me      | Η       | Η       | Η       |
| 17-57            | Me       | H        | H      | Me       | H        | H        | H        | H       | Me      | Н       | H       |
| 17-58<br>17-59   | Me<br>Me | H<br>H   | H<br>H | Me<br>Me | H<br>H   | H<br>H   | H<br>H   | H<br>H  | H<br>H  | Me<br>H | H<br>Me |
| 17-60            | Me       | H        | H      | Me       | H        | Н        | Н        | Ph      | H       | Н       | H       |
| 17-61            | Me       | H        | H      | Me       | Н        | H        | H        | H       | Ph      | Н       | H       |
| 17-62            | Me       | H        | H      | Me       | Η        | H        | H        | Η       | H       | Ph      | Η       |
| 17-63            | Me       | H        | H      | Me       | Η        | H        | Η        | H       | H       | H       | Ph      |
| 17-64            | Ph       | H        | H      | Me       | H        | H        | H        | Н       | H       | Н       | Н       |
| 17-65<br>17-66   | Ph<br>Ph | H<br>H   | H<br>H | Me<br>Me | H<br>H   | H<br>H   | H<br>H   | Me<br>H | H<br>Me | H<br>H  | H<br>H  |
| 17-67            | Ph       | H        | H      | Me       | Н        | Н        | Н        | H       | Н       | Me      | Н       |
| 17-68            | Ph       | H        | Н      | Me       | Н        | Н        | Н        | Н       | H       | Н       | Me      |
| 17-69            | Ph       | H        | H      | Me       | H        | H        | H        | Ph      | H       | H       | H       |
| 17-70            | Ph       | Η        | Η      | Me       | Η        | Η        | Η        | Η       | Ph      | Η       | Η       |
| 17-71            | Ph       | H        | H      | Me       | H        | H        | H        | Η       | H       | Ph      | H       |
| 17-72<br>17-73   | Ph<br>Me | H<br>H   | H<br>H | Me<br>H  | H<br>Me  | H<br>H   | H<br>H   | H<br>H  | H<br>H  | H<br>H  | Ph<br>H |
| 17-73            | Me       | Н        | Н      | Н        | Me       | Н        | Н        | Мe      | Н       | Н       | Н       |
| 17-75            | Me       | Н        | H      | Н        | Me       | Н        | Н        | Н       | Me      | Н       | Н       |
| 17-76            | Me       | H        | H      | H        | Me       | H        | H        | H       | H       | Me      | H       |
| 17-77            | Me       | H        | H      | H        | Me       | H        | Η        | H       | H       | H       | Me      |
| 17-78            | Me       | H        | H      | H        | Me       | H        | H        | Ph      | H       | H       | H       |
| 17-79<br>17-80   | Me<br>Me | H<br>H   | H<br>H | H<br>H   | Me<br>Me | H<br>H   | H<br>H   | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  |
| 17-80            | Me       | Н        | Н      | Н        | Me       | Н        | Н        | Н       | Н       | Н       | п<br>Ph |
| 17-82            | Ph       | Н        | Н      | Н        | Me       | Н        | Н        | Н       | Н       | Н       | Н       |
| 17-83            | Ph       | H        | H      | Η        | Me       | H        | H        | Me      | H       | Η       | Η       |
| 17-84            | Ph       | Η        | Η      | Η        | Me       | Η        | Η        | Η       | Me      | Η       | Η       |
| 17-85            | Ph       | H        | H      | H        | Me       | Н        | H        | H       | H       | Me      | Н       |
| 17-86<br>17-87   | Ph<br>Ph | H<br>H   | H<br>H | H<br>H   | Me<br>Me | H<br>H   | H<br>H   | H<br>Ph | H<br>H  | H<br>H  | Me<br>H |
| 17-88            | Ph       | H        | H      | H        | Me       | Н        | H        | Н       | Ph      | H       | H       |
| 17-89            | Ph       | Н        | Н      | Н        | Me       | Н        | Н        | Н       | Н       | Ph      | Н       |
| 17-90            | Ph       | H        | H      | H        | Me       | H        | H        | H       | H       | H       | Ph      |
| 17-91            | Me       | Η        | Η      | Η        | Η        | Me       | Η        | Η       | Η       | Η       | Η       |
| 17-92            | Me       | H        | H      | H        | Н        | Me       | H        | Me      | Н       | H       | Н       |
| 17-93<br>17-94   | Me<br>Me | H<br>H   | H<br>H | H<br>H   | H<br>H   | Me<br>Me | H<br>H   | H<br>H  | Me<br>H | H<br>Me | H<br>H  |
| 17-95            | Me       | Н        | H      | Н        | Н        | Me       | Н        | Н       | H       | Н       | Me      |
| 17-96            | Me       | H        | H      | H        | Н        | Me       | H        | Ph      | H       | H       | H       |
| 17-97            | Me       | Η        | Η      | Η        | Η        | Me       | Η        | Η       | Ph      | Η       | Η       |
| 17-98            | Me       | H        | H      | H        | Н        | Me       | H        | H       | H       | Ph      | H       |
| 17-99<br>17-100  | Me<br>Ph | H<br>H   | H<br>H | H<br>H   | H<br>H   | Me<br>Me | H<br>H   | H<br>H  | H<br>H  | H<br>H  | Ph<br>H |
| 17-100           | Ph       | Н        | Н      | Н        | Н        | Me       | Н        | Me      | Н       | Н       | Н       |
| 17-102           | Ph       | H        | H      | Н        | Н        | Me       | Н        | Н       | Me      | Н       | Н       |
| 17-103           | Ph       | H        | H      | Η        | Η        | Me       | Η        | H       | H       | Me      | Η       |
| 17-104           | Ph       | Η        | Η      | Н        | Η        | Me       | Н        | Η       | Н       | Н       | Me      |
| 17-105           | Ph       | Н        | Н      | Н        | Н        | Me       | Н        | Ph      | H       | Н       | Н       |
| 17-106<br>17-107 | Ph<br>Ph | H<br>H   | H<br>H | H<br>H   | H<br>H   | Me<br>Me | H<br>H   | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  |
| 17-107           | Ph       | Н        | Н      | Н        | Н        | Me       | Н        | Н       | Н       | Н       | п<br>Ph |
| 17-109           | Me       | H        | H      | Н        | H        | Н        | Me       | H       | Н       | H       | Н       |
| 17-110           | Me       | H        | Η      | Η        | Η        | Η        | Me       | Me      | Η       | Н       | H       |
| 17-111           | Me       | H        | H      | H        | H        | H        | Me       | H       | Me      | Н       | H       |
| 17-112<br>17-113 | Me<br>Me | H<br>H   | H<br>H | H<br>H   | H<br>H   | H<br>H   | Me<br>Me | H<br>H  | H<br>H  | Me<br>H | H<br>Me |
| 17-113           | Me       | H        | H      | H        | H        | Н        | Me       | Ph      | H       | H       | H       |
| 17-115           | Me       | Н        | Н      | Н        | Н        | Н        | Me       | Н       | Ph      | Н       | Н       |
| 17-116           | Me       | Η        | H      | Η        | Η        | Η        | Me       | Η       | Η       | Ph      | H       |
| 17-117           | Me       | H        | H      | H        | H        | H        | Me       | H       | H       | H       | Ph      |
| 17-118           | Ph       | H        | H      | H        | Н        | H        | Me       | H       | H       | H       | H       |
| 17-119<br>17-120 | Ph<br>Ph | H<br>H   | H<br>H | H<br>H   | H<br>H   | H<br>H   | Me<br>Me | Me<br>H | H<br>Me | H<br>H  | H<br>H  |
| 17-120           | Ph       | Н        | Н      | Н        | Н        | Н        | Me       | Н       | H       | п<br>Ме | Н       |
| 17-122           | Ph       | Н        | H      | Н        | Н        | Н        | Me       | H       | H       | Н       | Me      |
| 17-123           | Ph       | H        | H      | Η        | Η        | Η        | Me       | Ph      | Η       | Н       | Η       |
| 17-124           | Ph       | H        | Η      | Η        | Η        | Η        | Me       | Η       | Ph      | H       | H       |
| 17-125           | Ph       | H        | H      | H        | H        | H        | Me       | H       | H       | Ph      | H       |
| 17-126<br>17-127 | Ph<br>Me | H<br>Ph  | H<br>H | H<br>H   | H<br>H   | H<br>H   | Me<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph<br>H |
| 17-127           | Me       | Ph<br>Ph | Н      | Н        | Н        | Н        | Н        | н<br>Ме | Н       | Н       | Н       |
|                  |          | ~ ^*     |        | ~ ~      | ~~       |          | ~~       |         | ~ ~     |         |         |

117
TABLE 17-continued

| Cpd No.          | Ra1      | Ra2      | Ra3       | Ra4      | Ra5      | Ra6      | Ra7    | Rb1     | Rb2     | Rb3     | Rb4     |
|------------------|----------|----------|-----------|----------|----------|----------|--------|---------|---------|---------|---------|
| 17-129           | Me       | Ph       | Н         | Н        | Н        | Н        | Н      | Н       | Me      | Н       | Н       |
| 17-130           | Me       | Ph       | H         | H        | Н        | Н        | Н      | H       | Н       | Me      | Н       |
| 17-131<br>17-132 | Me       | Ph       | H         | H        | H        | H        | H      | H       | H       | H       | Me      |
| 17-132           | Me<br>Me | Ph<br>Ph | H<br>H    | H<br>H   | H<br>H   | H<br>H   | H<br>H | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  |
| 17-133           | Me       | Ph       | H         | Н        | Н        | Н        | Н      | H       | Н       | Ph      | H       |
| 17-135           | Me       | Ph       | Н         | Н        | Н        | Н        | Н      | Н       | Н       | Н       | Ph      |
| 17-136           | Ph       | Ph       | H         | H        | Η        | H        | H      | H       | H       | H       | H       |
| 17-137           | Ph       | Ph       | Η         | Η        | Η        | Η        | Η      | Me      | H       | Η       | Η       |
| 17-138           | Ph       | Ph       | Η         | H        | Н        | Н        | H      | H       | Me      | Н       | Н       |
| 17-139           | Ph       | Ph       | H         | H        | H        | H        | H      | H       | H       | Me      | H<br>M- |
| 17-140<br>17-141 | Ph<br>Ph | Ph<br>Ph | H<br>H    | H<br>H   | H<br>H   | H<br>H   | H<br>H | H<br>Ph | H<br>H  | H<br>H  | Me<br>H |
| 17-142           | Ph       | Ph       | H         | Н        | Н        | Н        | Н      | Н       | Ph      | Н       | H       |
| 17-143           | Ph       | Ph       | Н         | Н        | Н        | Н        | Н      | Н       | Н       | Ph      | Н       |
| 17-144           | Ph       | Ph       | H         | Η        | Η        | Η        | Η      | H       | H       | H       | Ph      |
| 17-145           | Me       | Η        | Ph        | Η        | Η        | Η        | Η      | Η       | H       | Η       | Η       |
| 17-146           | Me       | H        | Ph        | H        | H        | Н        | H      | Me      | Н       | H       | H       |
| 17-147<br>17-148 | Me<br>Me | H<br>H   | Ph<br>Ph  | H<br>H   | H<br>H   | H<br>H   | H<br>H | H<br>H  | Me<br>H | H<br>Me | H<br>H  |
| 17-148           | Me       | Н        | Ph        | Н        | Н        | Н        | Н      | Н       | Н       | H       | п<br>Ме |
| 17-150           | Me       | Н        | Ph        | Н        | Н        | Н        | Н      | Ph      | H       | Н       | Н       |
| 17-151           | Me       | H        | Ph        | Η        | Η        | Η        | H      | H       | Ph      | Н       | Н       |
| 17-152           | Me       | H        | Ph        | H        | Η        | H        | H      | H       | H       | Ph      | Η       |
| 17-153           | Me       | H        | Ph        | Η        | Η        | H        | H      | H       | H       | Η       | Ph      |
| 17-154           | Ph       | H        | Ph        | H        | H        | H        | H      | H       | H       | H       | H       |
| 17-155<br>17-156 | Ph<br>Ph | H<br>H   | Ph<br>Ph  | H<br>H   | H<br>H   | H<br>H   | H<br>H | Me<br>H | H<br>Me | H<br>H  | H<br>H  |
| 17-150           | Ph       | Н        | Ph        | Н        | Н        | Н        | Н      | Н       | H       | Ме      | Н       |
| 17-158           | Ph       | H        | Ph        | H        | Н        | Н        | Н      | H       | H       | Н       | Me      |
| 17-159           | Ph       | Н        | Ph        | Н        | Н        | Н        | Н      | Ph      | Н       | Н       | Н       |
| 17-160           | Ph       | H        | Ph        | Η        | Η        | Η        | Η      | H       | Ph      | Η       | Н       |
| 17-161           | Ph       | H        | Ph        | H        | Н        | H        | Η      | Η       | H       | Ph      | H       |
| 17-162           | Ph       | H        | Ph        | H        | H        | H        | H      | H       | H       | H       | Ph      |
| 17-163<br>17-164 | Me<br>Me | H<br>H   | H<br>H    | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  |
| 17-165           | Me       | H        | H         | Ph       | Н        | Н        | Н      | Н       | Me      | Н       | Н       |
| 17-166           | Me       | H        | Н         | Ph       | Н        | H        | H      | H       | H       | Me      | Н       |
| 17-167           | Me       | Η        | H         | Ph       | Η        | Η        | Η      | Η       | H       | Η       | Me      |
| 17-168           | Me       | Η        | Η         | Ph       | Η        | H        | Η      | Ph      | H       | H       | Η       |
| 17-169           | Me       | Н        | Н         | Ph       | Н        | Н        | Н      | Н       | Ph      | H       | Н       |
| 17-170<br>17-171 | Me<br>Me | H<br>H   | H<br>H    | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph |
| 17-171           | Ph       | H        | H         | Ph       | H        | Н        | H      | H       | H       | Н       | Н       |
| 17-173           | Ph       | H        | Н         | Ph       | Н        | Н        | H      | Me      | H       | H       | Н       |
| 17-174           | Ph       | H        | Η         | Ph       | Η        | H        | H      | H       | Me      | H       | Н       |
| 17-175           | Ph       | Η        | Η         | Ph       | Η        | Η        | Η      | Η       | H       | Me      | Н       |
| 17-176           | Ph       | H        | H         | Ph       | Н        | Н        | H      | H       | H       | Н       | Me      |
| 17-177<br>17-178 | Ph<br>Ph | H<br>H   | $_{ m H}$ | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  |
| 17-178           | Ph       | Н        | H         | Ph       | Н        | Н        | Н      | Н       | Н       | Ph      | Н       |
| 17-180           | Ph       | H        | Н         | Ph       | Н        | Н        | Н      | H       | Н       | Н       | Ph      |
| 17-181           | Me       | H        | Η         | Η        | Ph       | Η        | Η      | H       | H       | Η       | Η       |
| 17-182           | Me       | Η        | Η         | Η        | Ph       | Η        | Η      | Me      | H       | H       | Η       |
| 17-183           | Me       | H        | H         | Н        | Ph       | Н        | Н      | Н       | Me      | Н       | Н       |
| 17-184<br>17-185 | Me<br>Me | H<br>H   | H<br>H    | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H | H<br>H  | H<br>H  | Me<br>H | H<br>Me |
| 17-185           | Me       | H        | H         | H        | Ph       | Н        | H      | Ph      | H       | Н       | H       |
| 17-187           | Me       | H        | H         | Н        | Ph       | Н        | Н      | Н       | Ph      | Н       | H       |
| 17-188           | Me       | H        | H         | H        | Ph       | H        | H      | H       | H       | Ph      | H       |
| 17-189           | Me       | Η        | Η         | Η        | Ph       | Η        | Η      | Η       | Η       | Η       | Ph      |
| 17-190           | Ph       | H        | Η         | H        | Ph       | H        | H      | H       | H       | Н       | H       |
| 17-191<br>17-192 | Ph       | H        | H         | H        | Ph       | H        | H      | Me      | H<br>M- | H       | H       |
| 17-192           | Ph<br>Ph | H<br>H   | H<br>H    | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H | H<br>H  | Me<br>H | H<br>Me | H<br>H  |
| 17-193           | Ph       | Н        | Н         | Н        | Ph       | Н        | Н      | Н       | Н       | H       | Ме      |
| 17-195           | Ph       | H        | H         | H        | Ph       | H        | Н      | Ph      | H       | H       | Н       |
| 17-196           | Ph       | Η        | Η         | Η        | Ph       | Η        | Η      | Η       | Ph      | Н       | Н       |
| 17-197           | Ph       | H        | H         | Н        | Ph       | Н        | Н      | H       | Н       | Ph      | H       |
| 17-198           | Ph       | H        | H         | H        | Ph       | H        | H      | H       | H       | H       | Ph      |
| 17-199<br>17-200 | Me<br>Me | H<br>H   | H<br>H    | H<br>H   | H<br>H   | Ph<br>Ph | H<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  |
| 17-200           | Me       | Н        | Н         | Н        | Н        | Ph       | Н      | H       | п<br>Ме | Н       | Н       |
| 17-201           | Me       | H        | H         | Н        | H        | Ph       | Н      | H       | H       | Me      | Н       |
| 17-203           | Me       | Η        | Η         | Η        | Η        | Ph       | Η      | H       | H       | Н       | Me      |
| 17-204           | Me       | Η        | Η         | H        | H        | Ph       | H      | Ph      | Η       | Н       | Н       |
| 17-205           | Me       | Η        | Η         | Η        | Η        | Ph       | H      | Η       | Ph      | Η       | H       |
| 17-206           | Me       | Η        | Η         | Η        | Η        | Ph       | Η      | H       | H       | Ph      | Η       |

119
TABLE 17-continued

| Cpd No. | Ra1 | Ra2 | Ra3 | Ra4 | Ra5 | Ra6 | Ra7 | Rb1 | Rb2              | Rb3 | Rb4 |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|------------------|-----|-----|
| 17-207  | Me  | Н   | Н   | Н   | Н   | Ph  | Н   | Н   | Н                | Н   | Ph  |
| 17-208  | Ph  | H   | H   | H   | H   | Ph  | H   | H   | H                | H   | H   |
| 17-209  | Ph  | Η   | Η   | Η   | Η   | Ph  | Η   | Me  | Η                | Η   | Η   |
| 17-210  | Ph  | Η   | Η   | Η   | Η   | Ph  | Η   | Η   | Me               | Η   | Η   |
| 17-211  | Ph  | Η   | Η   | Η   | Η   | Ph  | Η   | Η   | Η                | Me  | Η   |
| 17-212  | Ph  | Η   | Η   | H   | Η   | Ph  | Η   | H   | H                | Η   | Me  |
| 17-213  | Ph  | Η   | Η   | H   | Η   | Ph  | Η   | Ph  | Η                | Η   | H   |
| 17-214  | Ph  | Η   | Η   | Η   | Η   | Ph  | Η   | H   | Ph               | Η   | H   |
| 17-215  | Ph  | Η   | Η   | Η   | Η   | Ph  | Η   | H   | H                | Ph  | H   |
| 17-216  | Ph  | Η   | H   | Η   | Η   | Ph  | H   | H   | H                | Η   | Ph  |
| 17-217  | Me  | Η   | Η   | Η   | Η   | Η   | Ph  | H   | H                | Η   | Η   |
| 17-218  | Me  | Η   | Η   | Η   | Η   | Η   | Ph  | Me  | Η                | Η   | H   |
| 17-219  | Me  | Η   | Η   | Η   | Η   | Η   | Ph  | H   | Me               | H   | H   |
| 17-220  | Me  | Η   | Η   | Η   | Η   | Η   | Ph  | Η   | H                | Me  | Η   |
| 17-221  | Me  | Η   | Η   | Η   | Η   | Η   | Ph  | Н   | Η                | Н   | Me  |
| 17-222  | Me  | Η   | Η   | Η   | Η   | Η   | Ph  | Ph  | Η                | Η   | Η   |
| 17-223  | Me  | H   | Η   | Η   | Η   | Η   | Ph  | H   | $_{\mathrm{Ph}}$ | Η   | H   |
| 17-224  | Me  | Η   | Η   | Η   | Η   | Η   | Ph  | Η   | Η                | Ph  | Η   |
| 17-225  | Me  | Η   | Η   | Η   | Η   | Η   | Ph  | H   | H                | Η   | Ph  |
| 17-226  | Ph  | Η   | Η   | Η   | Η   | Η   | Ph  | Η   | Η                | Η   | H   |
| 17-227  | Ph  | Η   | Η   | Η   | Η   | Η   | Ph  | Me  | H                | Η   | Η   |
| 17-228  | Ph  | Η   | Η   | Η   | Η   | Η   | Ph  | H   | Me               | Η   | Η   |
| 17-229  | Ph  | Η   | Η   | H   | Η   | Η   | Ph  | H   | H                | Me  | Η   |
| 17-230  | Ph  | Η   | H   | H   | Η   | Η   | Ph  | H   | H                | Н   | Me  |
| 17-231  | Ph  | Η   | Η   | H   | Η   | Η   | Ph  | Ph  | H                | Η   | H   |
| 17-232  | Ph  | Η   | H   | H   | Η   | Η   | Ph  | H   | Ph               | Н   | H   |
| 17-233  | Ph  | Η   | Н   | H   | Н   | Н   | Ph  | Н   | Н                | Ph  | Н   |
| 17-234  | Ph  | H   | H   | Η   | Н   | Н   | Ph  | H   | H                | H   | Ph  |

TABLE 18

| Cpd No. | Ra1 | Ra2 | Ra3 | Ra4 | Ra5 | Ra6 | Ra7 | Rb1 | Rb2 | Rb3 | Rb4 | Rb5 | Rb6 |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 18-1    | Me  | Н   | Н   | Н   | Н   | Н   | Н   | Н   | Н   | Н   | Н   | Н   | Н   |
| 18-2    | Me  | Η   | Η   | Η   | Η   | Η   | Η   | Me  | Η   | Η   | Η   | Η   | H   |
| 18-3    | Me  | Η   | Η   | Η   | Η   | Η   | Η   | H   | Me  | H   | Η   | Η   | H   |
| 18-4    | Me  | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Me  | Η   | Η   | Η   |
| 18-5    | Me  | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Me  | Η   | H   |
| 18-6    | Me  | H   | H   | Η   | H   | Η   | Η   | H   | H   | H   | H   | Me  | H   |
| 18-7    | Me  | Η   | Η   | Η   | Н   | Η   | Η   | Η   | Η   | H   | Η   | Η   | Me  |
| 18-8    | Me  | Η   | Η   | Η   | Η   | Η   | Η   | Ph  | Η   | Η   | Η   | Η   | Η   |
| 18-9    | Me  | H   | H   | Η   | H   | Η   | Η   | H   | Ph  | H   | H   | H   | H   |
| 18-10   | Me  | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Ph  | Η   | Η   | H   |
| 18-11   | Me  | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Ph  | Η   | Η   |
| 18-12   | Me  | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Ph  | H   |
| 18-13   | Me  | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Ph  |
| 18-14   | Ph  | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   |
| 18-15   | Ph  | Η   | Η   | Η   | Η   | Η   | Η   | Me  | Η   | Η   | Η   | Η   | Η   |
| 18-16   | Ph  | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Me  | Η   | Η   | Η   | Η   |
| 18-17   | Ph  | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Me  | Η   | Η   | Η   |
| 18-18   | Ph  | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Me  | Η   | Η   |
| 18-19   | Ph  | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Me  | Η   |
| 18-20   | Ph  | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Me  |
| 18-21   | Ph  | Η   | Η   | Η   | Η   | Η   | Η   | Ph  | Η   | Η   | Η   | Η   | H   |
| 18-22   | Ph  | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Ph  | Η   | Η   | Η   | Η   |
| 18-23   | Ph  | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Ph  | Η   | Η   | H   |
| 18-24   | Ph  | Η   | Η   | Η   | H   | Η   | Η   | Η   | Η   | H   | Ph  | Η   | H   |
| 18-25   | Ph  | Η   | Η   | Η   | Η   | Η   | Η   | H   | Η   | H   | Η   | Ph  | H   |
| 18-26   | Ph  | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Ph  |
| 18-27   | Me  | Me  | Η   | Η   | H   | Η   | Η   | Η   | Η   | H   | Η   | Η   | H   |
| 18-28   | Me  | Me  | Η   | Η   | Η   | Η   | Η   | Me  | Η   | Η   | Η   | Η   | H   |
| 18-29   | Me  | Me  | Η   | Η   | Η   | Η   | Η   | Η   | Me  | Η   | Η   | Η   | H   |
| 18-30   | Me  | Me  | Η   | Η   | H   | Η   | Η   | Η   | Η   | Me  | Η   | Η   | H   |
| 18-31   | Me  | Me  | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Me  | Η   | H   |
| 18-32   | Me  | Me  | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Me  | H   |
| 18-33   | Me  | Me  | Η   | Η   | H   | Η   | Η   | Η   | Η   | H   | Η   | Η   | Me  |
| 18-34   | Me  | Me  | Η   | Η   | Η   | Η   | Η   | Ph  | Η   | Η   | Η   | Η   | H   |
| 18-35   | Me  | Me  | Η   | Η   | H   | Η   | Η   | Η   | Ph  | H   | Η   | Η   | H   |
| 18-36   | Me  | Me  | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Ph  | Η   | Η   | Η   |
| 18-37   | Me  | Me  | Η   | Η   | Η   | Η   | Η   | Η   | H   | H   | Ph  | Η   | H   |
| 18-38   | Me  | Me  | Η   | Η   | Η   | Η   | Η   | H   | Η   | H   | Η   | Ph  | Η   |
| 18-39   | Me  | Me  | Η   | Η   | H   | Η   | Η   | H   | H   | H   | Η   | Η   | Ph  |
| 18-40   | Ph  | Me  | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   | H   |
| 18-41   | Ph  | Me  | Η   | Η   | Η   | Η   | Η   | Me  | Η   | Η   | Η   | Η   | H   |
| 18-42   | Ph  | Me  | H   | H   | H   | H   | H   | H   | Me  | H   | H   | H   | H   |

121

TABLE 18-continued

|                  |          |          |          |          | IABI     | LE 18  | -conu  | nuea    |         |         |         |         |         |
|------------------|----------|----------|----------|----------|----------|--------|--------|---------|---------|---------|---------|---------|---------|
| Cpd No.          | Ra1      | Ra2      | Ra3      | Ra4      | Ra5      | Ra6    | Ra7    | Rb1     | Rb2     | Rb3     | Rb4     | Rb5     | Rb6     |
| 18-43            | Ph       | Me       | Н        | Н        | Н        | Н      | Н      | Н       | Н       | Me      | Н       | Н       | Н       |
| 18-44            | Ph       | Me       | Н        | Н        | Н        | Н      | Н      | Н       | Н       | Н       | Me      | Н       | Н       |
| 18-45            | Ph       | Me       | H        | Η        | H        | H      | H      | H       | H       | H       | H       | Me      | H       |
| 18-46            | Ph       | Me       | H        | Η        | Η        | Η      | Η      | Η       | H       | H       | H       | Η       | Me      |
| 18-47            | Ph       | Me       | Н        | Н        | Н        | Н      | Н      | Ph      | H       | Н       | Н       | Н       | H       |
| 18-48            | Ph       | Me<br>M- | H        | H        | H        | H      | H      | H       | Ph      | H       | H       | H<br>H  | H       |
| 18-49<br>18-50   | Ph<br>Ph | Me<br>Me | H<br>H   | H<br>H   | H<br>H   | H<br>H | H<br>H | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | Н       | H<br>H  |
| 18-51            | Ph       | Me       | H        | Н        | Н        | Н      | Н      | H       | Н       | Н       | Н       | Ph      | H       |
| 18-52            | Ph       | Me       | H        | Н        | H        | Η      | H      | H       | H       | H       | Н       | H       | Ph      |
| 18-53            | Me       | Η        | Me       | Η        | Η        | Η      | Η      | H       | H       | H       | Η       | Η       | H       |
| 18-54            | Me       | H        | Me       | Η        | Η        | Η      | Η      | Me      | Η       | H       | Η       | H       | H       |
| 18-55            | Me       | H        | Me       | Н        | H        | Н      | H      | H       | Me      | Н       | H       | Н       | H       |
| 18-56<br>18-57   | Me<br>Me | H<br>H   | Me<br>Me | H<br>H   | H<br>H   | H<br>H | H<br>H | H<br>H  | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  |
| 18-58            | Me       | Н        | Me       | Н        | Н        | Н      | Н      | Н       | Н       | Н       | Н       | Me      | H       |
| 18-59            | Me       | Н        | Me       | Н        | Н        | Н      | Н      | Н       | Н       | H       | Н       | Н       | Me      |
| 18-60            | Me       | H        | Me       | Η        | Η        | Η      | Η      | Ph      | H       | H       | Η       | Η       | H       |
| 18-61            | Me       | H        | Me       | Η        | H        | Η      | H      | H       | Ph      | H       | Η       | Η       | H       |
| 18-62            | Me       | H        | Me       | H        | H        | H      | H      | H       | H       | Ph      | H       | H       | H       |
| 18-63<br>18-64   | Me<br>Me | H<br>H   | Me<br>Me | H<br>H   | H<br>H   | H<br>H | H<br>H | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  |
| 18-65            | Me       | Н        | Me       | Н        | Н        | Н      | Н      | Н       | Н       | Н       | Н       | Н       | Ph      |
| 18-66            | Ph       | Н        | Me       | Н        | Н        | Н      | Н      | Н       | Н       | Н       | Н       | Н       | Н       |
| 18-67            | Ph       | H        | Me       | Η        | H        | H      | Η      | Me      | H       | H       | Η       | Η       | H       |
| 18-68            | Ph       | H        | Me       | Η        | H        | Η      | Η      | Η       | Me      | H       | Η       | H       | Н       |
| 18-69            | Ph       | H        | Me       | Η        | Η        | Η      | H      | H       | H       | Me      | Η       | H       | H       |
| 18-70            | Ph       | H        | Me       | H        | Н        | H      | H      | H       | H       | H       | Me      | H<br>M- | H       |
| 18-71<br>18-72   | Ph<br>Ph | H<br>H   | Me<br>Me | H<br>H   | H<br>H   | H<br>H | H<br>H | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H | H<br>Me |
| 18-72            | Ph       | Н        | Me       | Н        | Н        | Н      | Н      | Ph      | Н       | Н       | Н       | Н       | H       |
| 18-74            | Ph       | H        | Me       | Η        | H        | Η      | H      | H       | Ph      | H       | Н       | H       | H       |
| 18-75            | Ph       | Η        | Me       | Η        | Η        | Η      | Η      | Η       | H       | Ph      | Η       | Η       | Η       |
| 18-76            | Ph       | H        | Me       | Η        | H        | Η      | H      | H       | H       | H       | Ph      | H       | H       |
| 18-77            | Ph       | H        | Me       | Н        | H        | Н      | H      | H       | H       | Н       | H       | Ph      | H       |
| 18-78<br>18-79   | Ph<br>Me | H<br>H   | Me<br>H  | H<br>Me  | H<br>H   | H<br>H | H<br>H | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph<br>H |
| 18-80            | Me       | Н        | Н        | Me       | Н        | Н      | Н      | Me      | Н       | Н       | Н       | Н       | H       |
| 18-81            | Me       | H        | H        | Me       | H        | Н      | H      | Н       | Me      | H       | Н       | H       | H       |
| 18-82            | Me       | H        | H        | Me       | H        | Η      | H      | H       | H       | Me      | Η       | H       | H       |
| 18-83            | Me       | Η        | Η        | Me       | Η        | Η      | Η      | Η       | Η       | Η       | Me      | Η       | Η       |
| 18-84            | Me       | H        | H        | Me       | Н        | Н      | H      | H       | H       | Н       | H       | Me      | Н       |
| 18-85<br>18-86   | Me<br>Me | H<br>H   | H<br>H   | Me<br>Me | H<br>H   | H<br>H | H<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H |
| 18-87            | Me       | H        | H        | Me       | Н        | Н      | Н      | Н       | Ph      | Н       | Н       | Н       | H       |
| 18-88            | Me       | H        | H        | Me       | H        | H      | H      | H       | H       | Ph      | Н       | H       | H       |
| 18-89            | Me       | Η        | Η        | Me       | Η        | Η      | Η      | Η       | H       | H       | Ph      | Η       | H       |
| 18-90            | Me       | H        | H        | Me       | Н        | H      | H      | H       | H       | H       | Н       | Ph      | H       |
| 18-91            | Me       | H        | H        | Me       | Н        | Н      | H      | Н       | Н       | Н       | H       | H       | Ph      |
| 18-92<br>18-93   | Ph<br>Ph | H<br>H   | H<br>H   | Me<br>Me | H<br>H   | H<br>H | H<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 18-94            | Ph       | Н        | Н        | Me       | Н        | Н      | Н      | Н       | Me      | Н       | Н       | Н       | Н       |
| 18-95            | Ph       | H        | H        | Me       | H        | H      | H      | H       | H       | Me      | Η       | H       | H       |
| 18-96            | Ph       | Η        | Η        | Me       | Η        | Η      | Η      | Η       | H       | H       | Me      | Η       | Н       |
| 18-97            | Ph       | Н        | Н        | Me       | Н        | Н      | Н      | Н       | Н       | Н       | Н       | Me      | Н       |
| 18-98<br>18-99   | Ph<br>Ph | H<br>H   | H<br>H   | Me<br>Me | H<br>H   | H<br>H | H<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H |
| 18-100           | Ph       | Н        | Н        | Me       | Н        | Н      | Н      | Н       | Ph      | Н       | Н       | Н       | Н       |
| 18-101           | Ph       | H        | H        | Me       | Н        | Н      | Н      | H       | Н       | Ph      | H       | H       | Н       |
| 18-102           | Ph       | H        | H        | Me       | H        | H      | H      | H       | H       | H       | Ph      | H       | H       |
| 18-103           | Ph       | Η        | H        | Me       | H        | Η      | Η      | Η       | H       | H       | Η       | Ph      | H       |
| 18-104           | Ph       | Н        | Н        | Me       | Н        | H      | H      | H       | H       | H       | Н       | Н       | Ph      |
| 18-105<br>18-106 | Me<br>Me | H<br>H   | H<br>H   | H<br>H   | Me<br>Me | H<br>H | H<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 18-107           | Me       | H        | H        | Н        | Me       | Н      | Н      | Н       | Me      | Н       | H       | Н       | H       |
| 18-108           | Me       | Н        | Н        | Н        | Me       | Н      | Н      | Н       | Н       | Me      | Н       | Н       | Н       |
| 18-109           | Me       | H        | H        | Η        | Me       | H      | H      | Η       | H       | H       | Me      | Η       | H       |
| 18-110           | Me       | H        | H        | Η        | Me       | Η      | H      | H       | H       | H       | Η       | Me      | H       |
| 18-111           | Me       | H        | H        | H        | Me       | H      | H      | H       | H       | Н       | H       | Н       | Me      |
| 18-112<br>18-113 | Me<br>Me | H<br>H   | H<br>H   | H<br>H   | Me       | H<br>H | H<br>H | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 18-113           | Me       | Н        | Н        | Н        | Me<br>Me | Н      | Н      | Н       | Pn<br>H | н<br>Ph | Н       | Н       | Н       |
| 18-115           | Me       | Н        | Н        | Н        | Me       | Н      | Н      | Н       | Н       | Н       | Ph      | Н       | H       |
| 18-116           | Me       | Н        | Н        | Н        | Me       | Н      | Н      | H       | Н       | Н       | Н       | Ph      | Н       |
| 18-117           | Me       | Н        | Н        | H        | Me       | H      | H      | Η       | H       | H       | H       | Н       | Ph      |
| 18-118           | Ph       | H        | H        | Н        | Me       | Н      | H      | H       | H       | Н       | H       | H       | H       |
| 18-119           | Ph       | H        | H        | Н        | Me       | H      | H      | Me      | H<br>Mo | H       | H       | H       | H       |
| 18-120           | Ph       | Η        | Η        | Η        | Me       | Η      | Η      | Η       | Me      | Η       | Η       | Η       | H       |

123

TABLE 18-continued

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |     |     |     |     | IADI |     | -conti | nucu |     |     |     |     |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|-----|-----|-----|------|-----|--------|------|-----|-----|-----|-----|-----|
| 18-122   Ph   H   H   Me   H   H   H   H   Me   H   H   H   Me   H   H   H   H   Me   H   H   H   H   H   H   H   H   H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cpd No. | Ra1 | Ra2 | Ra3 | Ra4 | Ra5  | Ra6 | Ra7    | Rb1  | Rb2 | Rb3 | Rb4 | Rb5 | Rb6 |
| 18-122   Ph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18-121  | Ph  | Н   | Н   | Н   | Me   | Н   | Н      | Н    | Н   | Me  | Н   | Н   | Н   |
| 18-124   Ph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-125   Ph   H   H   Me   H   Ph   H   H   H   H   H   H   H   H   H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-12  Ph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-127   Ph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-129 Ph H H H Mc H H H H H H Ph H H Ph H 18-130 Ph H H H M Mc H H H H H H H Ph H H H H H H H H H H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-13    Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-132   Me   H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-133 Me H H H H H Me H H H Me H H H H H H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-135 Me H H H H H Me H H H H Me H H H ME H H H SH ME H SH-18-136 Me H H H H H ME H H H H ME H H H ME H SH-18-137 ME H H H H H ME H H H H H ME H H H H ME H H H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-136 Me H H H H H MC H H H H H MC H H H H H MC H H H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |     | H   | H   | H   | H    |     | H      | H    | H   | H   | H   | Me  | H   |
| 18-139 Me H H H H H Me H H H Ph H H H H H H H H H H H H H H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-140 Me H H H H H Me H H H Ph H H H H H H H H H H H H H H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-141 Me H H H H H Me H H H H H H H H H H H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-142 Me H H H H H Me H H H H H H Ph H Ph H 18-143 Me H H H H H H H H H H H H H H H H Ph H 18-143 Ph H H H H H H H H H H H H H H H H H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-143 Me H H H H Me H H H H H H H H H H H H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-145 Ph H H H H H Me H Me H H H H H H H H H H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-149 Ph H H H H H Me H H H H H Me H H H H Me H H H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-150 Ph H H H H H H Me H H H H H Me H H H H H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-152 Ph H H H H H H Me H H Ph H H H H H 18-153 Ph H H H H H H H H H H H H H H H H H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-153 Ph H H H H H H Me H H H H Ph H H H H 18-154 Ph H H H H H H H H H H H H H H H H H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18-151  |     |     |     |     |      | Me  |        |      |     |     |     |     |     |
| 18-154 Ph H H H H H Me H H H H H Ph H H 18-155 Ph H H H H H H H H H H H H H H H H H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-156 Ph H H H H H H Me H H H H H H H H H H H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-157 Me H H H H H H Me Me H H H H H H H H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-159         Me         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H </td <td></td>                       |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-160         Me         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H </td <td></td>                       |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-161         Me         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H </td <td></td>                       |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-162         Me         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H </td <td></td>                       |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-163         Me         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H </td <td></td>                       |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-165         Me         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H </td <td></td>                       |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-166         Me         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H </td <td>18-164</td> <td>Me</td> <td>Η</td> <td>H</td> <td>Η</td> <td>H</td> <td>H</td> <td>Me</td> <td>Ph</td> <td>H</td> <td>H</td> <td>H</td> <td>H</td> <td>H</td> | 18-164  | Me  | Η   | H   | Η   | H    | H   | Me     | Ph   | H   | H   | H   | H   | H   |
| 18-167         Me         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H </td <td></td>                       |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-168         Me         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H </td <td></td>                       |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-169         Me         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H </td <td></td>                       |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-170         Ph         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H </td <td></td>                       |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-172         Ph         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H </td <td></td>                       |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-173         Ph         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H </td <td></td>                       |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-174         Ph         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H </td <td></td>                       |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-175         Ph         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H </td <td></td>                       |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-176         Ph         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H </td <td></td>                       |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-177         Ph         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H </td <td></td>                       |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-179         Ph         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H </td <td></td> <td>Ph</td> <td></td> <td></td> <td></td> <td>Η</td> <td>H</td> <td>Me</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                 |         | Ph  |     |     |     | Η    | H   | Me     |      |     |     |     |     |     |
| 18-180         Ph         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H </td <td></td>                       |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-181         Ph         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H </td <td></td>                       |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-182         Ph         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H </td <td></td>                       |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-183         Me         Ph         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H<                                                                                                                                                                      |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-185         Me         Ph         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H<                                                                                                                                                                      |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-186         Me         Ph         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H<                                                                                                                                                                      |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-187         Me         Ph         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H<                                                                                                                                                                      |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-188         Me         Ph         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H<                                                                                                                                                                      |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-189         Me         Ph         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H<                                                                                                                                                                      |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-190         Me         Ph         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H<                                                                                                                                                                      |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-192         Me         Ph         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H<                                                                                                                                                                      |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-193     Me     Ph     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     <                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-194     Me     Ph     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     <                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-195     Me     Ph     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     <                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-196 Ph Ph H H H H H H H H H H H H H 18-197 Ph Ph H H H H H H Me H H H H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-197 Ph Ph H H H H Me H H H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
| 18-198 Ph Ph H H H H H Me H H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |     |     |     |     |      |     |        |      |     |     |     |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18-198  | Ph  | Ph  | H   | H   | Н    | Н   | Н      | Н    | Me  | H   | H   | Η   | Η   |

125

TABLE 18-continued

|                  |          |          |          |          | 1711)    | CL TO  | -conti | naca    |         |         |         |         |         |
|------------------|----------|----------|----------|----------|----------|--------|--------|---------|---------|---------|---------|---------|---------|
| Cpd No.          | Ra1      | Ra2      | Ra3      | Ra4      | Ra5      | Ra6    | Ra7    | Rb1     | Rb2     | Rb3     | Rb4     | Rb5     | Rb6     |
| 18-199           | Ph       | Ph       | Н        | Н        | Н        | Н      | Н      | Н       | Н       | Me      | Н       | Н       | Н       |
| 18-200           | Ph       | Ph       | Η        | Η        | Н        | Η      | Η      | Н       | Η       | Η       | Me      | Η       | Н       |
| 18-201           | Ph       | Ph       | Η        | Η        | Η        | Η      | Η      | Η       | Η       | Η       | Η       | Me      | H       |
| 18-202<br>18-203 | Ph<br>Ph | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H   | H<br>H | H<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H |
| 18-204           | Ph       | Ph       | Н        | Н        | Н        | Н      | Н      | Н       | л<br>Ph | Н       | Н       | Н       | Н       |
| 18-205           | Ph       | Ph       | Н        | Н        | Н        | Н      | Н      | Н       | Н       | Ph      | Н       | Н       | Н       |
| 18-206           | Ph       | Ph       | Η        | Η        | Η        | Η      | Η      | Η       | Η       | Η       | Ph      | Η       | H       |
| 18-207           | Ph       | Ph       | H        | H        | H        | Н      | H      | H       | H       | H       | H       | Ph      | H       |
| 18-208<br>18-209 | Ph<br>Me | Ph<br>H  | H<br>Ph  | H<br>H   | H<br>H   | H<br>H | H<br>H | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph<br>H |
| 18-210           | Me       | H        | Ph       | Н        | Н        | Н      | Н      | Me      | H       | Н       | Н       | H       | H       |
| 18-211           | Me       | Η        | Ph       | Η        | Н        | Η      | Η      | Η       | Me      | Η       | Η       | Η       | H       |
| 18-212           | Me       | Η        | Ph       | Η        | Η        | Η      | Η      | Η       | Η       | Me      | Η       | Η       | Η       |
| 18-213<br>18-214 | Me       | H<br>H   | Ph       | H<br>H   | H        | H<br>H | H      | H<br>H  | H<br>H  | H       | Me<br>H | H<br>Me | H       |
| 18-214           | Me<br>Me | Н        | Ph<br>Ph | Н        | H<br>H   | Н      | H<br>H | Н       | Н       | H<br>H  | Н       | H       | H<br>Me |
| 18-216           | Me       | Н        | Ph       | Н        | Н        | Н      | Н      | Ph      | Н       | Н       | Н       | Н       | Н       |
| 18-217           | Me       | Η        | Ph       | Η        | Η        | Η      | Η      | Η       | Ph      | Η       | Η       | Η       | H       |
| 18-218           | Me       | H        | Ph       | H        | H        | H      | H      | H       | H       | Ph      | H       | H       | H       |
| 18-219<br>18-22O | Me<br>Me | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H | H<br>H | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  |
| 18-221           | Me       | H        | Ph       | Н        | Н        | Н      | Н      | Н       | H       | Н       | Н       | Н       | Ph      |
| 18-222           | Ph       | Η        | Ph       | Н        | Н        | Н      | Η      | Н       | Η       | Н       | Н       | Н       | Н       |
| 18-223           | Ph       | Η        | Ph       | Η        | Η        | Η      | Η      | Me      | Η       | Η       | Η       | Η       | Η       |
| 18-224           | Ph       | H        | Ph       | H        | H        | H      | H      | H       | Me      | Н       | H       | H       | H       |
| 18-225<br>18-226 | Ph<br>Ph | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H | H<br>H | H<br>H  | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  |
| 18-227           | Ph       | H        | Ph       | Н        | Н        | Н      | Н      | H       | H       | Н       | Н       | Me      | Н       |
| 18-228           | Ph       | Η        | Ph       | Η        | Η        | Η      | Η      | Η       | Η       | Η       | Η       | Η       | Me      |
| 18-229           | Ph       | H        | Ph       | Н        | Н        | Н      | Н      | Ph      | H       | H       | H       | Н       | H       |
| 18-230<br>18-231 | Ph<br>Ph | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H | H<br>H | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  |
| 18-232           | Ph       | Н        | Ph       | Н        | Н        | Н      | Н      | Н       | Н       | Н       | Ph      | Н       | Н       |
| 18-233           | Ph       | Н        | Ph       | Н        | Н        | Н      | Н      | Н       | H       | Н       | Н       | Ph      | Н       |
| 18-234           | Ph       | Η        | Ph       | Η        | Η        | Η      | Η      | Η       | Η       | Η       | Η       | Η       | Ph      |
| 18-235           | Me       | H        | H        | Ph       | H        | H      | H      | Н       | H       | H       | H       | H       | H       |
| 18-236<br>18-237 | Me<br>Me | H<br>H   | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H | H<br>H | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 18-238           | Me       | H        | H        | Ph       | Н        | Н      | Н      | H       | Н       | Me      | Н       | Н       | H       |
| 18-239           | Me       | Η        | Η        | Ph       | Η        | Η      | Η      | Η       | Η       | Η       | Me      | Η       | Н       |
| 18-240           | Me       | Η        | Η        | Ph       | Η        | Η      | Η      | Η       | Η       | Η       | Η       | Me      | Н       |
| 18-241<br>18-242 | Me<br>Me | H<br>H   | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H | H<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H |
| 18-243           | Me       | Н        | Н        | Ph       | Н        | Н      | Н      | Н       | Ph      | Н       | Н       | H       | Н       |
| 18-244           | Me       | Н        | Н        | Ph       | Н        | Н      | Н      | Н       | Н       | Ph      | Н       | Н       | H       |
| 18-245           | Me       | Η        | Η        | Ph       | Н        | Η      | Η      | Η       | Η       | Η       | Ph      | Н       | Η       |
| 18-246           | Me       | H        | H        | Ph       | H        | H      | H      | H       | H       | H       | H       | Ph      | H       |
| 18-247<br>18-248 | Me<br>Ph | H<br>H   | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H | H<br>H | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph<br>H |
| 18-249           | Ph       | Н        | Н        | Ph       | Н        | Н      | Н      | Me      | H       | Н       | Н       | Н       | H       |
| 18-250           | Ph       | Η        | Η        | Ph       | Η        | Η      | Η      | Η       | Me      | Η       | Η       | Η       | Η       |
| 18-251           | Ph       | H        | H        | Ph       | H        | H      | H      | H       | H       | Me      | Н       | H       | H       |
| 18-252<br>18-253 | Ph<br>Ph | H<br>H   | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H | H<br>H | H<br>H  | H<br>H  | H<br>H  | Me<br>H | H<br>Me | H<br>H  |
| 18-254           | Ph       | H        | H        | Ph       | Н        | H      | H      | H       | H       | Н       | Н       | Н       | Me      |
| 18-255           | Ph       | Η        | Η        | Ph       | Η        | Η      | Η      | Ph      | Η       | Η       | Η       | Н       | Η       |
| 18-256           | Ph       | H        | H        | Ph       | Н        | Н      | Н      | Н       | Ph      | H       | H       | Н       | H       |
| 18-257<br>18-258 | Ph<br>Ph | H<br>H   | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H | H<br>H | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  |
| 18-259           | Ph       | H        | H        | Ph       | Н        | H      | Н      | H       | H       | H       | H       | Ph      | H       |
| 18-260           | Ph       | H        | H        | Ph       | H        | Н      | Н      | H       | H       | Н       | Н       | Н       | Ph      |
| 18-261           | Me       | Η        | Η        | Η        | Ph       | Η      | Η      | Η       | Η       | Η       | Η       | Η       | Η       |
| 18-262           | Me       | H        | H        | H        | Ph       | H      | H      | Me      | Н       | H       | H       | H       | H       |
| 18-263<br>18-264 | Me<br>Me | H<br>H   | H<br>H   | H<br>H   | Ph<br>Ph | H<br>H | H<br>H | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  |
| 18-265           | Me       | H        | H        | Н        | Ph       | Н      | H      | H       | H       | H       | Me      | H       | H       |
| 18-266           | Me       | Н        | Н        | Н        | Ph       | Н      | Н      | Н       | Н       | Н       | Н       | Me      | Н       |
| 18-267           | Me       | Η        | Η        | Н        | Ph       | Н      | Η      | H       | H       | Η       | Н       | Н       | Me      |
| 18-268           | Me       | H        | H        | H        | Ph       | H      | H      | Ph      | H       | H       | H       | H       | H       |
| 18-269<br>18-270 | Me<br>Me | H<br>H   | H<br>H   | H<br>H   | Ph<br>Ph | H<br>H | H<br>H | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  |
| 18-270           | Me       | Н        | Н        | Н        | Ph       | Н      | Н      | Н       | Н       | Н       | Ph      | Н       | Н       |
| 18-272           | Me       | Н        | Н        | Н        | Ph       | Н      | Н      | Н       | Н       | Н       | Н       | Ph      | Н       |
| 18-273           | Me       | H        | Η        | H        | Ph       | Η      | Η      | Η       | Н       | Η       | Η       | Н       | Ph      |
| 18-274           | Ph       | H        | H        | H        | Ph       | Н      | H      | Н       | H       | H       | H       | H       | H       |
| 18-275           | Ph<br>Ph | Н        | Н        | Н        | Ph<br>ph | Н      | Н      | Mе      | H<br>Mo | Н       | Н       | Н       | Н       |
| 18-276           | Ph       | Η        | Η        | Н        | Ph       | Н      | Н      | Η       | Me      | Η       | Н       | Н       | Η       |

127

TABLE 18-continued

| Cpd No.          | Ra1      | Ra2    | Ra3       | Ra4    | Ra5    | Ra6      | Ra7    | Rb1     | Rb2    | Rb3     | Rb4     | Rb5     | Rb6     |
|------------------|----------|--------|-----------|--------|--------|----------|--------|---------|--------|---------|---------|---------|---------|
| 18-277           | Ph       | Н      | Н         | Н      | Ph     | Н        | Н      | Н       | Н      | Me      | Н       | Н       | Н       |
| 18-278           | Ph       | H      | H         | H      | Ph     | H        | H      | H       | H      | Н       | Me      | Н       | Н       |
| 18-279           | Ph       | Η      | H         | H      | Ph     | Н        | Η      | H       | H      | H       | Н       | Me      | Η       |
| 18-280           | Ph       | Н      | Н         | Н      | Ph     | Н        | Н      | Н       | Н      | Н       | Н       | Н       | Me      |
| 18-281           | Ph       | H      | H         | H      | Ph     | H        | H      | Ph      | H      | H       | H       | H       | Н       |
| 18-282           | Ph       | Η      | H         | Η      | Ph     | Η        | Η      | H       | Ph     | H       | Η       | Η       | Η       |
| 18-283           | Ph       | H      | H         | H      | Ph     | Н        | H      | H       | Н      | Ph      | Η       | Н       | H       |
| 18-284           | Ph       | H      | H         | H      | Ph     | Η        | H      | H       | H      | H       | Ph      | Η       | H       |
| 18-285           | Ph       | Η      | Η         | Η      | Ph     | Η        | Η      | Η       | H      | H       | Η       | Ph      | H       |
| 18-286           | Ph       | H      | H         | H      | Ph     | H        | H      | H       | H      | H       | H       | H       | Ph      |
| 18-287           | Me       | Η      | Η         | Η      | Η      | Ph       | Η      | H       | H      | H       | Η       | Η       | H       |
| 18-288           | Me       | Η      | H         | Η      | Η      | Ph       | H      | Me      | H      | H       | Η       | Η       | H       |
| 18-289           | Me       | Η      | Η         | Η      | Η      | Ph       | Η      | Η       | Me     | H       | Η       | Η       | H       |
| 18-290           | Me       | Η      | Η         | Η      | Η      | Ph       | Η      | Η       | H      | Me      | Η       | Η       | Η       |
| 18-291           | Me       | Η      | Η         | Η      | Η      | Ph       | Η      | Η       | Η      | H       | Me      | Η       | H       |
| 18-292           | Me       | Η      | Η         | Η      | Η      | Ph       | Η      | Η       | Η      | H       | Η       | Me      | Η       |
| 18-293           | Me       | Η      | Η         | Η      | Η      | Ph       | Η      | Η       | Η      | H       | Η       | Η       | Me      |
| 18-294           | Me       | Η      | Η         | Η      | Η      | Ph       | H      | Ph      | Η      | H       | Η       | H       | Η       |
| 18-295           | Me       | Η      | Η         | Η      | Η      | Ph       | Η      | H       | Ph     | H       | Η       | Η       | Η       |
| 18-296           | Me       | Η      | Η         | Η      | Η      | Ph       | Η      | Η       | Η      | Ph      | Η       | Η       | Η       |
| 18-297           | Me       | H      | Η         | Η      | H      | Ph       | Н      | H       | H      | H       | Ph      | H       | H       |
| 18-298           | Me       | H      | Η         | Η      | Η      | Ph       | Η      | Η       | Η      | Η       | Η       | Ph      | H       |
| 18-299           | Me       | H      | H         | H      | H      | Ph       | H      | H       | H      | H       | H       | H       | Ph      |
| 18-300           | Ph       | H      | H         | H      | H      | Ph       | H      | H       | H      | Н       | H       | H       | H       |
| 18-301           | Ph       | H      | H         | H      | H      | Ph       | H      | Me      | Н      | H       | H       | H       | H       |
| 18-302           | Ph       | H      | H         | H      | H      | Ph       | H      | H       | Me     | Н       | H       | H       | H       |
| 18-303           | Ph<br>Ph | H<br>H | $_{ m H}$ | H<br>H | H<br>H | Ph<br>Ph | H      | H<br>H  | H      | Me<br>H | H<br>Me | H<br>H  | H<br>H  |
| 18-304<br>18-305 | Ph       | Н      | Н         | Н      | Н      | Ph       | H<br>H | Н       | H<br>H | Н       | Н       | п<br>Ме | Н       |
| 18-306           | Ph       | Н      | Н         | Н      | Н      | Ph       | Н      | Н       | Н      | Н       | Н       | H       | п<br>Ме |
| 18-300           | Ph       | Н      | Н         | Н      | Н      | Ph       | Н      | п<br>Ph | Н      | Н       | Н       | Н       | Н       |
| 18-307           | Ph       | H      | H         | Н      | H      | Ph       | H      | Н       | Ph     | H       | H       | H       | H       |
| 18-309           | Ph       | Н      | H         | Н      | Н      | Ph       | Н      | Н       | Н      | Ph      | Н       | Н       | H       |
| 18-310           | Ph       | H      | H         | Н      | Н      | Ph       | Н      | H       | Н      | Н       | Ph      | Н       | H       |
| 18-311           | Ph       | H      | Н         | H      | H      | Ph       | H      | H       | H      | Н       | Н       | Ph      | Н       |
| 18-312           | Ph       | H      | H         | H      | H      | Ph       | H      | H       | H      | H       | H       | Н       | Ph      |
| 18-313           | Me       | Н      | Н         | Н      | Н      | Н        | Ph     | H       | Н      | Н       | Н       | Н       | Н       |
| 18-314           | Me       | Н      | Н         | Н      | H      | Н        | Ph     | Me      | H      | Н       | Н       | Н       | Н       |
| 18-315           | Me       | Η      | Н         | H      | Н      | H        | Ph     | H       | Me     | Н       | Н       | Η       | H       |
| 18-316           | Me       | H      | H         | Η      | Η      | Η        | Ph     | H       | H      | Me      | Η       | Η       | H       |
| 18-317           | Me       | H      | Η         | H      | Η      | Η        | Ph     | Η       | H      | H       | Me      | Η       | H       |
| 18-318           | Me       | Η      | H         | H      | H      | H        | Ph     | H       | H      | H       | H       | Me      | H       |
| 18-319           | Me       | Η      | Η         | Η      | Η      | Η        | Ph     | Η       | Η      | Η       | Η       | Η       | Me      |
| 18-320           | Me       | Η      | Η         | Η      | Η      | Η        | Ph     | Ph      | Η      | H       | Η       | Η       | Η       |
| 18-321           | Me       | Η      | Η         | Η      | Η      | Η        | Ph     | Η       | Ph     | Н       | Η       | Η       | Η       |
| 18-322           | Me       | H      | Η         | Η      | H      | Η        | Ph     | H       | H      | Ph      | H       | H       | Η       |
| 18-323           | Me       | H      | H         | H      | H      | Н        | Ph     | H       | H      | H       | Ph      | H       | H       |
| 18-324           | Me       | H      | H         | H      | H      | H        | Ph     | H       | H      | Н       | H       | Ph      | H       |
| 18-325           | Me       | Н      | H         | Н      | Н      | H        | Ph     | Н       | Н      | Н       | H       | Н       | Ph      |
| 18-326           | Ph       | Η      | Η         | Н      | Н      | Η        | Ph     | Η       | Η      | Н       | Н       | Н       | H       |
| 18-327           | Ph       | H      | H         | Н      | H      | H        | Ph     | Me      | Н      | H       | H       | Н       | Н       |
| 18-328           | Ph       | Η      | H         | Η      | Η      | Η        | Ph     | Η       | Me     | Н       | Η       | Η       | H       |
| 18-329           | Ph       | H      | Η         | H      | H      | H        | Ph     | H       | H      | Me      | Η       | H       | H       |
| 18-330           | Ph       | H      | Η         | Η      | Η      | Η        | Ph     | Η       | H      | Η       | Me      | Η       | Η       |
| 18-331           | Ph       | Η      | Η         | Η      | Η      | Η        | Ph     | Η       | Η      | Η       | Η       | Me      | Η       |
| 18-332           | Ph       | H      | Η         | Η      | H      | Η        | Ph     | H       | Η      | H       | H       | H       | Me      |
| 18-333           | Ph       | Η      | Η         | Η      | Η      | Η        | Ph     | Ph      | Η      | H       | Η       | Η       | Η       |
| 18-334           | Ph       | Η      | Η         | Η      | Η      | Η        | Ph     | Η       | Ph     | H       | Η       | Η       | Η       |
| 18-335           | Ph       | Η      | Η         | Η      | Η      | Η        | Ph     | H       | H      | Ph      | Η       | Η       | H       |
| 18-336           | Ph       | Η      | Η         | Η      | Η      | Η        | Ph     | Η       | H      | Η       | Ph      | Η       | Η       |
| 18-337           | Ph       | H      | Η         | Η      | H      | Η        | Ph     | H       | H      | H       | Η       | Ph      | H       |
| 18-338           | Ph       | H      | Η         | H      | H      | Η        | Ph     | H       | H      | H       | H       | Η       | Ph      |
|                  |          |        |           |        |        |          |        |         |        |         |         |         |         |

TABLE 19

| Cpd No. | Ra1 | Ra2 | Ra3 | Rb4 | Ra5 | Ra6 | Ra7 | Rb1 | Rb2 | Rb3 | Rb4 | Rb5 | Rb6 | Rb7 |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 19-1 1  | Me  | Н   | Н   | Н   | Н   | Н   | Н   | Н   | Н   | Н   | Н   | Н   | Н   | Me  |
| 19-1 2  | Me  | Η   | Η   | Η   | Η   | Η   | Η   | Me  | Η   | Η   | Η   | Η   | Η   | Me  |
| 19-13   | Me  | H   | Η   | Η   | Η   | Η   | Η   | H   | Me  | H   | Η   | Η   | Η   | Me  |
| 19-14   | Me  | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Me  | Η   | Η   | Η   | Me  |
| 19-1 5  | Me  | H   | Η   | Η   | Η   | Η   | H   | H   | H   | H   | Me  | Η   | Η   | Me  |
| 19-1 6  | Me  | H   | Η   | Η   | Η   | Η   | Η   | H   | H   | H   | Η   | Me  | Η   | Me  |
| 19-17   | Me  | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Me  | Me  |
| 19-18   | Me  | H   | H   | H   | H   | H   | H   | Ph  | H   | H   | H   | H   | H   | Me  |

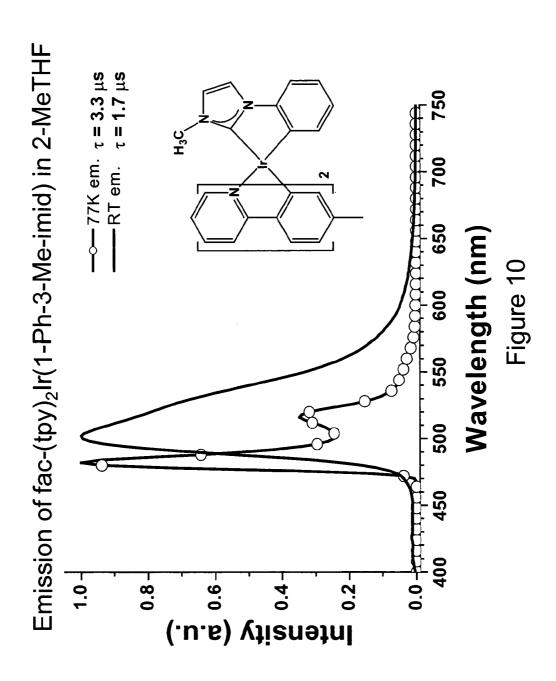



TABLE 19-continued

| Cpd No.            | Ra1      | Ra2      | Ra3      | Rb4      | Ra5    | Ra6    | Ra7    | Rb1     | Rb2     | Rb3     | Rb4     | Rb5     | Rb6     | Rb7      |
|--------------------|----------|----------|----------|----------|--------|--------|--------|---------|---------|---------|---------|---------|---------|----------|
| 19-1 9             | Me       | Н        | Н        | Н        | Н      | Н      | Н      | Н       | Ph      | Н       | Н       | Н       | Н       | Me       |
| 19-1 10            | Me       | H        | H        | Н        | H      | Н      | H      | H       | H       | Ph      | H       | H       | H       | Me       |
| 19-1 11<br>19-1 12 | Me<br>Me | H<br>H   | H<br>H   | H<br>H   | H<br>H | H<br>H | H<br>H | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | Me<br>Me |
| 19-1 13            | Me       | Н        | H        | Н        | Н      | Н      | Н      | Н       | Н       | Н       | Н       | Н       | Ph      | Me       |
| 19-1 14            | Ph       | Η        | Η        | Н        | Η      | Η      | Η      | Η       | Η       | Η       | Η       | Η       | Η       | Me       |
| 19-1 15            | Ph       | H        | H        | H        | H      | H      | H      | Me      | Н       | H       | H       | H       | H       | Me       |
| 19-1 16<br>19-1 17 | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H   | H<br>H | H<br>H | H<br>H | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  | Me<br>Me |
| 19-1 18            | Ph       | Н        | H        | Н        | Н      | Н      | Н      | Н       | Н       | Н       | Me      | Н       | Н       | Me       |
| 19-1 19            | Ph       | Η        | H        | Н        | H      | Η      | Η      | Η       | Η       | Н       | Η       | Me      | H       | Me       |
| 19-1 20            | Ph       | H        | H        | H        | H      | H      | H      | H<br>Ph | H       | H       | H       | H       | Me      | Me       |
| 19-1 21<br>19-1 22 | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H   | H<br>H | H<br>H | H<br>H | Н       | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>Me |
| 19-1 23            | Ph       | Η        | Η        | Η        | Н      | Η      | Η      | Н       | Η       | Ph      | Η       | Н       | Η       | Me       |
| 19-1 24            | Ph       | H        | H        | H        | H      | H      | H      | H       | H       | H       | Ph      | H       | H       | Me       |
| 19-1 25<br>19-1 26 | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H   | H<br>H | H<br>H | H<br>H | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | Me<br>Me |
| 19-1 27            | Me       | Me       | Н        | Н        | Н      | Н      | Н      | Н       | H       | Н       | Н       | Н       | Н       | Me       |
| 19-1 28            | Me       | Me       | Η        | Η        | Η      | Η      | Η      | Me      | Η       | Η       | Η       | Η       | Η       | Me       |
| 19-1 29            | Me       | Me       | H        | H        | H      | H      | H      | H       | Me      | Н       | H       | H       | H       | Me       |
| 19-1 30<br>19-1 31 | Me<br>Me | Me<br>Me | H<br>H   | H<br>H   | H<br>H | H<br>H | H<br>H | H<br>H  | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  | Me<br>Me |
| 19-1 32            | Me       | Me       | H        | Н        | Н      | Н      | Н      | Н       | Н       | Н       | Н       | Me      | Н       | Me       |
| 19-1 33            | Me       | Me       | H        | Н        | H      | Н      | Η      | Н       | Η       | Н       | Η       | H       | Me      | Me       |
| 19-1 34<br>19-1 35 | Me<br>Me | Me       | H<br>H   | H<br>H   | H<br>H | H<br>H | H<br>H | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>Me |
| 19-1 35            | Me       | Me<br>Me | Н        | Н        | Н      | Н      | Н      | Н       | Н       | л<br>Ph | Н       | Н       | Н       | Me       |
| 19-1 37            | Me       | Me       | H        | Н        | H      | Н      | H      | Н       | Η       | Н       | Ph      | H       | H       | Me       |
| 19-1 38            | Me       | Me       | H        | Н        | H      | H      | H      | H       | H       | H       | H       | Ph      | H       | Me       |
| 19-1 39<br>19-1 40 | Me<br>Ph | Me<br>Me | H<br>H   | H<br>H   | H<br>H | H<br>H | H<br>H | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | Me<br>Me |
| 19-1 41            | Ph       | Me       | H        | Н        | Н      | Н      | Н      | Me      | Н       | Н       | Н       | Н       | Н       | Me       |
| 19-1 42            | Ph       | Me       | Η        | Н        | Н      | Η      | Η      | Η       | Me      | Н       | Η       | H       | H       | Me       |
| 19-1 43<br>19-1 44 | Ph<br>Ph | Me       | H        | H<br>H   | H<br>H | H<br>H | H<br>H | H<br>H  | H       | Me<br>H | H       | H<br>H  | H<br>H  | Me       |
| 19-1 44            | Ph       | Me<br>Me | H<br>H   | Н        | Н      | Н      | Н      | Н       | H<br>H  | Н       | Me<br>H | п<br>Ме | Н       | Me<br>Me |
| 19-1 46            | Ph       | Me       | Н        | Н        | Н      | Η      | Η      | Н       | Н       | Н       | Η       | Н       | Me      | Me       |
| 19-1 47            | Ph       | Me       | H        | H        | H      | H      | H      | Ph      | H       | H       | H       | H       | H       | Me       |
| 19-1 48<br>19-1 49 | Ph<br>Ph | Me<br>Me | H<br>H   | H<br>H   | H<br>H | H<br>H | H<br>H | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | Me<br>Me |
| 19-1 50            | Ph       | Me       | Н        | Н        | Н      | Н      | Н      | Н       | Н       | Н       | Ph      | Н       | Н       | Me       |
| 19-1 51            | Ph       | Me       | H        | Н        | H      | Η      | Η      | Η       | Η       | H       | Η       | Ph      | H       | Me       |
| 19-1 52<br>19-1 53 | Ph<br>Me | Me<br>H  | H<br>Me  | H<br>H   | H<br>H | H<br>H | H<br>H | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | Me<br>Me |
| 19-1 53            | Me       | Н        | Me       | Н        | Н      | Н      | H      | Me      | H       | Н       | H       | H       | H       | Me       |
| 19-1 55            | Me       | Η        | Me       | Η        | Н      | Η      | Η      | Η       | Me      | Η       | Η       | Η       | Η       | Me       |
| 19-1 56            | Me       | H        | Me       | H        | H      | H      | H      | H       | H       | Me      | H<br>Ma | H       | H       | Me       |
| 19-1 57<br>19-1 58 | Me<br>Me | H<br>H   | Me<br>Me | H<br>H   | H<br>H | H<br>H | H<br>H | H<br>H  | H<br>H  | H<br>H  | Me<br>H | H<br>Me | H<br>H  | Me<br>Me |
| 19-1 59            | Me       | Н        | Me       | Н        | Η      | Η      | Н      | Н       | Η       | Н       | Н       | Н       | Me      | Me       |
| 19-1 60            | Me       | H        | Me       | H        | H      | H      | H      | Ph      | H       | H       | H       | H       | H       | Me       |
| 19-1 61<br>19-1 62 | Me<br>Me | H<br>H   | Me<br>Me | H<br>H   | H<br>H | H<br>H | H<br>H | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | Me<br>Me |
| 19-1 63            | Me       | Н        | Me       | Н        | Н      | Н      | Н      | Н       | Н       | Н       | Ph      | Н       | Н       | Me       |
| 19-1 64            | Me       | Н        | Me       | Н        | Н      | Н      | Н      | Н       | Η       | Н       | Н       | Ph      | H       | Me       |
| 19-1 65<br>19-1 66 | Me<br>Ph | H<br>H   | Me<br>Me | H<br>H   | H<br>H | H<br>H | H<br>H | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | Me<br>Me |
| 19-1 67            | Ph       | H        | Me       | Н        | Н      | H      | Н      | Me      | Н       | H       | H       | H       | H       | Me       |
| 19-1 68            | Ph       | Η        | Me       | Η        | Н      | Η      | Η      | Η       | Me      | Η       | Η       | H       | Η       | Me       |
| 19-1 69            | Ph       | H        | Me<br>M- | H        | H      | H      | H      | H       | H       | Me      | Н       | H       | H       | Me<br>M- |
| 19-1 70<br>19-1 71 | Ph<br>Ph | H<br>H   | Me<br>Me | H<br>H   | H<br>H | H<br>H | H<br>H | H<br>H  | H<br>H  | H<br>H  | Me<br>H | H<br>Me | H<br>H  | Me<br>Me |
| 19-1 72            | Ph       | Н        | Me       | Н        | Η      | Н      | Н      | Н       | Η       | Н       | Н       | Н       | Me      | Me       |
| 19-1 73            | Ph       | H        | Me       | H        | H      | H      | H      | Ph      | H       | H       | H       | H       | H       | Me       |
| 19-1 74<br>19-1 75 | Ph<br>Ph | H<br>H   | Me<br>Me | H<br>H   | H<br>H | H<br>H | H<br>H | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | Me<br>Me |
| 19-1 76            | Ph       | Н        | Me       | Н        | H      | Н      | H      | H       | H       | Н       | Ph      | H       | Н       | Me       |
| 19-1 77            | Ph       | Η        | Me       | Н        | Н      | Н      | Η      | Н       | Η       | Η       | Н       | Ph      | H       | Me       |
| 19-1 78<br>19-1 79 | Ph<br>Me | H        | Me<br>п  | H<br>Me  | Н      | H<br>H | Н      | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Н       | Ph<br>ப | Me<br>Me |
| 19-1 /9            | Me       | H<br>H   | H<br>H   | Me<br>Me | H<br>H | Н      | H<br>H | н<br>Ме | Н       | Н       | Н       | H<br>H  | H<br>H  | Me       |
| 19-1 81            | Me       | Η        | Η        | Me       | Η      | Η      | Η      | Η       | Me      | Η       | Η       | H       | Η       | Me       |
| 19-1 82            | Me       | H        | H        | Me       | H      | Н      | H      | H       | H       | Me      | H       | H       | H       | Me       |
| 19-1 83<br>19-1 84 | Me<br>Me | H<br>H   | H<br>H   | Me<br>Me | H<br>H | H<br>H | H<br>H | H<br>H  | H<br>H  | H<br>H  | Me<br>H | H<br>Me | H<br>H  | Me<br>Me |
| 19-1 85            | Me       | Н        | Н        | Me       | Н      | Н      | Н      | Н       | Н       | Н       | Н       | Н       | Me      | Me       |
| 19-1 86            | Me       | H        | H        | Me       | Н      | H      | H      | Ph      | H       | H       | H       | Н       | H       | Me       |

TABLE 19-continued

| Cnd No               | D a 1    | Dan    | D . 2  | Dh4      | Do5      | D o 6    | D . 7    | Dh1     | DLO     | Dha     | Db4     | Dhs     | Db4     | Dh7      |
|----------------------|----------|--------|--------|----------|----------|----------|----------|---------|---------|---------|---------|---------|---------|----------|
| Cpd No.              | Ra1      | Ra2    | Ra3    | Rb4      | Ra5      | Ra6      | Ra7      | Rb1     | Rb2     | Rb3     | Rb4     | Rb5     | Rb6     | Rb7      |
| 19-1 87              | Me       | H      | H      | Me       | H        | H        | H        | H       | Ph      | H       | H       | H       | H       | Me       |
| 19-1 88<br>19-1 89   | Me       | H<br>H | H<br>H | Me<br>Me | H<br>H   | H<br>H   | H<br>H   | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | Me<br>M- |
| 19-1 89              | Me<br>Me | Н      | Н      | Me       | Н        | Н        | Н        | Н       | Н       | Н       | Н       | Рh      | Н       | Me<br>Me |
| 19-1 91              | Me       | Н      | Н      | Me       | Н        | Н        | Н        | Н       | Н       | Н       | Н       | Н       | Ph      | Me       |
| 19-1 92              | Ph       | Η      | H      | Me       | Η        | Η        | Η        | Η       | H       | Η       | Η       | Η       | Η       | Me       |
| 19-1 93              | Ph       | H      | H      | Me       | H        | H        | Н        | Me      | Н       | Н       | H       | Н       | H       | Me       |
| 19-1 94<br>19-1 95   | Ph<br>Ph | H<br>H | H<br>H | Me<br>Me | H<br>H   | H<br>H   | H<br>H   | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  | Me<br>Me |
| 19-1 96              | Ph       | Н      | H      | Me       | Н        | Н        | Н        | Н       | Н       | Н       | Me      | Н       | Н       | Me       |
| 19-1 97              | Ph       | Η      | H      | Me       | Η        | Η        | Η        | Η       | H       | Н       | Η       | Me      | Η       | Me       |
| 19-1 98              | Ph       | H      | H      | Me       | H        | H        | H        | H       | H       | H       | H       | H       | Me      | Me       |
| 19-1 99<br>19-1 100  | Ph<br>Ph | H<br>H | H<br>H | Me<br>Me | H<br>H   | H<br>H   | H<br>H   | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>Me |
| 19-1 101             | Ph       | Н      | Н      | Me       | Н        | Н        | Н        | Н       | Н       | Ph      | Н       | Н       | Н       | Me       |
| 19-1 102             | Ph       | H      | H      | Me       | Η        | Η        | H        | Η       | H       | Η       | Ph      | Η       | Η       | Me       |
| 19-1 103             | Ph       | H      | H      | Me       | H        | H        | H        | H       | H       | H       | H       | Ph      | H       | Me       |
| 19-1 104<br>19-1 105 | Ph<br>Me | H<br>H | H<br>H | Me<br>H  | H<br>Me  | H<br>H   | H<br>H   | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | Me<br>Me |
| 19-1 106             | Me       | H      | H      | Н        | Me       | H        | H        | Me      | H       | H       | Н       | H       | Н       | Me       |
| 19-1 107             | Me       | H      | H      | Η        | Me       | Η        | H        | Η       | Me      | H       | Η       | Η       | Η       | Me       |
| 19-1 108             | Me       | H      | H      | H        | Me       | H        | H        | H       | H       | Me      | Н       | H       | H       | Me       |
| 19-1 109<br>19-1 110 | Me<br>Me | H<br>H | H<br>H | H<br>H   | Me<br>Me | H<br>H   | H<br>H   | H<br>H  | H<br>H  | H<br>H  | Me<br>H | H<br>Me | H<br>H  | Me<br>Me |
| 19-1 111             | Me       | Н      | Н      | Н        | Me       | Н        | Н        | Н       | Н       | Н       | Н       | Н       | Me      | Me       |
| 19-1 112             | Me       | Η      | Η      | Η        | Me       | Η        | Η        | Ph      | Η       | Н       | Η       | Η       | Η       | Me       |
| 19-1 113             | Me       | H      | H      | Н        | Me       | Н        | H        | H       | Ph      | H       | H       | H       | H       | Me       |
| 19-1 114<br>19-1 115 | Me<br>Me | H<br>H | H<br>H | H<br>H   | Me<br>Me | H<br>H   | H<br>H   | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | Me<br>Me |
| 19-1 116             | Me       | H      | H      | Н        | Me       | Н        | Н        | H       | H       | Н       | Н       | Ph      | Н       | Me       |
| 19-1 117             | Me       | Η      | Η      | Η        | Me       | Η        | Η        | Η       | Η       | Η       | Η       | Η       | Ph      | Me       |
| 19-1 118             | Ph       | H      | H      | Н        | Me       | Н        | H        | H       | H       | H       | H       | H       | H       | Me       |
| 19-1 119<br>19-1 120 | Ph<br>Ph | H<br>H | H<br>H | H<br>H   | Me<br>Me | H<br>H   | H<br>H   | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>Me |
| 19-1 121             | Ph       | Н      | Н      | Н        | Me       | Н        | Н        | Н       | Н       | Me      | Н       | Н       | Н       | Me       |
| 19-1 122             | Ph       | Η      | H      | Η        | Me       | Η        | Η        | Η       | H       | Η       | Me      | Η       | Η       | Me       |
| 19-1 123             | Ph       | H      | H      | H        | Me       | H        | H        | H       | H       | H       | H       | Me      | Н       | Me       |
| 19-1 124<br>19-1 125 | Ph<br>Ph | H<br>H | H<br>H | H<br>H   | Me<br>Me | H<br>H   | H<br>H   | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H | Me<br>Me |
| 19-1 126             | Ph       | Н      | Н      | Н        | Me       | Н        | Н        | Н       | Ph      | Н       | Н       | Н       | Н       | Me       |
| 19-1 127             | Ph       | Η      | Η      | Η        | Me       | Η        | Η        | Η       | Η       | Ph      | Η       | Η       | Η       | Me       |
| 19-1 128             | Ph       | H      | H      | H        | Me       | H        | Н        | H       | H       | H       | Ph      | H       | H       | Me<br>M- |
| 19-1 129<br>19-1 130 | Ph<br>Ph | H<br>H | H<br>H | H<br>H   | Me<br>Me | H<br>H   | H<br>H   | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | Me<br>Me |
| 19-1 131             | Me       | Η      | H      | Н        | Н        | Me       | Н        | Η       | Н       | Н       | Н       | Η       | Н       | Me       |
| 19-1 132             | Me       | Η      | Η      | Н        | Η        | Me       | Н        | Me      | Η       | Н       | Η       | Η       | Н       | Me       |
| 19-1 133<br>19-1 134 | Me       | H<br>H | H<br>H | H<br>H   | H<br>H   | Me       | H<br>H   | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  | Me<br>Me |
| 19-1 134             | Me<br>Me | H      | H      | Н        | H        | Me<br>Me | H        | H       | H       | H       | Me      | Н       | H       | Me       |
| 19-1 136             | Me       | Η      | Η      | Н        | Н        | Me       | Н        | Н       | Η       | Н       | Н       | Me      | Н       | Me       |
| 19-1 137             | Me       | Η      | Η      | Н        | Η        | Me       | Η        | Η       | Η       | Н       | Η       | Η       | Me      | Me       |
| 19-1 138<br>19-1 139 | Me<br>Me | H<br>H | H<br>H | H<br>H   | H<br>H   | Me<br>Me | H<br>H   | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>Me |
| 19-1 140             | Me       | Н      | Н      | Н        | Н        | Me       | Н        | Н       | Н       | Ph      | Н       | Н       | Н       | Me       |
| 19-1 141             | Me       | H      | H      | Η        | Η        | Me       | H        | H       | Η       | H       | Ph      | Η       | Η       | Me       |
| 19-1 142             | Me       | H      | H      | H        | H        | Me       | H        | H       | H       | H       | H       | Ph      | H       | Me       |
| 19-1 143<br>19-1 144 | Me<br>Ph | H<br>H | H<br>H | H<br>H   | H<br>H   | Me<br>Me | H<br>H   | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | Me<br>Me |
| 19-1 145             | Ph       | H      | H      | Н        | Н        | Me       | Н        | Me      | Н       | Н       | Н       | H       | Н       | Me       |
| 19-1 146             | Ph       | Η      | Η      | Η        | Η        | Me       | H        | Η       | Me      | Н       | Η       | Η       | Η       | Me       |
| 19-1 147<br>19-1 148 | Ph<br>Ph | H<br>H | H<br>H | H<br>H   | H        | Me       | H<br>H   | H<br>H  | H<br>H  | Me      | H<br>Me | Н       | H       | Me<br>M- |
| 19-1 148             | Ph       | Н      | Н      | Н        | H<br>H   | Me<br>Me | Н        | Н       | Н       | H<br>H  | H       | H<br>Me | H<br>H  | Me<br>Me |
| 19-1 150             | Ph       | Η      | Η      | Н        | Н        | Me       | Η        | Η       | Η       | Н       | Н       | Н       | Me      | Me       |
| 19-1 151             | Ph       | Η      | H      | Η        | Η        | Me       | Η        | Ph      | H       | Н       | Η       | Η       | Η       | Me       |
| 19-1 152<br>19-1 153 | Ph<br>Ph | H<br>H | H<br>H | H<br>H   | H<br>H   | Me<br>Me | H<br>H   | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | Me<br>Me |
| 19-1 153             | Ph<br>Ph | Н      | Н      | Н        | Н        | Me       | Н        | Н       | Н       | Pn<br>H | н<br>Ph | Н       | Н       | Me       |
| 19-1 155             | Ph       | H      | H      | Н        | Н        | Me       | H        | H       | H       | Н       | Н       | Ph      | Н       | Me       |
| 19-1 156             | Ph       | Η      | Η      | Н        | Η        | Me       | Н        | Н       | Н       | Η       | Н       | Н       | Ph      | Me       |
| 19-1 157<br>19-1 158 | Me       | Н      | Н      | Н        | Н        | Н        | Me       | H<br>Ma | Н       | Н       | Н       | Н       | Н       | Me       |
| 19-1 158             | Me<br>Me | H<br>H | H<br>H | H<br>H   | H<br>H   | H<br>H   | Me<br>Me | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>Me |
| 19-1 160             | Me       | H      | H      | Н        | Н        | Н        | Me       | Н       | Н       | Me      | Н       | Н       | Н       | Me       |
| 19-1 161             | Me       | H      | Η      | Н        | Н        | H        | Me       | Н       | Н       | Н       | Me      | Н       | Н       | Me       |
| 19-1 162             | Me       | Н      | Н      | Н        | Н        | Н        | Me       | Н       | Н       | Н       | Н       | Mе      | H<br>Mo | Me<br>Me |
| 19-1 163<br>19-1 164 | Me<br>Me | H<br>H | H<br>H | H<br>H   | H<br>H   | H<br>H   | Me<br>Me | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H | Me<br>Me |
| 107                  |          |        |        |          |          |          |          | ~ **    |         |         |         |         |         |          |

TABLE 19-continued

| Cpd No.              | Ra1      | Ra2      | Ra3      | Rb4      | Ra5    | Ra6    | Ra7      | Rb1     | Rb2     | Rb3     | Rb4     | Rb5     | Rb6     | Rb7      |
|----------------------|----------|----------|----------|----------|--------|--------|----------|---------|---------|---------|---------|---------|---------|----------|
| 19-1 165             | Me       | Н        | Н        | Н        | Н      | Н      | Me       | Н       | Ph      | Н       | Н       | Н       | Н       | Me       |
| 19-1 166             | Me       | Η        | Н        | Н        | Н      | Η      | Me       | Н       | Η       | Ph      | Н       | Η       | Η       | Me       |
| 19-1 167<br>19-1 168 | Me       | H<br>H   | H<br>H   | H<br>H   | H<br>H | H<br>H | Me<br>Me | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | Me<br>Me |
| 19-1 168             | Me<br>Me | Н        | Н        | Н        | Н      | Н      | Me       | Н       | Н       | Н       | Н       | Н       | Ph      | Me       |
| 19-1 170             | Ph       | Н        | Н        | Н        | Н      | Н      | Me       | Н       | Н       | Н       | Н       | Н       | Н       | Me       |
| 19-1 171             | Ph       | Η        | Η        | Η        | Η      | Η      | Me       | Me      | Η       | Н       | Η       | Η       | Η       | Me       |
| 19-1 172             | Ph       | H        | H        | Н        | Н      | H      | Me       | H       | Me      | Н       | Н       | Н       | Н       | Me       |
| 19-1 173<br>19-1 174 | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H   | H<br>H | H<br>H | Me<br>Me | H<br>H  | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  | Me<br>Me |
| 19-1 175             | Ph       | Н        | Н        | Н        | Н      | Н      | Me       | Н       | Н       | Н       | Н       | Me      | Н       | Me       |
| 19-1 176             | Ph       | Η        | Η        | Η        | Η      | Η      | Me       | Η       | Η       | Η       | Η       | Η       | Me      | Me       |
| 19-1 177             | Ph       | H        | H        | H        | Н      | H      | Me       | Ph      | H       | H       | H       | Н       | H       | Me       |
| 19-1 178<br>19-1 179 | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H   | H<br>H | H<br>H | Me<br>Me | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | Me<br>Me |
| 19-1 180             | Ph       | Н        | Н        | Н        | Н      | Н      | Me       | Н       | Н       | Н       | Ph      | Н       | Н       | Me       |
| 19-1 181             | Ph       | Η        | Η        | Η        | Η      | Η      | Me       | Η       | Η       | Η       | Η       | Ph      | Η       | Me       |
| 19-1 182             | Ph       | H        | H        | H        | Н      | H      | Me       | H       | H       | H       | H       | Н       | Ph      | Me       |
| 19-1 183<br>19-1 184 | Me<br>Me | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H | H<br>H | H<br>H   | H<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>Me |
| 19-1 185             | Me       | Ph       | Н        | Н        | Н      | Н      | Н        | Н       | Me      | Н       | Н       | Н       | Н       | Me       |
| 19-1 186             | Me       | Ph       | Η        | Η        | Η      | Η      | Η        | Η       | Η       | Me      | Η       | Η       | Η       | Me       |
| 19-1 187             | Me       | Ph       | Н        | Н        | Н      | Н      | H        | H       | H       | H       | Me      | Н       | Н       | Me       |
| 19-1 188<br>19-1 189 | Me<br>Me | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H | H<br>H | H<br>H   | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H | H<br>Me | Me<br>Me |
| 19-1 199             | Me       | Ph       | H        | Н        | Н      | H      | H        | Ph      | H       | H       | H       | Н       | H       | Me       |
| 19-1 191             | Me       | Ph       | Н        | Н        | Н      | Н      | Η        | Н       | Ph      | Н       | Н       | Н       | Н       | Me       |
| 19-1 192             | Me       | Ph       | Н        | Н        | Н      | H      | H        | Н       | H       | Ph      | H       | Н       | Н       | Me       |
| 19-1 193<br>19-1 194 | Me       | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H | H<br>H | H<br>H   | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | Me<br>Me |
| 19-1 194             | Me<br>Me | Ph       | Н        | Н        | Н      | Н      | Н        | Н       | Н       | Н       | Н       | Н       | г<br>Ph | Me       |
| 19-1 196             | Ph       | Ph       | Н        | Н        | Н      | Н      | Н        | Н       | Н       | Н       | Н       | Н       | Н       | Me       |
| 19-1 197             | Ph       | Ph       | Η        | Н        | Η      | Η      | Η        | Me      | Η       | Н       | Η       | Η       | Η       | Me       |
| 19-1 198             | Ph       | Ph       | H        | H        | H      | H      | H        | H       | Me      | H<br>M- | H       | H       | H       | Me       |
| 19-1 199<br>19-1 200 | Ph<br>Ph | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H | H<br>H | H<br>H   | H<br>H  | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  | Me<br>Me |
| 19-1 201             | Ph       | Ph       | Н        | Н        | Н      | Н      | Н        | Н       | Н       | Н       | Н       | Me      | Н       | Me       |
| 19-1 202             | Ph       | Ph       | Η        | Η        | Η      | Η      | Η        | Η       | Η       | Н       | Η       | Η       | Me      | Me       |
| 19-1 203             | Ph       | Ph       | H        | H        | H      | H      | H        | Ph      | H       | H       | H       | H       | H       | Me       |
| 19-1 204<br>19-1 205 | Ph<br>Ph | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H | H<br>H | H<br>H   | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | Me<br>Me |
| 19-1 206             | Ph       | Ph       | Н        | Н        | Н      | Н      | Н        | Н       | Н       | Н       | Ph      | Н       | Н       | Me       |
| 19-1 207             | Ph       | Ph       | Η        | Η        | Η      | Η      | Η        | Н       | Η       | Η       | Η       | Ph      | Η       | Me       |
| 19-1 208             | Ph       | Ph       | H        | H<br>H   | Н      | H<br>H | H        | H       | H<br>H  | H       | H<br>H  | H<br>H  | Ph      | Me<br>M- |
| 19-1 209<br>19-1 210 | Me<br>Me | H<br>H   | Ph<br>Ph | Н        | H<br>H | Н      | H<br>H   | H<br>Me | Н       | H<br>H  | Н       | Н       | H<br>H  | Me<br>Me |
| 19-1 211             | Me       | Н        | Ph       | Н        | Н      | Н      | Н        | Н       | Me      | Н       | Н       | Н       | Н       | Me       |
| 19-1 212             | Me       | Η        | Ph       | Η        | Η      | Η      | Η        | Н       | Η       | Me      | Н       | Η       | Н       | Me       |
| 19-1 213<br>19-1 214 | Me<br>Me | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H | H<br>H | H<br>H   | H<br>H  | H<br>H  | H<br>H  | Me<br>H | H<br>Me | H<br>H  | Me<br>Me |
| 19-1 214             | Me       | H        | Ph       | Н        | Н      | Н      | Н        | Н       | Н       | Н       | Н       | H       | Me      | Me       |
| 19-1 216             | Me       | Η        | Ph       | Н        | Η      | Η      | Η        | Ph      | Η       | H       | Н       | Η       | Η       | Me       |
| 19-1 217             | Me       | Н        | Ph       | Н        | Н      | H      | H        | Н       | Ph      | H       | Н       | Н       | Н       | Me       |
| 19-1 218<br>19-1 219 | Me<br>Me | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H | H<br>H | H<br>H   | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | Me<br>Me |
| 19-1 220             | Me       | H        | Ph       | Н        | Н      | Н      | Н        | H       | H       | Н       | Н       | Ph      | Н       | Me       |
| 19-1 221             | Me       | Η        | Ph       | Η        | Η      | Η      | Η        | Η       | Η       | Η       | Η       | Η       | Ph      | Me       |
| 19-1 222             | Ph       | H        | Ph       | Н        | Н      | H      | H        | H<br>Ma | H       | H       | Н       | Н       | H       | Me       |
| 19-1 223<br>19-1 224 | Ph<br>Ph | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H | H<br>H | H<br>H   | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>Me |
| 19-1 225             | Ph       | H        | Ph       | Н        | Н      | Н      | Н        | H       | Н       | Me      | Н       | Н       | Н       | Me       |
| 19-1 226             | Ph       | Η        | Ph       | Н        | Η      | Η      | Η        | Η       | Η       | Н       | Me      | Η       | Η       | Me       |
| 19-1 227             | Ph       | H        | Ph       | H        | H      | H      | H        | H       | H       | H       | H       | Me      | H<br>M- | Me<br>M- |
| 19-1 228<br>19-1 229 | Ph<br>Ph | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H | H<br>H | H<br>H   | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H | Me<br>Me |
| 19-1 230             | Ph       | Н        | Ph       | Н        | Н      | Н      | Н        | Н       | Ph      | Н       | Н       | Н       | Н       | Me       |
| 19-1 231             | Ph       | Η        | Ph       | Н        | Н      | Η      | Η        | Н       | Н       | Ph      | Η       | Н       | Н       | Me       |
| 19-1 232             | Ph       | H        | Ph       | H        | H      | H      | H        | H       | H       | H       | Ph      | H       | H       | Me       |
| 19-1 233<br>19-1 234 | Ph<br>Ph | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H | H<br>H | H<br>H   | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | Me<br>Me |
| 19-1 235             | Me       | Н        | Н        | Ph       | Н      | Н      | Н        | Н       | Н       | Н       | Н       | Н       | Н       | Me       |
| 19-1 236             | Me       | Η        | Η        | Ph       | Η      | Η      | Η        | Me      | Η       | Η       | Η       | Η       | Η       | Me       |
| 19-1 237             | Me       | H        | H        | Ph       | H      | H      | H        | H       | Me      | H       | H       | H       | H       | Me       |
| 19-1 238<br>19-1 239 | Me<br>Me | H<br>H   | H<br>H   | Ph<br>Ph | H<br>H | H<br>H | H<br>H   | H<br>H  | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  | Me<br>Me |
| 19-1 239             | Me       | Н        | Н        | Ph       | Н      | Н      | Н        | Н       | Н       | Н       | H       | Мe      | Н       | Me       |
| 19-1 241             | Me       | Н        | Н        | Ph       | Н      | Н      | Н        | Н       | Н       | Н       | Н       | Н       | Me      | Me       |
| 19-1 242             | Me       | Η        | Η        | Ph       | Н      | Η      | Η        | Ph      | Η       | Н       | Η       | Η       | Η       | Me       |

TABLE 19-continued

| Cpd No.              | Ra1      | Ra2    | Ra3    | Rb4      | Ra5      | Ra6      | Ra7      | Rb1     | Rb2     | Rb3    | Rb4    | Rb5     | Rb6     | Rb7      |
|----------------------|----------|--------|--------|----------|----------|----------|----------|---------|---------|--------|--------|---------|---------|----------|
| 19-1 243             | Me       | Н      | Н      | Ph       | Н        | Н        | Н        | Н       | Ph      | Н      | Н      | Н       | Н       | Me       |
| 19-1 244             | Me       | Η      | Η      | Ph       | Η        | Η        | Η        | Η       | H       | Ph     | Н      | H       | Η       | Me       |
| 19-1 245             | Me       | Η      | Η      | Ph       | Η        | Η        | Η        | Η       | Η       | Η      | Ph     | Η       | Η       | Me       |
| 19-1 246             | Me       | H      | H      | Ph       | H        | H        | H        | H       | H       | Н      | H      | Ph      | H       | Me       |
| 19-1 247<br>19-1 248 | Me<br>Ph | H<br>H | H<br>H | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H   | H<br>H  | H<br>H  | H<br>H | H<br>H | H<br>H  | Ph<br>H | Me<br>Me |
| 19-1 248             | Ph       | Н      | Н      | Ph       | Н        | Н        | Н        | Мe      | Н       | Н      | Н      | Н       | Н       | Me       |
| 19-1 250             | Ph       | Н      | Н      | Ph       | Н        | Н        | Н        | Н       | Me      | Н      | Н      | Н       | Н       | Me       |
| 19-1 251             | Ph       | H      | H      | Ph       | Н        | H        | H        | Н       | H       | Me     | Η      | Н       | Η       | Me       |
| 19-1 252             | Ph       | H      | Η      | Ph       | H        | Η        | Η        | Η       | Η       | H      | Me     | H       | H       | Me       |
| 19-1 253             | Ph       | Н      | H      | Ph       | H        | Н        | H        | H       | H       | Н      | H      | Me      | Н       | Me       |
| 19-1 254             | Ph       | H      | H      | Ph       | H        | H        | H        | H       | H       | H      | H      | H       | Me      | Me       |
| 19-1 255<br>19-1 256 | Ph<br>Ph | H<br>H | H<br>H | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H   | Ph<br>H | H<br>Ph | H<br>H | H<br>H | H<br>H  | H<br>H  | Me<br>Me |
| 19-1 257             | Ph       | Н      | Н      | Ph       | Н        | Н        | Н        | Н       | Н       | Ph     | Н      | Н       | Н       | Me       |
| 19-1 258             | Ph       | Η      | H      | Ph       | H        | Η        | H        | H       | H       | H      | Ph     | H       | H       | Me       |
| 19-1 259             | Ph       | Η      | H      | Ph       | H        | Η        | Η        | Η       | Η       | Η      | Η      | Ph      | H       | Me       |
| 19-1 260             | Ph       | H      | H      | Ph       | H        | H        | H        | H       | H       | H      | H      | H       | Ph      | Me       |
| 19-1 261<br>19-1 262 | Me<br>Me | H<br>H | H<br>H | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H   | H<br>Me | H<br>H  | H<br>H | H<br>H | H<br>H  | H<br>H  | Me<br>Me |
| 19-1 263             | Me       | H      | H      | H        | Ph       | H        | H        | H       | Me      | H      | H      | H       | H       | Me       |
| 19-1 264             | Me       | H      | H      | H        | Ph       | H        | H        | H       | Н       | Me     | H      | H       | H       | Me       |
| 19-1 265             | Me       | Η      | H      | H        | Ph       | Η        | H        | Η       | Η       | Η      | Me     | Η       | Η       | Me       |
| 19-1 266             | Me       | Η      | H      | H        | Ph       | Η        | H        | H       | Η       | Н      | Η      | Me      | H       | Me       |
| 19-1 267             | Me<br>M- | H      | H      | H        | Ph       | H        | H        | H       | H       | H      | H      | H       | Me      | Me       |
| 19-1 268<br>19-1 269 | Me<br>Me | H<br>H | H<br>H | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H   | Ph<br>H | H<br>Ph | H<br>H | H<br>H | H<br>H  | H<br>H  | Me<br>Me |
| 19-1 270             | Me       | Н      | H      | Н        | Ph       | Н        | H        | H       | Н       | Ph     | Н      | Н       | Н       | Me       |
| 19-1 271             | Me       | Н      | Н      | Н        | Ph       | Н        | Н        | Η       | Н       | Н      | Ph     | Н       | Н       | Me       |
| 19-1 272             | Me       | Η      | H      | H        | Ph       | Η        | Η        | H       | H       | Н      | Η      | Ph      | H       | Me       |
| 19-1 273             | Me       | Н      | H      | H        | Ph       | H        | H        | H       | H       | Н      | H      | Н       | Ph      | Me       |
| 19-1 274<br>19-1 275 | Ph<br>Ph | H      | H<br>H | H<br>H   | Ph       | H<br>H   | H<br>H   | H       | H<br>H  | H      | H<br>H | H<br>H  | H       | Me       |
| 19-1 273             | Ph       | H<br>H | Н      | Н        | Ph<br>Ph | Н        | Н        | Me<br>H | п<br>Me | H<br>H | Н      | Н       | H<br>H  | Me<br>Me |
| 19-1 277             | Ph       | Н      | Н      | Н        | Ph       | Н        | Н        | Н       | Н       | Me     | Н      | Н       | Н       | Me       |
| 19-1 278             | Ph       | Η      | Η      | Н        | Ph       | Η        | Η        | Η       | H       | Η      | Me     | Η       | Η       | Me       |
| 19-1 279             | Ph       | Η      | H      | H        | Ph       | Η        | Η        | H       | Η       | Η      | Η      | Me      | H       | Me       |
| 19-1 280             | Ph       | H      | H      | Н        | Ph       | H        | H        | H       | H       | H      | H      | H       | Me      | Me       |
| 19-1 281<br>19-1 282 | Ph<br>Ph | H<br>H | H<br>H | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H   | Ph<br>H | H<br>Ph | H<br>H | H<br>H | H<br>H  | H<br>H  | Me<br>Me |
| 19-1 283             | Ph       | Н      | Н      | Н        | Ph       | Н        | Н        | Н       | Н       | Ph     | Н      | Н       | Н       | Me       |
| 19-1 284             | Ph       | Η      | Η      | Η        | Ph       | Η        | Η        | Η       | H       | Н      | Ph     | Η       | Η       | Me       |
| 19-1 285             | Ph       | Η      | Η      | H        | Ph       | Η        | Η        | Η       | Η       | Η      | Η      | Ph      | H       | Me       |
| 19-1 286             | Ph       | Н      | H      | Н        | Ph       | H        | H        | H       | H       | H      | H      | Н       | Ph      | Me       |
| 19-1 287<br>19-1 288 | Me<br>Me | H<br>H | H<br>H | H<br>H   | H<br>H   | Ph<br>Ph | H<br>H   | H<br>Me | H<br>H  | H<br>H | H<br>H | H<br>H  | H<br>H  | Me<br>Me |
| 19-1 289             | Me       | Н      | Н      | Н        | Н        | Ph       | Н        | Н       | Me      | Н      | Н      | Н       | Н       | Me       |
| 19-1 290             | Me       | Η      | Η      | Н        | Η        | Ph       | Η        | Η       | H       | Me     | Η      | Η       | Η       | Me       |
| 19-1 291             | Me       | Η      | Η      | H        | Η        | Ph       | Η        | Η       | Η       | Н      | Me     | Η       | Η       | Me       |
| 19-1 292             | Me       | Н      | H      | Н        | Н        | Ph       | H        | H       | Н       | H      | H      | Me      | Н       | Me       |
| 19-1 293<br>19-1 294 | Me<br>Me | H<br>H | H<br>H | H<br>H   | H<br>H   | Ph<br>Ph | H<br>H   | H<br>Ph | H<br>H  | H<br>H | H<br>H | H<br>H  | Me<br>H | Me<br>Me |
| 19-1 295             | Me       | H      | H      | Н        | Н        | Ph       | Н        | Н       | Ph      | Н      | Н      | Н       | H       | Me       |
| 19-1 296             | Me       | Н      | Η      | Н        | Η        | Ph       | Η        | Η       | H       | Ph     | Η      | Н       | Н       | Me       |
| 19-1 297             | Me       | Η      | Η      | Η        | Η        | Ph       | Η        | Η       | Η       | Н      | Ph     | H       | Η       | Me       |
| 19-1 298             | Me       | Н      | H      | H        | H        | Ph       | H        | H       | H       | H      | H      | Ph      | H       | Me       |
| 19-1 299<br>19-1 300 | Me       | H<br>H | H<br>H | Н        | H<br>H   | Ph<br>Ph | Н        | Н       | H<br>H  | Н      | Н      | Н       | Ph<br>H | Me<br>Me |
| 19-1 300             | Ph<br>Ph | Н      | Н      | H<br>H   | Н        | Ph       | H<br>H   | H<br>Me | Н       | H<br>H | H<br>H | H<br>H  | Н       | Me       |
| 19-1 302             | Ph       | Н      | H      | Н        | Н        | Ph       | H        | H       | Me      | Н      | Н      | Н       | H       | Me       |
| 19-1 303             | Ph       | Η      | H      | Η        | Η        | Ph       | Η        | H       | Η       | Me     | Η      | Η       | Η       | Me       |
| 19-1 304             | Ph       | Н      | H      | Н        | Н        | Ph       | H        | H       | H       | Н      | Me     | Н       | H       | Me       |
| 19-1 305<br>19-1 306 | Ph<br>Ph | H<br>H | H<br>H | H<br>H   | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H  | H<br>H  | H<br>H | H<br>H | Me<br>H | H<br>Me | Me<br>Me |
| 19-1 300             | Ph       | H      | H      | Н        | Н        | Ph       | Н        | Ph      | Н       | Н      | Н      | H       | Н       | Me       |
| 19-1 308             | Ph       | Н      | Н      | Н        | Н        | Ph       | Н        | Н       | Ph      | Н      | Н      | Н       | Н       | Me       |
| 19-1 309             | Ph       | Η      | H      | Η        | Η        | Ph       | Η        | Η       | Η       | Ph     | Η      | Η       | Η       | Me       |
| 19-1 310             | Ph       | H      | H      | Н        | H        | Ph       | H        | H       | H       | H      | Ph     | H       | H       | Me       |
| 19-1 311<br>19-1 312 | Ph<br>Ph | H<br>H | H<br>H | H<br>H   | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H  | H<br>H  | H<br>H | H<br>H | Ph<br>H | H<br>Ph | Me<br>Me |
| 19-1 312             | Pn<br>Me | Н      | Н      | Н        | Н        | Pn<br>H  | н<br>Ph  | Н       | Н       | Н      | Н      | Н       | Pn<br>H | Me       |
| 19-1 314             | Me       | H      | H      | Н        | Н        | Н        | Ph       | Me      | H       | Н      | Н      | Н       | H       | Me       |
| 19-1 315             | Me       | Η      | Η      | Η        | Η        | Η        | Ph       | Η       | Me      | Η      | Η      | Η       | Η       | Me       |
| 19-1 316             | Me       | H      | H      | Н        | Н        | H        | Ph       | H       | H       | Me     | Н      | H       | H       | Me       |
| 19-1 317             | Me<br>Me | Н      | H      | Н        | Н        | Н        | Ph<br>Ph | Н       | Н       | Н      | Mе     | H<br>Me | Н       | Me<br>Me |
| 19-1 318<br>19-1 319 | Me<br>Me | H<br>H | H<br>H | H<br>H   | H<br>H   | H<br>H   | Ph<br>Ph | H<br>H  | H<br>H  | H<br>H | H<br>H | Me<br>H | H<br>Me | Me<br>Me |
| 19-1 320             | Me       | Н      | H      | Н        | Н        | Н        | Ph       | Ph      | H       | Н      | Н      | H       | H       | Me       |
|                      |          |        |        |          |          |          |          |         |         |        |        |         |         |          |

TABLE 19-continued

| Cpd No.  | Ra1 | Ra2 | Ra3 | Rb4 | Ra5 | Ra6 | Ra7 | Rb1 | Rb2 | Rb3 | Rb4 | Rb5 | Rb6 | Rb7 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 19-1 321 | Me  | Н   | Н   | Н   | Н   | Н   | Ph  | Н   | Ph  | Н   | Н   | Н   | Н   | Me  |
| 19-1 322 | Me  | Η   | Η   | H   | H   | Η   | Ph  | H   | Η   | Ph  | Η   | Η   | Η   | Me  |
| 19-1 323 | Me  | Η   | Η   | Η   | Η   | Η   | Ph  | Η   | Η   | Η   | Ph  | Η   | Η   | Me  |
| 19-1 324 | Me  | Η   | Η   | Η   | Η   | Η   | Ph  | H   | Η   | Η   | Η   | Ph  | Η   | Me  |
| 19-1 325 | Me  | Η   | Η   | Η   | Η   | Η   | Ph  | Η   | Η   | Η   | Η   | Η   | Ph  | Me  |
| 19-1 326 | Ph  | Η   | H   | H   | H   | H   | Ph  | H   | H   | H   | H   | H   | H   | Me  |
| 19-1 327 | Ph  | Η   | Η   | H   | H   | H   | Ph  | Me  | Η   | H   | H   | H   | H   | Me  |
| 19-1 328 | Ph  | H   | H   | H   | H   | H   | Ph  | H   | Me  | H   | H   | H   | H   | Me  |
| 19-1 329 | Ph  | Η   | H   | H   | H   | H   | Ph  | H   | H   | Me  | H   | H   | H   | Me  |
| 19-1 330 | Ph  | H   | H   | H   | H   | H   | Ph  | H   | H   | H   | Me  | H   | H   | Me  |
| 19-1 331 | Ph  | Η   | Η   | H   | H   | H   | Ph  | H   | H   | H   | H   | Me  | H   | Me  |
| 19-1 332 | Ph  | Η   | Η   | H   | Н   | Н   | Ph  | H   | Η   | Η   | Н   | Η   | Me  | Me  |
| 19-1 333 | Ph  | Η   | H   | H   | Н   | Н   | Ph  | Ph  | H   | Η   | Н   | H   | Н   | Me  |
| 19-1 334 | Ph  | Η   | Η   | Н   | Н   | Н   | Ph  | H   | Ph  | Η   | Н   | Н   | Н   | Me  |
| 19-1 335 | Ph  | H   | H   | H   | H   | H   | Ph  | H   | H   | Ph  | H   | H   | H   | Me  |
| 19-1 336 | Ph  | Η   | Η   | Н   | Н   | Н   | Ph  | H   | Н   | Η   | Ph  | Н   | Н   | Me  |
| 19-1 337 | Ph  | H   | H   | H   | H   | H   | Ph  | H   | H   | H   | H   | Ph  | H   | Me  |
| 19-1 338 | Ph  | H   | Н   | Н   | Н   | Н   | Ph  | Н   | Н   | Н   | Н   | Н   | Ph  | Me  |

TABLE 20

| Cpd No.        | Ra1      | Ra2    | Ra3    | Ra4    | Ra5    | Ra6    | Ra7    | Rb1        | Rb2    | Rb3    | Rb4     | Rb5    | Rb6     | Rb7     | Rb8    |
|----------------|----------|--------|--------|--------|--------|--------|--------|------------|--------|--------|---------|--------|---------|---------|--------|
| 20-1           | Me       | Н      | Н      | Н      | Н      | Н      | Н      | Н          | Н      | Н      | Н       | Н      | Н       | Н       | Н      |
| 20-2           | Me       | H      | H      | Η      | Η      | Η      | Η      | Me         | H      | Η      | Η       | Η      | H       | Η       | H      |
| 20-3           | Me       | Η      | Η      | Η      | Η      | Η      | Η      | Η          | Me     | Η      | Η       | Η      | H       | Η       | Η      |
| 20-4           | Me       | Н      | H      | Н      | H      | Н      | H      | Н          | H      | Me     | H       | H      | Н       | Н       | H      |
| 20-5           | Me       | H      | H      | Н      | H      | Н      | H      | H          | H      | Н      | Me      | H      | H       | Н       | H      |
| 20-6           | Me       | Н      | Н      | Н      | Н      | Н      | Н      | Н          | Н      | Н      | Н       | Me     | Н       | Н       | Н      |
| 20-7           | Me       | H      | H      | Н      | H      | Н      | H      | H          | H      | Н      | H       | Η      | Me      | H       | H      |
| 20-8           | Me       | Н      | Н      | Н      | Н      | Н      | Н      | Н          | Н      | Н      | Н       | Н      | H       | Me      | Н      |
| 20-9           | Me       | H      | H      | H      | H      | H      | H      | H          | H      | H      | H       | H      | H       | Н       | Me     |
| 20-10          | Me       | Н      | H      | Н      | Н      | Н      | Н      | Ph         | H      | Н      | Н       | Н      | Н       | Н       | Н      |
| 20-11          | Me       | H      | H      | Н      | Н      | Н      | Н      | Н          | Ph     | H      | Н       | Н      | H       | H       | Н      |
| 20-12          | Me       | H      | H      | Н      | Н      | Н      | Н      | H          | Н      | Ph     | Н       | Н      | Н       | Н       | Н      |
| 20-13          | Me       | H      | H      | Н      | Н      | Н      | Н      | H          | H      | Н      | Ph      | Н      | H       | Н       | Н      |
| 20-14          | Me       | Н      | Н      | Н      | Н      | Н      | Н      | Н          | Н      | Н      | Н       | Ph     | Н       | Н       | Н      |
| 20-15          | Me       | Н      | H      | Н      | Н      | Н      | H      | Н          | Н      | Н      | H       | Н      | Ph      | Н       | Н      |
| 20-16          | Me       | H      | H      | Н      | Н      | Н      | Н      | H          | H      | H      | Н       | Н      | Н       | Ph      | Н      |
| 20-17          | Me       | Н      | Н      | Н      | Н      | Н      | Н      | Н          | Н      | Н      | Н       | Н      | H       | Н       | Ph     |
| 20-17          | Ph       | H      | H      | Н      | Н      | H      | Н      | H          | H      | H      | Н       | Н      | H       | H       | Н      |
| 20-18          | Ph       | H      | H      | Н      | Н      | Н      | Н      | Me         | H      | Н      | Н       | Н      | H       | Н       | H      |
| 20-20          | Ph       | H      | H      | Н      | Н      | H      | Н      | Н          | Me     | H      | Н       | H      | H       | H       | Н      |
| 20-20          | Ph       | Н      | Н      | Н      | Н      | Н      | Н      | Н          | Н      | Me     | Н       | Н      | Н       | Н       | Н      |
| 20-21          | Ph       | Н      | Н      | Н      | Н      | Н      | Н      | Н          | Н      | Н      | П<br>Ме | Н      | Н       | Н       | Н      |
| 20-22          | Ph       | Н      | Н      | Н      | Н      | Н      | Н      | Н          | Н      | Н      |         |        | Н       | Н       | Н      |
|                |          |        |        |        |        |        |        |            |        |        | H       | Me     |         |         |        |
| 20-24<br>20-25 | Ph<br>Ph | H<br>H     | H<br>H | H<br>H | H<br>H  | H<br>H | Me<br>H | H       | H<br>H |
| 20-25          |          | Н      | Н      | Н      | Н      | Н      | Н      | Н          | Н      | н<br>Н | Н       | Н      |         | Me<br>H |        |
|                | Ph       |        |        |        |        |        |        |            |        |        |         |        | H       |         | Me     |
| 20-27          | Ph       | Н      | H      | Н      | H      | H      | Н      | Ph         | H      | H      | H       | H      | H       | H       | Н      |
| 20-28          | Ph       | H      | H      | H      | H      | H      | H      | H          | Ph     | H      | H       | H      | H       | H       | Н      |
| 20-29          | Ph       | H      | H      | H      | Н      | H      | Н      | Н          | Н      | Ph     | H       | H      | H       | H       | Н      |
| 20-30          | Ph       | H      | H      | Н      | H      | H      | H      | H          | Н      | H      | Ph      | H      | H       | H       | Н      |
| 20-31          | Ph       | H      | H      | H      | H      | H      | H      | H          | H      | H      | Н       | Ph     | H       | H       | H      |
| 20-32          | Ph       | H      | H      | H      | H      | H      | H      | H          | H      | H      | H       | H      | Ph      | H       | Н      |
| 20-33          | Ph       | H      | H      | Н      | Н      | Н      | Н      | Н          | H      | H      | Н       | H      | H       | Ph      | H      |
| 20-34          | Ph       | H      | H      | H      | H      | H      | H      | H          | Н      | H      | H       | H      | H       | H       | Ph     |
| 20-35          | Me       | Me     | Η      | Н      | Н      | Н      | Н      | Н          | Η      | Η      | Н       | Η      | Н       | Η       | Н      |
| 20-36          | Me       | Me     | H      | H      | Η      | Η      | H      | Me         | Η      | Η      | H       | Η      | Η       | H       | Н      |
| 20-37          | Me       | Me     | Η      | Н      | Н      | Н      | Н      | Η          | Me     | Н      | Н       | Η      | H       | Η       | Н      |
| 20-38          | Me       | Me     | H      | Η      | Η      | Η      | H      | H          | Η      | Me     | Η       | Η      | Η       | Η       | H      |
| 20-39          | Me       | Me     | Η      | Η      | Η      | Η      | Η      | Η          | Η      | Η      | Me      | Η      | Η       | Η       | H      |
| 20-40          | Me       | Me     | H      | H      | H      | Η      | H      | H          | H      | Η      | H       | Me     | Η       | Η       | H      |
| 20-41          | Me       | Me     | Η      | Η      | Η      | Η      | Η      | Η          | Η      | Η      | Η       | Η      | Me      | Η       | H      |
| 20-42          | Me       | Me     | Η      | Η      | Η      | Η      | Η      | Η          | Η      | Η      | Η       | Η      | Η       | Me      | Η      |
| 20-43          | Me       | Me     | Η      | Η      | Η      | Η      | Η      | Η          | Η      | Η      | Η       | Η      | Η       | Η       | Me     |
| 20-44          | Me       | Me     | Η      | Η      | Η      | Η      | Η      | $_{ m Ph}$ | Η      | Η      | Η       | Η      | Η       | Η       | Η      |
| 20-45          | Me       | Me     | Η      | Η      | Η      | Η      | Η      | Η          | Ph     | Η      | Η       | Η      | Η       | Η       | H      |
| 20-46          | Me       | Me     | Η      | Η      | Η      | Η      | Η      | Η          | Η      | Ph     | H       | Η      | Η       | Η       | H      |
| 20-47          | Me       | Me     | H      | H      | H      | Η      | H      | Η          | Η      | Η      | Ph      | Η      | Η       | Η       | H      |
| 20-48          | Me       | Me     | Η      | Η      | Η      | Η      | Η      | Η          | Η      | Η      | Η       | Ph     | Η       | Η       | Η      |
| 20-49          | Me       | Me     | Η      | Η      | Η      | Η      | Η      | Η          | Η      | Η      | Η       | Η      | Ph      | Η       | H      |
| 20-50          | Me       | Me     | H      | H      | H      | H      | H      | H          | H      | H      | H       | H      | H       | Ph      | H      |
| 20-51          | Me       | Me     | H      | H      | H      | Η      | H      | H          | H      | Η      | H       | H      | Η       | Η       | Ph     |
| 20-52          | Ph       | Me     | H      | H      | H      | H      | H      | H          | H      | H      | H       | H      | H       | H       | H      |
|                |          |        |        |        |        |        |        |            |        |        |         |        |         |         |        |

139 140

TABLE 20-continued

|                  |          |          |          |          |        | 11 123 | DE 20  | ******  | naca    |         |         |         |         |         |         |
|------------------|----------|----------|----------|----------|--------|--------|--------|---------|---------|---------|---------|---------|---------|---------|---------|
| Cpd No.          | Ra1      | Ra2      | Ra3      | Ra4      | Ra5    | Ra6    | Ra7    | Rb1     | Rb2     | Rb3     | Rb4     | Rb5     | Rb6     | Rb7     | Rb8     |
| 20-53            | Ph       | Me       | Н        | Н        | Н      | Н      | Н      | Me      | Н       | Н       | Н       | Н       | Н       | Н       | Н       |
| 20-54            | Ph       | Me       | Η        | Η        | Η      | Η      | Η      | Н       | Me      | Н       | Η       | Η       | Η       | Η       | H       |
| 20-55            | Ph<br>Ph | Me<br>M- | H        | H<br>H   | H<br>H | H<br>H | H<br>H | H       | H<br>H  | Me      | H<br>M- | H       | H<br>H  | H<br>H  | H<br>H  |
| 20-56<br>20-57   | Ph       | Me<br>Me | H<br>H   | Н        | Н      | Н      | Н      | H<br>H  | Н       | H<br>H  | Me<br>H | H<br>Me | Н       | Н       | Н       |
| 20-58            | Ph       | Me       | H        | Н        | H      | H      | H      | H       | H       | H       | H       | Н       | Me      | Н       | H       |
| 20-59            | Ph       | Me       | Η        | Η        | Η      | Η      | Η      | Η       | Η       | Η       | Η       | Η       | Η       | Me      | Н       |
| 20-60            | Ph       | Me       | H        | Н        | H      | H      | H      | H       | H       | H       | H       | H       | H       | Н       | Me      |
| 20-61<br>20-62   | Ph<br>Ph | Me<br>Me | H<br>H   | H<br>H   | H<br>H | H<br>H | H<br>H | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 20-63            | Ph       | Me       | H        | H        | H      | Н      | Н      | H       | Н       | Ph      | H       | Н       | Н       | H       | H       |
| 20-64            | Ph       | Me       | Η        | Η        | Η      | Η      | Η      | Η       | Η       | Η       | Ph      | Η       | Η       | Η       | Н       |
| 20-65            | Ph       | Me       | H<br>H   | H<br>H   | H<br>H | H<br>H | H<br>H | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph      | H<br>Ph | H<br>H  | H<br>H  |
| 20-66<br>20-67   | Ph<br>Ph | Me<br>Me | Н        | Н        | Н      | Н      | Н      | Н       | Н       | Н       | Н       | H<br>H  | Н       | Ph      | Н       |
| 20-68            | Ph       | Me       | Η        | Н        | Н      | Н      | Н      | Н       | Н       | Н       | Н       | Н       | Н       | Н       | Ph      |
| 20-69            | Me       | Η        | Me       | H        | Н      | Н      | Н      | Н       | H       | Η       | Η       | Η       | Η       | H       | H       |
| 20-70<br>20-71   | Me<br>Me | H<br>H   | Me       | H<br>H   | H<br>H | H<br>H | H<br>H | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 20-71            | Me<br>Me | Н        | Me<br>Me | Н        | Н      | Н      | Н      | Н       | H       | п<br>Ме | Н       | Н       | Н       | Н       | Н       |
| 20-73            | Me       | Н        | Me       | Н        | Н      | Н      | Н      | Н       | Η       | Н       | Me      | Η       | Н       | Н       | Н       |
| 20-74            | Me       | Η        | Me       | Η        | Η      | Η      | Η      | Η       | Η       | Η       | Η       | Me      | Η       | Η       | Н       |
| 20-75<br>20-76   | Me<br>Me | H<br>H   | Me<br>Me | H<br>H   | H<br>H | H<br>H | H<br>H | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H | H<br>Me | H<br>H  |
| 20-70            | Me       | H        | Me       | H        | Н      | Н      | Н      | H       | H       | H       | Н       | Н       | H       | H       | Me      |
| 20-78            | Me       | H        | Me       | H        | H      | H      | H      | Ph      | Η       | H       | H       | H       | H       | Η       | H       |
| 20-79            | Me       | Η        | Me       | Η        | Η      | Η      | Н      | Н       | Ph      | Η       | Η       | Η       | Η       | Η       | H       |
| 20-80<br>20-81   | Me<br>Me | H<br>H   | Me<br>Me | H<br>H   | H<br>H | H<br>H | H<br>H | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 20-81            | Me       | H        | Me       | H        | Н      | Н      | Н      | Н       | H       | Н       | Н       | Ph      | H       | H       | Н       |
| 20-83            | Me       | Η        | Me       | Η        | Η      | Η      | Η      | Н       | Η       | Η       | Η       | Η       | Ph      | Η       | Н       |
| 20-84            | Me       | H        | Me       | H        | H      | H      | H      | Н       | Н       | Н       | H       | H       | H       | Ph      | H       |
| 20-85<br>20-86   | Me<br>Ph | H<br>H   | Me<br>Me | H<br>H   | H<br>H | H<br>H | H<br>H | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph<br>H |
| 20-80            | Ph       | H        | Me       | H        | Н      | Н      | Н      | Me      | H       | H       | Н       | H       | H       | Н       | H       |
| 20-88            | Ph       | Η        | Me       | Η        | Η      | Η      | Η      | Η       | Me      | Η       | Η       | Η       | Η       | Η       | Н       |
| 20-89            | Ph       | H        | Me       | H        | H      | H      | H      | H       | H       | Me      | H<br>M- | H       | H       | H       | H       |
| 20-90<br>20-91   | Ph<br>Ph | H<br>H   | Me<br>Me | H<br>H   | H<br>H | H<br>H | H<br>H | H<br>H  | H<br>H  | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  |
| 20-92            | Ph       | Н        | Me       | Н        | Н      | Н      | Н      | Н       | Н       | Н       | Н       | Н       | Me      | Н       | H       |
| 20-93            | Ph       | Η        | Me       | Η        | Η      | Η      | Η      | Η       | Η       | Η       | Η       | Η       | Η       | Me      | Н       |
| 20-94<br>20-95   | Ph<br>Ph | H<br>H   | Me       | H        | H<br>H | H<br>H | H<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H |
| 20-93            | Ph       | Н        | Me<br>Me | H<br>H   | Н      | Н      | Н      | Н       | п<br>Ph | Н       | Н       | Н       | Н       | Н       | Н       |
| 20-97            | Ph       | Η        | Me       | Η        | Η      | Η      | Η      | Н       | Н       | Ph      | Η       | Η       | Η       | Н       | Н       |
| 20-98            | Ph       | H        | Me       | Н        | Н      | Н      | H      | Н       | H       | Н       | Ph      | H       | Н       | Н       | Н       |
| 20-99<br>20-100  | Ph<br>Ph | H<br>H   | Me<br>Me | H<br>H   | H<br>H | H<br>H | H<br>H | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  |
| 20-101           | Ph       | Н        | Me       | Н        | Н      | Н      | Н      | Н       | Н       | Н       | Н       | Н       | Н       | Ph      | Н       |
| 20-102           | Ph       | Η        | Me       | Η        | Η      | Η      | Η      | Η       | Η       | Η       | Η       | Η       | Η       | Η       | Ph      |
| 20-103<br>20-104 | Me<br>Me | H<br>H   | H<br>H   | Me<br>Me | H<br>H | H<br>H | H<br>H | H<br>Me | H<br>H  |
| 20-104           | Me       | H        | H        | Me       | Н      | Н      | H      | H       | Me      | H       | Н       | H       | H       | H       | H       |
| 20-106           | Me       | Η        | Η        | Me       | Η      | Η      | Η      | Н       | Η       | Me      | Η       | Η       | Η       | Η       | Н       |
| 20-107           | Me       | H        | H        | Me       | H      | H      | H      | H       | H       | H       | Me      | H       | H       | Н       | H       |
| 20-108<br>20-109 | Me<br>Me | H<br>H   | H<br>H   | Me<br>Me | H<br>H | H<br>H | H<br>H | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  |
| 20-110           | Me       | Н        | Н        | Me       | Н      | Н      | Н      | Н       | Н       | Н       | Н       | Н       | Н       | Me      | Н       |
| 20-111           | Me       | Η        | Η        | Me       | Η      | Η      | Η      | Η       | Η       | Η       | Η       | Η       | Η       | Η       | Me      |
| 20-112           | Me       | H        | H        | Me       | Н      | Н      | H      | Ph      | H       | Н       | H       | Н       | Н       | Н       | H       |
| 20-113<br>20-114 | Me<br>Me | H<br>H   | H<br>H   | Me<br>Me | H<br>H | H<br>H | H<br>H | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 20-115           | Me       | Н        | Н        | Me       | Н      | Н      | Н      | Н       | Н       | Н       | Ph      | Н       | Н       | Н       | Н       |
| 20-116           | Me       | Η        | Η        | Me       | Η      | Η      | Η      | Η       | Η       | Η       | Η       | Ph      | Η       | Η       | Н       |
| 20-117<br>20-118 | Me<br>Me | H<br>H   | H<br>H   | Me<br>Me | H<br>H | H<br>H | H<br>H | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  |
| 20-118           | Me       | H        | H        | Me       | Н      | Н      | H      | H       | H       | H       | Н       | H       | H       | Н       | Ph      |
| 20-120           | Ph       | H        | Η        | Me       | H      | H      | H      | Н       | Η       | H       | H       | H       | H       | Η       | H       |
| 20-121           | Ph       | H        | H        | Me       | Н      | H      | H      | Me      | Н       | H       | H       | H       | H       | Н       | H       |
| 20-122<br>20-123 | Ph<br>Ph | H<br>H   | H<br>H   | Me<br>Me | H<br>H | H<br>H | H<br>H | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 20-123           | Ph<br>Ph | Н        | Н        | Me       | Н      | Н      | Н      | Н       | Н       | Н       | н<br>Ме | Н       | Н       | Н       | Н       |
| 20-125           | Ph       | Н        | Н        | Me       | Н      | Н      | Н      | Н       | Н       | Н       | Н       | Me      | Н       | Н       | Н       |
| 20-126           | Ph       | H        | H        | Me       | Н      | Н      | Н      | H       | H       | H       | H       | H       | Me      | Н       | H       |
| 20-127<br>20-128 | Ph<br>Ph | H<br>H   | H<br>H   | Me<br>Me | H<br>H | H<br>H | H<br>H | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H | H<br>Me |
| 20-128           | Ph       | Н        | Н        | Me       | Н      | Н      | Н      | г<br>Ph | Н       | Н       | Н       | Н       | Н       | Н       | Н       |
| 20-130           | Ph       | Н        | Н        | Me       | Н      | Н      | Н      | Н       | Ph      | Н       | Н       | Н       | Н       | Н       | Н       |
|                  |          |          |          |          |        |        |        |         |         |         |         |         |         |         |         |

TABLE 20-continued

| Cpd No.          | Ra1      | Ra2    | Ra3    | Ra4     | Ra5      | Ra6      | Ra7     | Rb1     | Rb2     | Rb3     | Rb4     | Rb5     | Rb6     | Rb7     | Rb8     |
|------------------|----------|--------|--------|---------|----------|----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 20-131           | Ph       | Н      | Н      | Me      | Н        | Н        | Н       | Н       | Н       | Ph      | Н       | Н       | Н       | Н       | Н       |
| 20-132           | Ph       | Н      | H      | Me      | Η        | H        | H       | H       | H       | Η       | Ph      | Η       | H       | Η       | H       |
| 20-133           | Ph       | H      | Η      | Me      | Η        | Η        | Η       | Η       | H       | H       | Η       | Ph      | Η       | Η       | Η       |
| 20-134           | Ph       | Н      | H      | Me      | H        | H        | H       | H       | H       | Н       | H       | Н       | Ph      | H       | H       |
| 20-135<br>20-136 | Ph       | H<br>H | H<br>H | Me      | H<br>H   | H<br>H   | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph      | H<br>Ph |
| 20-130           | Ph<br>Me | Н      | Н      | Me<br>H | Мe       | Н        | Н       | Н       | Н       | Н       | Н       | Н       | Н       | H<br>H  | Н       |
| 20-138           | Me       | Н      | Н      | Н       | Me       | Н        | Н       | Me      | Н       | Н       | Н       | Н       | Н       | Н       | Н       |
| 20-139           | Me       | Η      | H      | Н       | Me       | H        | Η       | H       | Me      | Η       | H       | Η       | H       | Η       | H       |
| 20-140           | Me       | Η      | Η      | H       | Me       | Η        | Η       | Η       | Η       | Me      | Η       | Η       | Η       | Η       | Η       |
| 20-141           | Me       | Н      | H      | Н       | Me       | Н        | Н       | Н       | Н       | Н       | Me      | Н       | Н       | Н       | H       |
| 20-142<br>20-143 | Me<br>Me | H<br>H | H<br>H | H<br>H  | Me<br>Me | H<br>H   | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  |
| 20-144           | Me       | H      | H      | Н       | Me       | Н        | Н       | H       | H       | H       | Н       | Н       | H       | Me      | Н       |
| 20-145           | Me       | Н      | Н      | Н       | Me       | Н        | Н       | Н       | H       | Н       | Н       | Н       | Н       | Н       | Me      |
| 20-146           | Me       | Η      | Η      | H       | Me       | Η        | Η       | Ph      | Η       | Η       | H       | Η       | Η       | Η       | H       |
| 20-147           | Me       | H      | H      | H       | Me       | H        | H       | H       | Ph      | H       | H       | H       | H       | H       | H       |
| 20-148<br>20-149 | Me<br>Me | H<br>H | H<br>H | H<br>H  | Me<br>Me | H<br>H   | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 20-149           | Me       | H      | H      | Н       | Me       | Н        | H       | H       | H       | H       | Н       | Ph      | H       | H       | H       |
| 20-151           | Me       | Н      | H      | Н       | Me       | Н        | Н       | H       | H       | Н       | Н       | Н       | Ph      | Н       | Н       |
| 20-152           | Me       | Η      | H      | H       | Me       | H        | H       | H       | H       | Η       | H       | Η       | H       | Ph      | Η       |
| 20-153           | Me       | Η      | H      | H       | Me       | Η        | H       | H       | H       | Η       | H       | Η       | Η       | Η       | Ph      |
| 20-154           | Ph       | H      | H      | H       | Me       | Н        | H       | H       | H       | H       | H       | Н       | Н       | Н       | H       |
| 20-155<br>20-156 | Ph<br>Ph | H<br>H | H<br>H | H<br>H  | Me<br>Me | H<br>H   | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 20-157           | Ph       | Н      | Н      | Н       | Me       | Н        | Н       | H       | Н       | Me      | Н       | Н       | Н       | Н       | H       |
| 20-158           | Ph       | Η      | H      | Η       | Me       | H        | Η       | H       | H       | Η       | Me      | Η       | H       | Η       | H       |
| 20-159           | Ph       | Η      | Η      | Η       | Me       | Η        | Η       | Η       | Η       | Η       | Η       | Me      | Η       | Η       | Η       |
| 20-160           | Ph       | H      | H      | H       | Me       | Н        | H       | H       | H       | H       | H       | Н       | Me      | H       | H       |
| 20-161<br>20-162 | Ph<br>Ph | H<br>H | H<br>H | H<br>H  | Me<br>Me | H<br>H   | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H | H<br>Me |
| 20-163           | Ph       | H      | H      | Н       | Me       | Н        | Н       | Ph      | H       | H       | Н       | H       | H       | H       | Н       |
| 20-164           | Ph       | Η      | Η      | Η       | Me       | Η        | Η       | Η       | Ph      | Η       | Η       | Η       | Η       | Η       | Η       |
| 20-165           | Ph       | Η      | H      | Н       | Me       | H        | H       | H       | H       | Ph      | H       | Η       | H       | Η       | H       |
| 20-166           | Ph       | H      | H      | H       | Me       | H        | H       | H       | H       | H       | Ph      | H       | H       | H       | H       |
| 20-167<br>20-168 | Ph<br>Ph | H<br>H | H<br>H | H<br>H  | Me<br>Me | H<br>H   | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  |
| 20-169           | Ph       | Н      | Н      | Н       | Me       | Н        | Н       | Н       | Н       | Н       | Н       | Н       | Н       | Ph      | H       |
| 20-170           | Ph       | Η      | H      | H       | Me       | H        | Η       | H       | Η       | Η       | H       | H       | H       | Η       | Ph      |
| 20-171           | Me       | Н      | H      | Н       | Н        | Me       | Η       | H       | H       | Н       | Н       | Н       | H       | Η       | Η       |
| 20-172<br>20-173 | Me<br>Me | H<br>H | H<br>H | H<br>H  | H<br>H   | Me<br>Me | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 20-173           | Me       | H      | H      | Н       | Н        | Me       | Н       | H       | Н       | Me      | Н       | H       | H       | H       | Н       |
| 20-175           | Me       | Н      | Η      | Н       | Н        | Me       | Н       | Η       | Н       | Н       | Me      | Н       | Н       | Η       | Н       |
| 20-176           | Me       | Η      | H      | Η       | Η        | Me       | Η       | H       | H       | Η       | H       | Me      | Η       | Η       | Η       |
| 20-177           | Me       | Н      | H      | Н       | Н        | Me       | Н       | H       | Н       | Н       | Н       | H       | Me      | Н       | H       |
| 20-178<br>20-179 | Me<br>Me | H<br>H | H<br>H | H<br>H  | H<br>H   | Me<br>Me | H<br>H  | Me<br>H | H<br>Me |
| 20-180           | Me       | Н      | H      | Н       | Н        | Me       | Н       | Ph      | Н       | Н       | Н       | Н       | Н       | Н       | Н       |
| 20-181           | Me       | Н      | Η      | Н       | Н        | Me       | Н       | Н       | Ph      | Н       | Η       | Н       | Н       | Η       | Н       |
| 20-182           | Me       | Η      | Η      | Η       | Η        | Me       | Η       | Η       | Η       | Ph      | Η       | Η       | Η       | Η       | H       |
| 20-183           | Me       | H      | H      | Н       | H        | Me       | H       | H       | H       | H       | Ph      | H       | H       | H       | H       |
| 20-184<br>20-185 | Me<br>Me | H<br>H | H<br>H | H<br>H  | H<br>H   | Me<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  |
| 20-186           | Me       | H      | H      | Н       | Н        | Me       | Н       | H       | H       | H       | Н       | Н       | Н       | Ph      | Н       |
| 20-187           | Me       | Н      | Н      | Н       | Н        | Me       | Н       | Н       | Н       | Н       | Н       | Н       | Н       | Н       | Ph      |
| 20-188           | Ph       | Η      | Η      | Η       | Η        | Me       | Η       | Η       | Η       | Η       | Η       | Η       | Η       | Η       | H       |
| 20-189           | Ph       | Н      | H      | H       | H        | Me       | H       | Me      | Н       | H       | H       | H       | H       | Н       | H       |
| 20-190<br>20-191 | Ph<br>Ph | H<br>H | H<br>H | H<br>H  | H<br>H   | Me<br>Me | H<br>H  | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 20-191           | Ph       | Н      | Н      | Н       | Н        | Me       | Н       | Н       | Н       | Н       | П<br>Ме | Н       | Н       | Н       | Н       |
| 20-193           | Ph       | Н      | H      | Н       | Н        | Me       | Н       | H       | H       | Н       | Н       | Me      | Н       | Н       | Н       |
| 20-194           | Ph       | Η      | Η      | Η       | Η        | Me       | Η       | Η       | Η       | Η       | Η       | Η       | Me      | Η       | H       |
| 20-195           | Ph       | Н      | Η      | Н       | Н        | Me       | Н       | Η       | Н       | Н       | Н       | Η       | Η       | Me      | Н       |
| 20-196           | Ph       | H      | H      | H       | H        | Me       | H       | H       | H       | H       | H       | H       | H       | H       | Me      |
| 20-197<br>20-198 | Ph<br>Ph | H<br>H | H<br>H | H<br>H  | H<br>H   | Me<br>Me | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 20-198           | Ph       | H      | H      | H       | H        | Me       | H       | H       | Н       | Ph      | H       | H       | H       | H       | H       |
| 20-200           | Ph       | H      | H      | H       | H        | Me       | H       | H       | H       | Н       | Ph      | H       | H       | H       | H       |
| 20-201           | Ph       | Н      | Η      | Н       | Η        | Me       | H       | Η       | Н       | Η       | H       | Ph      | H       | Η       | Η       |
| 20-202           | Ph       | H      | H      | H       | H        | Me       | H       | H       | H       | H       | H       | H       | Ph      | H       | H       |
| 20-203<br>20-204 | Ph<br>Ph | H<br>H | H<br>H | H<br>H  | H<br>H   | Me<br>Me | H<br>H  | Ph<br>H | H<br>Ph |
| 20-204           | Me       | Н      | Н      | Н       | Н        | Н        | п<br>Ме | Н       | Н       | Н       | Н       | Н       | Н       | Н       | Н       |
| 20-206           | Me       | Н      | Н      | Н       | Н        | Н        | Me      | Me      | Н       | Н       | Н       | Н       | Н       | Н       | Н       |
| 20-207           | Me       | Н      | H      | H       | Η        | H        | Me      | Η       | Me      | Η       | Η       | H       | Η       | Η       | Η       |
| 20-208           | Me       | Η      | Η      | Η       | Η        | Η        | Me      | Η       | Η       | Me      | Η       | Η       | Η       | Η       | Η       |

TABLE 20-continued

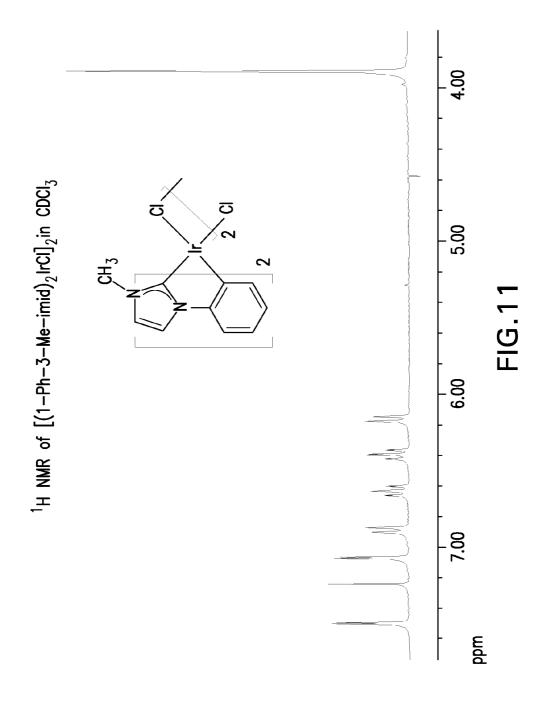

| Cpd No.          | Ra1      | Ra2      | Ra3      | Ra4    | Ra5    | Ra6    | Ra7      | Rb1             | Rb2     | Rb3     | Rb4     | Rb5     | Rb6     | Rb7     | Rb8     |
|------------------|----------|----------|----------|--------|--------|--------|----------|-----------------|---------|---------|---------|---------|---------|---------|---------|
| 20-209           | Me       | Н        | Н        | Н      | Н      | Н      | Me       | Н               | Н       | Н       | Me      | Н       | Н       | Н       | Н       |
| 20-210           | Me       | Н        | Η        | H      | Η      | Η      | Me       | Η               | H       | Н       | H       | Me      | H       | Н       | Н       |
| 20-211           | Me       | H        | Η        | Η      | H      | Η      | Me       | Η               | Η       | Η       | Η       | Η       | Me      | H       | Η       |
| 20-212           | Me       | Н        | H        | H      | Н      | H      | Me       | H               | H       | Н       | Н       | H       | H       | Me      | Н       |
| 20-213<br>20-214 | Me       | H<br>H   | H<br>H   | H<br>H | H<br>H | H<br>H | Me       | H<br>Ph         | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H |
| 20-214           | Me<br>Me | Н        | Н        | Н      | Н      | Н      | Me<br>Me | Н               | г<br>Ph | Н       | Н       | Н       | Н       | Н       | Н       |
| 20-216           | Me       | Н        | Н        | Н      | Н      | Н      | Me       | Н               | Н       | Ph      | Н       | Н       | Н       | Н       | Н       |
| 20-217           | Me       | Η        | Η        | H      | Η      | H      | Me       | H               | H       | Η       | Ph      | Η       | H       | H       | Н       |
| 20-218           | Me       | Η        | Η        | H      | Η      | Η      | Me       | Η               | Η       | Η       | Η       | Ph      | Η       | Η       | Η       |
| 20-219           | Me       | Н        | H        | H      | Н      | Н      | Me       | Н               | H       | Н       | H       | Н       | Ph      | H       | Н       |
| 20-220<br>20-221 | Me<br>Me | H<br>H   | H<br>H   | H<br>H | H<br>H | H<br>H | Me<br>Me | H<br>H          | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph |
| 20-221           | Ph       | H        | H        | Н      | H      | Н      | Me       | H               | Н       | H       | Н       | H       | Н       | Н       | H       |
| 20-223           | Ph       | Н        | Н        | Н      | Н      | Н      | Me       | Me              | Н       | Н       | Н       | Н       | Н       | Н       | Н       |
| 20-224           | Ph       | Η        | Η        | H      | Η      | Η      | Me       | H               | Me      | Η       | H       | Η       | H       | Η       | Н       |
| 20-225           | Ph       | H        | H        | H      | H      | H      | Me       | H               | H       | Me      | H       | H       | H       | H       | H       |
| 20-226<br>20-227 | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H | H<br>H | H<br>H | Me       | H<br>H          | H<br>H  | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  |
| 20-227           | Ph       | H        | H        | Н      | H      | H      | Me<br>Me | H               | H       | H       | Н       | H       | Me      | H       | H       |
| 20-229           | Ph       | Н        | Н        | Н      | Н      | Н      | Me       | H               | Н       | Н       | Н       | Н       | Н       | Me      | Н       |
| 20-230           | Ph       | Η        | Η        | H      | Η      | H      | Me       | H               | H       | Η       | H       | Η       | H       | H       | Me      |
| 20-231           | Ph       | Η        | Η        | H      | Η      | H      | Me       | Ph              | H       | Η       | H       | Η       | H       | H       | H       |
| 20-232           | Ph       | H        | H        | Н      | H      | H      | Me       | H               | Ph      | H       | H       | Н       | Н       | H       | H       |
| 20-233<br>20-234 | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H | H<br>H | H<br>H | Me<br>Me | H<br>H          | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 20-235           | Ph       | Н        | H        | Н      | Н      | Н      | Me       | Н               | Н       | Н       | Н       | Ph      | Н       | Н       | Н       |
| 20-236           | Ph       | Н        | Η        | H      | Н      | Н      | Me       | Η               | H       | Η       | H       | Η       | Ph      | Н       | Н       |
| 20-237           | Ph       | Η        | Η        | H      | Η      | Η      | Me       | Η               | H       | Η       | Η       | Η       | Η       | Ph      | Η       |
| 20-238           | Ph       | H        | H        | H      | H      | Н      | Me       | Н               | H       | Н       | H       | H       | H       | Н       | Ph      |
| 20-239<br>20-240 | Me<br>Me | Ph<br>Ph | H<br>H   | H<br>H | H<br>H | H<br>H | H<br>H   | H<br>Me         | H<br>H  |
| 20-240           | Me       | Ph       | H        | Н      | H      | Н      | Н        | Н               | Me      | H       | Н       | Н       | Н       | Н       | Н       |
| 20-242           | Me       | Ph       | Η        | H      | Η      | Η      | Η        | Η               | H       | Me      | H       | Η       | H       | Η       | Н       |
| 20-243           | Me       | Ph       | Η        | H      | Η      | H      | Η        | H               | Η       | Η       | Me      | Η       | Η       | H       | Η       |
| 20-244           | Me       | Ph       | H        | H      | H      | H      | H        | H               | H       | H       | H       | Me      | H       | H       | H       |
| 20-245<br>20-246 | Me<br>Me | Ph<br>Ph | H<br>H   | H<br>H | H<br>H | H<br>H | H<br>H   | H<br>H          | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H | H<br>Me | H<br>H  |
| 20-247           | Me       | Ph       | H        | H      | Н      | Н      | Н        | Н               | Н       | Н       | H       | Н       | Н       | Н       | Me      |
| 20-248           | Me       | Ph       | Η        | Η      | Η      | Η      | Η        | Ph              | H       | Η       | H       | Η       | H       | Η       | Н       |
| 20-249           | Me       | Ph       | Н        | H      | Н      | Н      | Н        | Н               | Ph      | H       | Н       | Н       | H       | Н       | Н       |
| 20-250<br>20-251 | Me<br>Me | Ph<br>Ph | H<br>H   | H<br>H | H<br>H | H<br>H | H<br>H   | H<br>H          | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 20-251           | Me       | Ph       | Н        | Н      | Н      | Н      | Н        | Н               | Н       | Н       | Н       | Ph      | Н       | Н       | Н       |
| 20-253           | Me       | Ph       | Η        | H      | Η      | H      | Η        | $_{\mathrm{H}}$ | H       | Η       | H       | Η       | Ph      | H       | Η       |
| 20-254           | Me       | Ph       | Η        | H      | Н      | Н      | Η        | Η               | H       | Н       | H       | Н       | H       | Ph      | Н       |
| 20-255<br>20-256 | Me<br>Ph | Ph<br>Ph | H<br>H   | H<br>H | H<br>H | H<br>H | H<br>H   | H<br>H          | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph<br>H |
| 20-257           | Ph       | Ph       | H        | Н      | H      | H      | H        | Me              | H       | H       | Н       | H       | H       | Н       | Н       |
| 20-258           | Ph       | Ph       | Η        | H      | Н      | Н      | Н        | Н               | Me      | Н       | Н       | Н       | Н       | H       | Н       |
| 20-259           | Ph       | Ph       | Η        | Η      | Η      | Η      | Η        | Η               | H       | Me      | H       | Η       | H       | Η       | Н       |
| 20-260           | Ph       | Ph       | H        | H      | Н      | Н      | Н        | Н               | H       | Н       | Me      | Н       | H       | Н       | Н       |
| 20-261<br>20-262 | Ph<br>Ph | Ph<br>Ph | H<br>H   | H<br>H | H<br>H | H<br>H | H<br>H   | H<br>H          | H<br>H  | H<br>H  | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  |
| 20-263           | Ph       | Ph       | H        | Н      | H      | H      | H        | H               | H       | H       | Н       | H       | H       | Me      | Н       |
| 20-264           | Ph       | Ph       | Η        | H      | Η      | H      | Η        | H               | H       | Η       | Н       | Η       | H       | H       | Me      |
| 20-265           | Ph       | Ph       | Η        | Η      | Η      | Η      | Η        | Ph              | Η       | Η       | Η       | Η       | H       | Η       | Η       |
| 20-266           | Ph       | Ph       | H        | Н      | H      | Н      | H        | H               | Ph      | H       | H       | H       | Н       | H       | H       |
| 20-267<br>20-268 | Ph<br>Ph | Ph<br>Ph | H<br>H   | H<br>H | H<br>H | H<br>H | H<br>H   | H<br>H          | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 20-269           | Ph       | Ph       | H        | Н      | Н      | Н      | Н        | H               | H       | H       | Н       | Ph      | Н       | Н       | Н       |
| 20-270           | Ph       | Ph       | Η        | H      | Н      | Н      | Η        | Η               | H       | Η       | H       | Η       | Ph      | Н       | Η       |
| 20-271           | Ph       | Ph       | Η        | H      | Η      | Η      | Η        | Η               | H       | Η       | H       | Η       | H       | Ph      | H       |
| 20-272           | Ph       | Ph       | H        | H      | H      | H      | H        | H               | H       | H       | H       | H       | H       | H       | Ph      |
| 20-273<br>20-274 | Me<br>Me | H<br>H   | Ph<br>Ph | H<br>H | H<br>H | H<br>H | H<br>H   | H<br>Me         | H<br>H  |
| 20-275           | Me       | H        | Ph       | Н      | Н      | Н      | Н        | Н               | Me      | H       | Н       | Н       | H       | H       | H       |
| 20-276           | Me       | Н        | Ph       | Н      | Н      | Н      | Н        | Н               | Н       | Me      | Н       | Н       | Н       | Н       | H       |
| 20-277           | Me       | Η        | Ph       | H      | Η      | Η      | Η        | H               | Η       | Η       | Me      | Η       | Η       | H       | Η       |
| 20-278           | Me       | Н        | Ph       | H      | H      | H      | H        | H               | H       | H       | H       | Me      | H       | H       | H       |
| 20-279<br>20-280 | Me<br>Me | H<br>H   | Ph<br>Ph | H<br>H | H<br>H | H<br>H | H<br>H   | H<br>H          | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H | H<br>Me | H<br>H  |
| 20-280           | Me       | Н        | Ph       | Н      | Н      | Н      | Н        | Н               | Н       | Н       | Н       | Н       | Н       | H       | п<br>Ме |
| 20-281           | Me       | Н        | Ph       | Н      | Н      | Н      | Н        | Ph              | Н       | Н       | Н       | Н       | Н       | Н       | Н       |
| 20-283           | Me       | Η        | Ph       | Η      | Η      | Η      | Η        | Η               | Ph      | Η       | Η       | Η       | Η       | Η       | Н       |
| 20-284           | Me       | Н        | Ph       | Н      | Н      | Н      | Н        | Η               | Η       | Ph      | H       | Н       | Н       | Н       | H       |
| 20-285           | Me       | Н        | Ph       | H      | Н      | H      | Н        | H               | Н       | H       | Ph      | H       | H       | Н       | H       |
| 20-286           | Me       | Η        | Ph       | H      | Η      | Η      | Η        | H               | H       | Η       | H       | Ph      | H       | H       | Н       |

TABLE 20-continued

| Cpd No.          | Ra1      | Ra2    | Ra3      | Ra4      | Ra5      | Ra6    | Ra7    | Rb1     | Rb2     | Rb3     | Rb4     | Rb5     | Rb6     | Rb7     | Rb8     |
|------------------|----------|--------|----------|----------|----------|--------|--------|---------|---------|---------|---------|---------|---------|---------|---------|
| 20-287           | Me       | Н      | Ph       | Н        | Н        | Н      | Н      | Н       | Н       | Н       | Н       | Н       | Ph      | Н       | Н       |
| 20-288           | Me       | H      | Ph       | H        | H        | H      | H      | H       | H       | H       | H       | H       | H       | Ph      | H       |
| 20-289           | Me       | H      | Ph       | H        | H        | H      | Η      | H       | H       | H       | H       | Η       | H       | H       | Ph      |
| 20-290           | Ph       | Η      | Ph       | Η        | H        | Η      | Η      | Η       | H       | H       | Η       | Η       | Η       | H       | Η       |
| 20-291           | Ph       | H      | Ph       | H        | H        | Η      | Η      | Me      | H       | H       | H       | Η       | Η       | H       | Н       |
| 20-292           | Ph       | H      | Ph       | H        | H        | H      | H      | H       | Me      | Н       | H       | H       | H       | H       | H       |
| 20-293<br>20-294 | Ph<br>Ph | H<br>H | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H | H<br>H | H<br>H  | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 20-294           | Ph       | H      | Ph       | H        | H        | H      | Н      | H       | H       | H       | H       | Me      | H       | H       | H       |
| 20-296           | Ph       | H      | Ph       | Н        | Н        | Н      | Н      | H       | H       | Н       | Н       | Н       | Me      | Н       | Н       |
| 20-297           | Ph       | H      | Ph       | H        | Η        | Η      | H      | H       | H       | Η       | H       | H       | H       | Me      | H       |
| 20-298           | Ph       | Η      | Ph       | Η        | Η        | Η      | Η      | Η       | Η       | Η       | Η       | Η       | Η       | Η       | Me      |
| 20-299           | Ph       | Н      | Ph       | Н        | Н        | Н      | Н      | Ph      | H       | Н       | Н       | Н       | H       | Н       | H       |
| 20-300<br>20-301 | Ph<br>Ph | H<br>H | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H | H<br>H | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 20-301           | Ph       | H      | Ph       | H        | H        | Н      | Н      | H       | H       | Н       | Ph      | H       | H       | H       | H       |
| 20-303           | Ph       | H      | Ph       | H        | H        | H      | H      | H       | H       | H       | Н       | Ph      | H       | H       | H       |
| 20-304           | Ph       | H      | Ph       | H        | Η        | Η      | Η      | H       | H       | Η       | Η       | Η       | Ph      | Η       | H       |
| 20-305           | Ph       | H      | Ph       | H        | Η        | Η      | Η      | Η       | H       | Η       | Η       | Η       | Η       | Ph      | H       |
| 20-306           | Ph       | H      | Ph       | H        | H        | H      | H      | H       | H       | H       | H       | H       | H       | H       | Ph      |
| 20-307<br>20-308 | Me<br>Me | H<br>H | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H | H<br>H | H<br>Me | H<br>H  |
| 20-308           | Me       | Н      | Н        | Ph       | Н        | Н      | Н      | H       | Ме      | Н       | Н       | Н       | Н       | Н       | Н       |
| 20-310           | Me       | Н      | Н        | Ph       | Н        | Н      | Н      | Н       | Н       | Me      | Н       | Н       | Н       | Н       | Н       |
| 20-311           | Me       | Η      | Η        | Ph       | Η        | Η      | H      | H       | H       | Η       | Me      | Η       | Η       | Η       | Η       |
| 20-312           | Me       | Η      | Η        | Ph       | Η        | Η      | Η      | Η       | H       | Η       | Η       | Me      | Η       | Η       | H       |
| 20-313           | Me       | Н      | Н        | Ph       | Н        | H      | Н      | Н       | Н       | Н       | Н       | H       | Me      | Н       | Н       |
| 20-314<br>20-315 | Me<br>Me | H<br>H | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H | H<br>H | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H | H<br>Me |
| 20-313           | Me       | Н      | Н        | Ph       | Н        | Н      | Н      | г<br>Ph | Н       | Н       | Н       | Н       | Н       | Н       | H       |
| 20-317           | Me       | H      | H        | Ph       | H        | Н      | Н      | Н       | Ph      | H       | Н       | Н       | H       | Н       | H       |
| 20-318           | Me       | H      | Н        | Ph       | Η        | Η      | H      | H       | H       | Ph      | H       | Η       | H       | Η       | H       |
| 20-319           | Me       | Η      | Η        | Ph       | Η        | Η      | Η      | Η       | Η       | Η       | Ph      | Η       | Η       | Η       | Η       |
| 20-320           | Me       | H      | H        | Ph       | H        | H      | H      | H       | H       | H       | H       | Ph      | H       | H       | H       |
| 20-321<br>20-322 | Me<br>Me | H<br>H | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H | H<br>H | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  |
| 20-322           | Me       | Н      | Н        | Ph       | Н        | Н      | Н      | Н       | Н       | Н       | Н       | Н       | Н       | Н       | Ph      |
| 20-324           | Ph       | Н      | H        | Ph       | Н        | Н      | Н      | H       | Н       | Н       | Н       | Н       | Н       | Н       | Н       |
| 20-325           | Ph       | Η      | Η        | Ph       | Η        | Η      | H      | Me      | H       | Η       | H       | Η       | Η       | Η       | Η       |
| 20-326           | Ph       | Η      | Η        | Ph       | Η        | Η      | Η      | Η       | Me      | Η       | Η       | Η       | Η       | Η       | Η       |
| 20-327           | Ph       | Н      | Н        | Ph       | Н        | Н      | Н      | Н       | Н       | Me      | Н       | Н       | Н       | Н       | Н       |
| 20-328<br>20-329 | Ph<br>Ph | H<br>H | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H | H<br>H | H<br>H  | H<br>H  | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  |
| 20-329           | Ph       | H      | H        | Ph       | Н        | H      | Н      | H       | H       | H       | Н       | H       | Me      | H       | Н       |
| 20-331           | Ph       | H      | Н        | Ph       | Н        | Η      | Н      | H       | H       | Н       | Н       | Н       | Н       | Me      | H       |
| 20-332           | Ph       | Η      | Η        | Ph       | Η        | Η      | Η      | H       | H       | Η       | Η       | Η       | Η       | Η       | Me      |
| 20-333           | Ph       | H      | H        | Ph       | H        | H      | Н      | Ph      | H       | H       | H       | H       | H       | Н       | H       |
| 20-334<br>20-335 | Ph<br>Ph | H<br>H | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H | H<br>H | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 20-336           | Ph       | H      | Н        | Ph       | Н        | Н      | Н      | Н       | H       | Н       | Ph      | H       | H       | H       | Н       |
| 20-337           | Ph       | H      | Н        | Ph       | Н        | Η      | Н      | H       | H       | Н       | Η       | Ph      | Н       | Н       | H       |
| 20-338           | Ph       | Η      | Η        | Ph       | Η        | Η      | Η      | Η       | Η       | Η       | Η       | Η       | Ph      | Η       | Η       |
| 20-339           | Ph       | H      | H        | Ph       | H        | H      | H      | H       | H       | H       | H       | H       | H       | Ph      | H       |
| 20-340<br>20-341 | Ph<br>Me | H<br>H | H<br>H   | Ph<br>H  | H<br>Ph  | H<br>H | H<br>H | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph<br>H |
| 20-341           | Me       | H      | H        | H        | Ph       | Н      | Н      | Me      | H       | H       | Н       | Н       | H       | H       | Н       |
| 20-343           | Me       | Н      | Н        | Н        | Ph       | Н      | Н      | Н       | Me      | Н       | Н       | Н       | Н       | Н       | Н       |
| 20-344           | Me       | Η      | Η        | Η        | Ph       | Η      | Η      | Η       | Η       | Me      | Η       | Η       | Η       | Η       | H       |
| 20-345           | Me       | Н      | Н        | Н        | Ph       | Η      | Η      | Η       | Η       | Н       | Me      | Н       | H       | Н       | H       |
| 20-346           | Me       | H      | Н        | H        | Ph       | H      | H      | H       | H       | H       | H       | Me      | H       | H       | Н       |
| 20-347<br>20-348 | Me<br>Me | H<br>H | H<br>H   | H<br>H   | Ph<br>Ph | H<br>H | H<br>H | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H | H<br>Me | H<br>H  |
| 20-349           | Me       | H      | Н        | Н        | Ph       | Н      | Н      | Н       | Н       | H       | Н       | Н       | Н       | Н       | Me      |
| 20-350           | Me       | H      | Н        | H        | Ph       | Н      | Н      | Ph      | Н       | Н       | Η       | Η       | H       | Н       | Н       |
| 20-351           | Me       | H      | Η        | H        | Ph       | Η      | Η      | Η       | Ph      | Η       | Η       | Η       | H       | Η       | Η       |
| 20-352           | Me       | H      | Η        | H        | Ph       | Η      | Η      | H       | H       | Ph      | Η       | Η       | Η       | Η       | H       |
| 20-353           | Me       | H<br>H | Н        | H<br>H   | Ph<br>Ph | H<br>H | H<br>H | H<br>H  | H<br>H  | H<br>H  | Ph      | H<br>Ph | H<br>H  | H<br>H  | H<br>H  |
| 20-354<br>20-355 | Me<br>Me | Н      | H<br>H   | Н        | Pn<br>Ph | Н      | Н      | Н       | Н       | Н       | H<br>H  | rn<br>H | н<br>Ph | Н       | Н       |
| 20-355           | Me       | H      | H        | H        | Ph       | H      | Н      | H       | H       | H       | H       | H       | Н       | Ph      | H       |
| 20-357           | Me       | Н      | Н        | Н        | Ph       | Н      | Н      | Н       | Н       | Н       | Н       | Н       | Н       | Н       | Ph      |
| 20-358           | Ph       | Η      | Η        | Η        | Ph       | Η      | Η      | Η       | Η       | Η       | Η       | Η       | Η       | Η       | Η       |
| 20-359           | Ph       | Η      | Н        | Н        | Ph       | Н      | H      | Me      | Н       | Н       | H       | Η       | H       | Н       | Н       |
| 20-360           | Ph       | H      | H        | H        | Ph       | H      | H      | H       | Me      | H       | H       | H       | H       | H       | H       |
| 20-361<br>20-362 | Ph<br>Ph | H<br>H | H<br>H   | H<br>H   | Ph<br>Ph | H<br>H | H<br>H | H<br>H  | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 20-362           | Ph       | H      | H        | Н        | Ph       | Н      | Н      | Н       | H       | Н       | Н       | Me      | H       | Н       | Н       |
| 20-364           | Ph       | H      | Н        | Н        | Ph       | H      | Н      | Н       | H       | Н       | Н       | Н       | Me      | Н       | Н       |
|                  | - **     |        |          |          |          |        |        |         |         |         |         |         |         |         |         |

TABLE 20-continued

| Cpd No.          | Ra1      | Ra2    | Ra3    | Ra4    | Ra5      | Ra6      | Ra7      | Rb1     | Rb2     | Rb3     | Rb4     | Rb5     | Rb6     | Rb7     | Rb8     |
|------------------|----------|--------|--------|--------|----------|----------|----------|---------|---------|---------|---------|---------|---------|---------|---------|
| 20-365           | Ph       | Н      | Н      | Н      | Ph       | Н        | Н        | Н       | Н       | Н       | Н       | Н       | Н       | Me      | Н       |
| 20-366           | Ph       | Η      | Η      | Н      | Ph       | Η        | Η        | Η       | Η       | Η       | Η       | Η       | Η       | Η       | Me      |
| 20-367           | Ph       | H      | H      | H      | Ph       | H        | H        | Ph      | H       | H       | H       | H       | H       | H       | H       |
| 20-368<br>20-369 | Ph<br>Ph | H<br>H | H<br>H | H<br>H | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 20-370           | Ph       | H      | H      | Н      | Ph       | Н        | Н        | H       | Н       | Н       | Ph      | Н       | Н       | H       | H       |
| 20-371           | Ph       | Η      | Η      | Н      | Ph       | Н        | Н        | Н       | Н       | Η       | Η       | Ph      | Η       | Η       | Η       |
| 20-372           | Ph       | H      | H      | Н      | Ph       | Н        | Н        | H       | H       | H       | H       | Н       | Ph      | H       | H       |
| 20-373<br>20-374 | Ph<br>Ph | H<br>H | H<br>H | H<br>H | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph |
| 20-375           | Me       | H      | H      | Н      | Н        | Ph       | H        | H       | Н       | H       | Н       | Н       | Н       | H       | Н       |
| 20-376           | Me       | Η      | Η      | Н      | H        | Ph       | H        | Me      | Н       | Η       | Η       | Η       | Η       | Η       | Η       |
| 20-377<br>20-378 | Me<br>Me | H<br>H | H<br>H | H<br>H | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 20-378           | Me       | Н      | Н      | Н      | Н        | Ph       | Н        | Н       | Н       | Н       | Ме      | Н       | Н       | Н       | Н       |
| 20-380           | Me       | H      | H      | Н      | H        | Ph       | H        | Н       | Н       | H       | Η       | Me      | H       | H       | H       |
| 20-381           | Me       | H      | H      | H      | H        | Ph       | H        | H       | H       | H       | H       | H       | Me      | Н       | H       |
| 20-382<br>20-383 | Me<br>Me | H<br>H | H<br>H | H<br>H | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H | H<br>Me |
| 20-384           | Me       | H      | Н      | Н      | Н        | Ph       | Н        | Ph      | H       | H       | Н       | Н       | Н       | Н       | Н       |
| 20-385           | Me       | Η      | Η      | Η      | Η        | Ph       | Η        | Η       | Ph      | Η       | Η       | Η       | Η       | Η       | H       |
| 20-386           | Me       | H      | H      | H      | Н        | Ph       | H        | H       | H       | Ph      | H       | H       | H       | H       | H       |
| 20-387<br>20-388 | Me<br>Me | H<br>H | H<br>H | H<br>H | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  |
| 20-389           | Me       | Η      | H      | H      | Н        | Ph       | Н        | H       | H       | H       | Н       | Н       | Ph      | H       | H       |
| 20-390           | Me       | Η      | Н      | Н      | Н        | Ph       | Н        | Н       | Н       | Н       | Н       | Н       | Н       | Ph      | H       |
| 20-391<br>20-392 | Me<br>Ph | H<br>H | H<br>H | H<br>H | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph<br>H |
| 20-392           | Ph       | H      | H      | Н      | Н        | Ph       | Н        | Me      | H       | H       | H       | H       | H       | H       | H       |
| 20-394           | Ph       | H      | H      | Η      | H        | Ph       | H        | H       | Me      | H       | Η       | H       | Η       | H       | H       |
| 20-395           | Ph       | H      | H      | H      | Н        | Ph       | H        | H       | H       | Me      | H<br>M- | H       | H       | H       | H       |
| 20-396<br>20-397 | Ph<br>Ph | H<br>H | H<br>H | H<br>H | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H  | H<br>H  | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  |
| 20-398           | Ph       | Н      | Н      | Н      | Н        | Ph       | Н        | Н       | Н       | Н       | Н       | Н       | Me      | Н       | Н       |
| 20-399           | Ph       | H      | H      | H      | H        | Ph       | H        | Η       | Н       | H       | Η       | Η       | Η       | Me      | Η       |
| 20-400<br>20-401 | Ph<br>Ph | H<br>H | H<br>H | H<br>H | H<br>H   | Ph<br>Ph | H<br>H   | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H |
| 20-401           | Ph       | H      | H      | Н      | Н        | Ph       | Н        | Н       | Ph      | H       | H       | H       | H       | H       | Н       |
| 20-403           | Ph       | Η      | Η      | Η      | Η        | Ph       | Η        | Η       | H       | Ph      | Η       | Η       | H       | Η       | Η       |
| 20-404           | Ph       | H      | H      | H      | Н        | Ph       | H        | H       | H       | H       | Ph      | H       | H       | H       | H       |
| 20-405<br>20-406 | Ph<br>Ph | H<br>H | H<br>H | H<br>H | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  |
| 20-407           | Ph       | Н      | Н      | Н      | Н        | Ph       | Н        | Н       | Н       | Н       | Н       | Н       | Н       | Ph      | Н       |
| 20-408           | Ph       | Η      | Η      | Η      | Н        | Ph       | Η        | Н       | Н       | Η       | Η       | Η       | Η       | Η       | Ph      |
| 20-409           | Me       | H      | H      | H      | H        | H        | Ph       | Н       | H       | H       | H       | H       | H       | H       | H       |
| 20-410<br>20-411 | Me<br>Me | H<br>H | H<br>H | H<br>H | H<br>H   | H<br>H   | Ph<br>Ph | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 20-411           | Me       | Н      | Н      | Н      | Н        | Н        | Ph       | Н       | Н       | Me      | Н       | Н       | Н       | Н       | Н       |
| 20-413           | Me       | Η      | Η      | Η      | Η        | Η        | Ph       | Η       | Η       | Η       | Me      | Η       | Η       | Η       | H       |
| 20-414           | Me       | Η      | Η      | Η      | Η        | Η        | Ph       | Н       | Η       | Η       | Η       | Me      | Η       | Η       | H       |
| 20-415<br>20-416 | Me       | H      | H      | H      | H        | H        | Ph       | H       | H       | H       | H       | H       | Me      | H       | H       |
| 20-416           | Me<br>Me | H<br>H | H<br>H | H<br>H | H<br>H   | H<br>H   | Ph<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ме<br>Н | H<br>Me |
| 20-418           | Me       | Н      | Н      | Н      | Н        | Н        | Ph       | Ph      | Н       | Н       | Н       | Н       | Н       | Н       | Н       |
| 20-419           | Me       | Η      | Η      | Η      | Н        | Н        | Ph       | Η       | Ph      | Η       | Η       | Η       | Η       | Η       | H       |
| 20-420           | Me       | H      | H      | H      | H        | H        | Ph       | H       | H       | Ph      | H       | H       | H       | H       | H       |
| 20-421<br>20-422 | Me<br>Me | H<br>H | H<br>H | H<br>H | H<br>H   | H<br>H   | Ph<br>Ph | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  |
| 20-423           | Me       | H      | H      | Н      | Н        | Н        | Ph       | H       | Н       | H       | Н       | Н       | Ph      | Н       | Н       |
| 20-424           | Me       | Η      | Η      | Н      | Н        | Η        | Ph       | Н       | Н       | Н       | Η       | Η       | Н       | Ph      | Н       |
| 20-425           | Me       | Η      | Η      | Η      | Η        | Η        | Ph       | Η       | Η       | Η       | Η       | Η       | Η       | Η       | Ph      |
| 20-426           | Ph       | H      | H      | H      | Н        | Н        | Ph       | Н       | Н       | H       | H       | H       | H       | H       | H       |
| 20-427<br>20-428 | Ph<br>Ph | H<br>H | H<br>H | H<br>H | H<br>H   | H<br>H   | Ph<br>Ph | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 20-429           | Ph       | H      | H      | Н      | Н        | Н        | Ph       | Н       | Н       | Me      | Н       | Н       | H       | Н       | Н       |
| 20-430           | Ph       | H      | H      | Н      | H        | H        | Ph       | H       | Н       | H       | Me      | Η       | Η       | H       | H       |
| 20-431           | Ph       | H      | H      | Н      | Н        | Η        | Ph       | Н       | Н       | H       | Н       | Me      | Н       | H       | Н       |
| 20-432           | Ph       | H      | H      | H      | H        | H        | Ph       | H       | H       | H       | H       | H       | Me      | H<br>Mo | H       |
| 20-433<br>20-434 | Ph<br>Ph | H<br>H | H<br>H | H<br>H | H<br>H   | H<br>H   | Ph<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ме<br>Н | H<br>Me |
| 20-435           | Ph       | H      | H      | Н      | Н        | Н        | Ph       | Ph      | Н       | Н       | Н       | Н       | Н       | Н       | Н       |
| 20-436           | Ph       | Н      | Η      | Н      | Н        | Н        | Ph       | Н       | Ph      | Н       | Н       | Н       | Н       | Η       | Н       |
| 20-437           | Ph       | Н      | H      | H      | Н        | H        | Ph       | Н       | H       | Ph      | H       | H       | H       | Н       | H       |
| 20-438           | Ph       | Н      | Н      | Н      | Н        | Н        | Ph       | Н       | Н       | Н       | Ph      | H       | Н       | Н       | Н       |
| 20-439<br>20-440 | Ph<br>Ph | H<br>H | H<br>H | H<br>H | H<br>H   | H<br>H   | Ph<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  |
|                  |          |        |        |        |          |          |          |         |         |         |         |         |         |         |         |



149 150

| TADE  | $\Delta \alpha$ |           |
|-------|-----------------|-----------|
| 1 / 1 | <br>711         | continued |
|       |                 |           |

| Cpd No. | Ra1 | Ra2 | Ra3 | Ra4 | Ra5 | Ra6 | Ra7 | Rb1 | Rb2 | Rb3 | Rb4 | Rb5 | Rb6 | Rb7 | Rb8 |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 20-441  | Ph  | Н   | Н   | Н   | Н   | Н   | Ph  | Н   | Н   | Н   | Н   | Н   | Н   | Ph  | Н   |
| 20-442  | Ph  | H   | H   | H   | H   | H   | Ph  | H   | Η   | H   | H   | H   | H   | H   | Ph  |

|                      |                |             | Т           | ABLI         | ∃ 21         |             |             |                |     |                         |                |                | TABI        | LE <b>21</b> - | -conti       | nued         |         |             |                |
|----------------------|----------------|-------------|-------------|--------------|--------------|-------------|-------------|----------------|-----|-------------------------|----------------|----------------|-------------|----------------|--------------|--------------|---------|-------------|----------------|
| Cpd No.              | Ra1            | Ra2         | Ra3         | Rb1          | Rb2          | Rb3         | Rb4         | Rb5            | 10  | Cpd No.                 | Ra1            | Ra2            | Ra3         | Rb1            | Rb2          | Rb.          | 3       | Rb4         | Rb5            |
| 21-1<br>21-2<br>21-3 | Me<br>Me<br>Me | H<br>H<br>H | H<br>H<br>H | H<br>Me<br>H | H<br>H<br>Me | H<br>H<br>H | H<br>H<br>H | Me<br>Me<br>Me | _   | 21-69<br>21-70<br>21-71 | Ph<br>Ph<br>Ph | Ph<br>Ph<br>Ph | H<br>H<br>H | Ph<br>H<br>H   | H<br>Ph<br>H | H<br>H<br>Ph |         | H<br>H<br>H | Me<br>Me<br>Me |
| 21-4<br>21-5         | Me<br>Me       | H<br>H      | H<br>H      | H<br>H       | H<br>H       | Me<br>H     | H<br>Me     | Me             | 4.5 | 21-72<br>21-73          | Ph<br>Me       | Ph<br>H        | H<br>Ph     | H<br>H         | H<br>H       | H<br>H       |         | Ph<br>H     | Me<br>Me       |
| 21-6                 | Me             | Η           | Η           | Ph           | Η            | Н           | Η           | Me<br>Me       | 15  | 21-74                   | Me             | Η              | Ph          | Me             | Η            | Η            |         | Н           | Me             |
| 21-7<br>21-8         | Me<br>Me       | H<br>H      | H<br>H      | H<br>H       | Ph<br>H      | H<br>Ph     | H<br>H      | Me<br>Me       |     | 21-75<br>21-76          | Me<br>Me       | H<br>H         | Ph<br>Ph    | H<br>H         | Me<br>H      | H<br>Me      |         | H<br>H      | Me<br>Me       |
| 21-9<br>21-10        | Me<br>Ph       | H<br>H      | H<br>H      | H<br>H       | H<br>H       | H<br>H      | Ph<br>H     | Me<br>Me       |     | 21-77<br>21-78          | Me<br>Me       |                | Ph<br>Ph    | H<br>Ph        | H<br>H       | H<br>H       |         | Me<br>H     | Me<br>Me       |
| 21-11                | Ph             | Η           | Η           | Me           | Η            | Н           | H           | Me             | 20  | 21-79                   | Me             | Η              | Ph          | Η              | Ph           | Η            |         | Н           | Me             |
| 21-12<br>21-13       | Ph<br>Ph       | H<br>H      | H<br>H      | H<br>H       | Me<br>H      | H<br>Me     | H<br>H      | Me<br>Me       |     | 21-80<br>21-81          | Me<br>Me       |                | Ph<br>Ph    | H<br>H         | H<br>H       | Ph<br>H      |         | H<br>Ph     | Me<br>Me       |
| 21-14<br>21-15       | Ph<br>Ph       | H<br>H      | H<br>H      | H<br>Ph      | H<br>H       | H<br>H      | Me<br>H     | Me<br>Me       |     | 21-82<br>21-83          | Ph<br>Ph       | H<br>H         | Ph<br>Ph    | H<br>Me        | H<br>H       | H<br>H       |         | H<br>H      | Me<br>Me       |
| 21-16                | Ph             | Η           | Η           | H            | Ph           | Н           | H           | Me             |     | 21-83                   | Ph             | Н              | Ph          | Н              | Ме           | Н            |         | Н           | Me             |
| 21-17<br>21-18       | Ph<br>Ph       | H<br>H      | H<br>H      | H<br>H       | H<br>H       | Ph<br>H     | H<br>Ph     | Me<br>Me       | 25  | 21-85<br>21-86          | Ph<br>Ph       | H<br>H         | Ph<br>Ph    | H<br>H         | H<br>H       | Me<br>H      |         | H<br>Me     | Me<br>Me       |
| 21-19<br>21-20       | Me             | Me          | Н           | Н            | Н            | H<br>H      | Н           | Me             |     | 21-87                   | Ph             | Н              | Ph          | Ph             | Н            | Н            |         | Н           | Me             |
| 21-21                | Me<br>Me       | Me<br>Me    | H<br>H      | Me<br>H      | H<br>Me      | Н           | H<br>H      | Me<br>Me       |     | 21-88<br>21-89          | Ph<br>Ph       | H<br>H         | Ph<br>Ph    | H<br>H         | Ph<br>H      | H<br>Ph      |         | H<br>H      | Me<br>Me       |
| 21-22<br>21-23       | Me<br>Me       | Me<br>Me    | H<br>H      | H<br>H       | H<br>H       | Me<br>H     | H<br>Me     | Me<br>Me       |     | 21-90                   | Ph             | Н              | Ph          | Н              | Н            | Н            |         | Ph          | Me             |
| 21-24                | Me             | Me          | Η           | Ph           | H            | Н           | H           | Me             | 30  |                         |                |                |             |                |              |              |         |             |                |
| 21-25<br>21-26       | Me<br>Me       | Me<br>Me    | H<br>H      | H<br>H       | Ph<br>H      | H<br>Ph     | H<br>H      | Me<br>Me       |     |                         |                |                |             |                |              |              |         |             |                |
| 21-27<br>21-28       | Me<br>Ph       | Me<br>Me    | H<br>H      | H<br>H       | H<br>H       | H<br>H      | Ph<br>H     | Me<br>Me       |     |                         |                |                |             | TABL           | E 22         |              |         |             |                |
| 21-29                | Ph             | Me          | Η           | Me           | Η            | Н           | H           | Me             |     | Cpd                     |                |                |             |                |              |              |         |             |                |
| 21-30<br>21-31       | Ph<br>Ph       | Me<br>Me    | $_{ m H}$   | H<br>H       | Me<br>H      | H<br>Me     | H<br>H      | Me<br>Me       | 35  | No.                     | Ra1            | Ra2            | Ra3         | Ra4            | Rb1          | Rb2          | Rb3     | Rb4         | Rb5            |
| 21-32<br>21-33       | Ph<br>Ph       | Me<br>Me    | H<br>H      | H<br>Ph      | H<br>H       | H<br>H      | Me<br>H     | Me<br>Me       |     | 22-1<br>22-2            | Me<br>Me       | H<br>H         | H<br>H      | H<br>H         | H<br>Me      | H<br>H       | H<br>H  | H<br>H      | Me<br>Me       |
| 21-34                | Ph             | Me          | Η           | Η            | Ph           | Н           | H           | Me             |     | 22-3                    | Me             | Η              | Η           | Н              | Н            | Me           | Η       | Η           | Me             |
| 21-35<br>21-36       | Ph<br>Ph       | Me<br>Me    | H<br>H      | H<br>H       | H<br>H       | Ph<br>H     | H<br>Ph     | Me<br>Me       | 40  | 22-4<br>22-5            | Me<br>Me       | H<br>H         | H<br>H      | H<br>H         | H<br>H       | H<br>H       | Me<br>H | H<br>Me     | Me<br>Me       |
| 21-37                | Me             | Η           | Me          | Η            | Η            | Η           | H           | Me             | 40  | 22-6<br>22-7            | Me<br>Me       | H<br>H         | H<br>H      | H<br>H         | Ph<br>H      | H<br>Ph      | H<br>H  | H<br>H      | Me<br>Me       |
| 21-38<br>21-39       | Me<br>Me       | H<br>H      | Me<br>Me    | Me<br>H      | H<br>Me      | H<br>H      | H<br>H      | Me<br>Me       |     | 22-8                    | Me             | Η              | Η           | Н              | Н            | Η            | Ph      | Η           | Me             |
| 21-40<br>21-41       | Me<br>Me       | H<br>H      | Me<br>Me    | H<br>H       | H<br>H       | Me<br>H     | H<br>Me     | Me<br>Me       |     | 22-9<br>22-10           | Me<br>Ph       | H<br>H         | H<br>H      | H<br>H         | H<br>H       | H<br>H       | H<br>H  | Ph<br>H     | Me<br>Me       |
| 21-42                | Me             | Η           | Me          | Ph           | Η            | Н           | Н           | Me             | 45  | 22-11<br>22-12          | Ph             | Η              | Η           | H              | Me           | Η            | Η       | H           | Me             |
| 21-43<br>21-44       | Me<br>Me       | H<br>H      | Me<br>Me    | H<br>H       | Ph<br>H      | H<br>Ph     | H<br>H      | Me<br>Me       | 10  | 22-12                   | Ph<br>Ph       | H<br>H         | H<br>H      | H<br>H         | H<br>H       | Me<br>H      | H<br>Me | H<br>H      | Me<br>Me       |
| 21-45<br>21-46       | Me<br>Ph       | H<br>H      | Me<br>Me    | H<br>H       | H<br>H       | H<br>H      | Ph<br>H     | Me<br>Me       |     | 22-14<br>22-15          | Ph<br>Ph       | H<br>H         | H<br>H      | H<br>H         | H<br>Ph      | H<br>H       | H<br>H  | Me<br>H     | Me<br>Me       |
| 21-47                | Ph             | Η           | Me          | Me           | H            | Н           | H           | Me             |     | 22-16                   | Ph             | Η              | Η           | Η              | Н            | Ph           | Η       | Η           | Me             |
| 21-48<br>21-49       | Ph<br>Ph       | H<br>H      | Me<br>Me    | H<br>H       | Me<br>H      | H<br>Me     | H<br>H      | Me<br>Me       | 50  | 22-17<br>22-18          | Ph<br>Ph       | H<br>H         | H<br>H      | H<br>H         | H<br>H       | H<br>H       | Ph<br>H | H<br>Ph     | Me<br>Me       |
| 21-50<br>21-51       | Ph<br>Ph       | H<br>H      | Me<br>Me    | H<br>Ph      | H<br>H       | H<br>H      | Me<br>H     | Me<br>Me       |     | 22-19<br>22-20          | Me<br>Me       | Me<br>Me       | H<br>H      | H<br>H         | H<br>Me      | H<br>H       | H<br>H  | H<br>H      | Me<br>Me       |
| 21-51                | Ph             | Н           | Me          | Н            | г<br>Ph      | Н           | Н           | Me             |     | 22-21                   | Me             | Me             | H           | H              | H            | Me           | Η       | Η           | Me             |
| 21-53<br>21-54       | Ph<br>Ph       | H<br>H      | Me<br>Me    | H<br>H       | H<br>H       | Ph<br>H     | H<br>Ph     | Me<br>Me       |     | 22-22<br>22-23          | Me<br>Me       | Me<br>Me       | H<br>H      | H<br>H         | H<br>H       | H<br>H       | Me<br>H | H<br>Me     | Me<br>Me       |
| 21-55                | Me             | Ph          | Η           | Η            | Η            | Η           | Η           | Me             | 55  | 22-24                   | Me             | Me             | H<br>H      | H<br>H         | Ph<br>H      | H<br>Ph      | Н       | H<br>H      | Me             |
| 21-56<br>21-57       | Me<br>Me       | Ph<br>Ph    | H<br>H      | Me<br>H      | H<br>Me      | H<br>H      | H<br>H      | Me<br>Me       |     | 22-25<br>22-26          | Me<br>Me       | Me<br>Me       | н<br>Н      | Н              | Н            | Н            | H<br>Ph | Н           | Me<br>Me       |
| 21-58                | Me             | Ph          | Η           | H            | Η            | Me          | H           | Me             |     | 22-27<br>22-28          | Me<br>Ph       | Me<br>Me       | H<br>H      | H<br>H         | H<br>H       | H<br>H       | H<br>H  | Ph<br>H     | Me<br>Me       |
| 21-59<br>21-60       | Me<br>Me       | Ph<br>Ph    | H<br>H      | H<br>Ph      | H<br>H       | H<br>H      | Me<br>H     | Me<br>Me       |     | 22-29                   | Ph             | Me             | Η           | Н              | Me           | Η            | Η       | Η           | Me             |
| 21-61                | Me             | Ph          | H           | Η            | Ph           | Η           | H           | Me             | 60  | 22-30<br>22-31          | Ph<br>Ph       | Me<br>Me       | H<br>H      | H<br>H         | H<br>H       | Me<br>H      | H<br>Me | H<br>H      | Me<br>Me       |
| 21-62<br>21-63       | Me<br>Me       | Ph<br>Ph    | H<br>H      | H<br>H       | H<br>H       | Ph<br>H     | H<br>Ph     | Me<br>Me       |     | 22-32<br>22-33          | Ph<br>Ph       | Me<br>Me       | H<br>H      | H<br>H         | H<br>Ph      | H<br>H       | H<br>H  | Me<br>H     | Me<br>Me       |
| 21-64                | Ph             | Ph          | Η           | Η            | Η            | Η           | Η           | Me             |     | 22-34                   | Ph             | Me             | Η           | Η              | Η            | Ph           | Η       | Η           | Me             |
| 21-65<br>21-66       | Ph<br>Ph       | Ph<br>Ph    | $_{ m H}$   | Me<br>H      | H<br>Me      | H<br>H      | H<br>H      | Me<br>Me       |     | 22-35<br>22-36          | Ph<br>Ph       | Me<br>Me       | H<br>H      | H<br>H         | H<br>H       | H<br>H       | Ph<br>H | H<br>Ph     | Me<br>Me       |
| 21-67                | Ph             | Ph          | Н           | Н            | Н            | Me          | Н           | Me             | 65  | 22-37                   | Me             | Н              | Me          | H              | Н            | Н            | Н       | Н           | Me             |

151
TABLE 22-continued

152
TABLE 22-continued

| Cpd<br>No. | Ra1 | Ra2 | Ra3 | Ra4 | Rb1 | Rb2 | Rb3 | Rb4 | Rb5 |    | Cpd<br>No. | Ra1 | Ra2 | Ra3 | Ra4 | Rb1     | Rb2 | Rb3 | Rb4 | Rb5 |
|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|------------|-----|-----|-----|-----|---------|-----|-----|-----|-----|
| 22-39      | Me  | Н   | Me  | Н   | Н   | Me  | Н   | Н   | Me  | 5  | 22-84      | Ph  | Ph  | Н   | Н   | Н       | Me  | Н   | Н   | Me  |
| 22-40      | Me  | Η   | Me  | Η   | Η   | Η   | Me  | H   | Me  |    | 22-85      | Ph  | Ph  | Η   | Η   | Η       | Η   | Me  | Η   | Me  |
| 22-41      | Me  | Η   | Me  | Η   | Η   | Η   | Η   | Me  | Me  |    | 22-86      | Ph  | Ph  | H   | Η   | Η       | Η   | H   | Me  | Me  |
| 22-42      | Me  | Η   | Me  | Η   | Ph  | Η   | Η   | Η   | Me  |    | 22-87      | Ph  | Ph  | Η   | Η   | Ph      | Η   | Η   | Η   | Me  |
| 22-43      | Me  | Η   | Me  | Η   | Η   | Ph  | Η   | Η   | Me  |    | 22-88      | Ph  | Ph  | Η   | Η   | Η       | Ph  | Η   | Η   | Me  |
| 22-44      | Me  | Η   | Me  | Η   | Η   | Η   | Ph  | Η   | Me  |    | 22-89      | Ph  | Ph  | Η   | Η   | Η       | Η   | Ph  | Η   | Me  |
| 22-45      | Me  | Η   | Me  | Η   | Η   | Η   | Η   | Ph  | Me  | 10 | 22-90      | Ph  | Ph  | Η   | Η   | Η       | Η   | Η   | Ph  | Me  |
| 22-46      | Ph  | Η   | Me  | Η   | Η   | Η   | Η   | Η   | Me  |    | 22-91      | Me  | Η   | Ph  | Η   | Η       | Η   | H   | Η   | Me  |
| 22-47      | Ph  | Η   | Me  | Η   | Me  | Η   | Η   | Η   | Me  |    | 22-92      | Me  | Η   | Ph  | Η   | Me      | Η   | Η   | Η   | Me  |
| 22-48      | Ph  | Η   | Me  | Η   | Η   | Me  | Η   | Η   | Me  |    | 22-93      | Me  | Η   | Ph  | Η   | Η       | Me  | Η   | Η   | Me  |
| 22-49      | Ph  | Η   | Me  | Η   | Η   | Η   | Me  | Η   | Me  |    | 22-94      | Me  | Η   | Ph  | Η   | Η       | Η   | Me  | Η   | Me  |
| 22-50      | Ph  | Η   | Me  | Η   | Η   | Η   | Η   | Me  | Me  |    | 22-95      | Me  | Η   | Ph  | Η   | Η       | Η   | H   | Me  | Me  |
| 22-51      | Ph  | Η   | Me  | Η   | Ph  | Η   | Η   | Η   | Me  | 15 | 22-96      | Me  | Η   | Ph  | Η   | Ph      | Η   | H   | Η   | Me  |
| 22-52      | Ph  | Η   | Me  | Η   | Η   | Ph  | Η   | Η   | Me  | 10 | 22-97      | Me  | Η   | Ph  | Η   | Η       | Ph  | H   | Η   | Me  |
| 22-53      | Ph  | Η   | Me  | Η   | Η   | Η   | Ph  | Η   | Me  |    | 22-98      | Me  | Η   | Ph  | Η   | Η       | Η   | Ph  | Η   | Me  |
| 22-54      | Ph  | Η   | Me  | Η   | Η   | Η   | Η   | Ph  | Me  |    | 22-99      | Me  | Η   | Ph  | Η   | Η       | Η   | H   | Ph  | Me  |
| 22-55      | Me  | Η   | Η   | Me  | Η   | H   | Η   | Η   | Me  |    | 22-100     | Ph  | Η   | Ph  | Η   | Η       | Η   | Η   | Η   | Me  |
| 22-56      | Me  | Η   | Η   | Me  | Me  | H   | Η   | Η   | Me  |    | 22-101     | Ph  | Η   | Ph  | Η   | Me      | Η   | Η   | Η   | Me  |
| 22-57      | Me  | Η   | Η   | Me  | Η   | Me  | Η   | Η   | Me  | 20 | 22-102     | Ph  | Η   | Ph  | Η   | Η       | Me  | Η   | Η   | Me  |
| 22-58      | Me  | Η   | Η   | Me  | Η   | Η   | Me  | Η   | Me  | 20 | 22-103     | Ph  | H   | Ph  | Η   | Η       | Η   | Me  | Η   | Me  |
| 22-59      | Me  | Η   | Η   | Me  | Η   | Η   | Η   | Me  | Me  |    | 22-104     | Ph  | Η   | Ph  | Η   | Η       | Η   | H   | Me  | Me  |
| 22-60      | Me  | Η   | Η   | Me  | Ph  | Η   | Η   | Η   | Me  |    | 22-105     | Ph  | Η   | Ph  | Η   | Ph      | Η   | H   | Η   | Me  |
| 22-61      | Me  | Η   | Η   | Me  | Η   | Ph  | Η   | Η   | Me  |    | 22-106     | Ph  | H   | Ph  | Η   | Η       | Ph  | Η   | Η   | Me  |
| 22-62      | Me  | Η   | Η   | Me  | Η   | Η   | Ph  | Η   | Me  |    | 22-107     | Ph  | Η   | Ph  | Η   | Η       | Η   | Ph  | Η   | Me  |
| 22-63      | Me  | H   | H   | Me  | Η   | Η   | Η   | Ph  | Me  |    | 22-108     | Ph  | Η   | Ph  | Η   | Η       | Η   | Η   | Ph  | Me  |
| 22-64      | Ph  | H   | H   | Me  | Η   | H   | Η   | Η   | Me  | 25 | 22-109     | Me  | Η   | Η   | Ph  | Η       | Η   | H   | Η   | Me  |
| 22-65      | Ph  | Η   | Η   | Me  | Me  | Η   | Η   | Η   | Me  |    | 22-110     | Me  | Η   | Η   | Ph  | Me      | Η   | H   | Η   | Me  |
| 22-66      | Ph  | Η   | Η   | Me  | Η   | Me  | Η   | Η   | Me  |    | 22-111     | Me  | H   | H   | Ph  | Η       | Me  | H   | H   | Me  |
| 22-67      | Ph  | H   | H   | Me  | Η   | Η   | Me  | Η   | Me  |    | 22-112     | Me  | Η   | Η   | Ph  | Η       | Η   | Me  | Η   | Me  |
| 22-68      | Ph  | Η   | Η   | Me  | Η   | Η   | Η   | Me  | Me  |    | 22-113     | Me  | Η   | Η   | Ph  | Η       | Η   | Η   | Me  | Me  |
| 22-69      | Ph  | Η   | H   | Me  | Ph  | H   | Η   | Η   | Me  |    | 22-114     | Me  | H   | H   | Ph  | Ph      | Η   | H   | Η   | Me  |
| 22-70      | Ph  | Η   | Η   | Me  | Η   | Ph  | Η   | Η   | Me  | 30 | 22-115     | Me  | H   | H   | Ph  | Η       | Ph  | H   | H   | Me  |
| 22-71      | Ph  | Η   | Η   | Me  | Η   | Η   | Ph  | Η   | Me  |    | 22-116     | Me  | Η   | Η   | Ph  | Η       | Η   | Ph  | Η   | Me  |
| 22-72      | Ph  | H   | H   | Me  | Η   | H   | Η   | Ph  | Me  |    | 22-117     | Me  | Н   | Η   | Ph  | Η       | H   | Н   | Ph  | Me  |
| 22-73      | Me  | Ph  | Η   | Η   | Η   | Η   | Η   | Η   | Me  |    | 22-118     | Ph  | Н   | Н   | Ph  | Н       | Н   | Н   | Н   | Me  |
| 22-74      | Me  | Ph  | H   | H   | Me  | Η   | Η   | Η   | Me  |    | 22-119     | Ph  | Н   | Н   | Ph  | Me      | Н   | Н   | Н   | Me  |
| 22-75      | Me  | Ph  | H   | H   | Η   | Me  | Η   | H   | Me  |    | 22-120     | Ph  | Н   | H   | Ph  | Н       | Me  | Н   | Н   | Me  |
| 22-76      | Me  | Ph  | H   | H   | Η   | H   | Me  | Η   | Me  | 35 | 22-120     | Ph  | Н   | Н   | Ph  | Н       | Н   | Me  | Н   | Me  |
| 22-77      | Me  | Ph  | Η   | Η   | H   | Н   | H   | Me  | Me  |    | 22-121     | Ph  | Н   | Н   | Ph  | Н       | Н   | H   | Me  | Me  |
| 22-78      | Me  | Ph  | Η   | Η   | Ph  | Н   | Η   | Η   | Me  |    | 22-122     | Ph  | Н   | Н   | Ph  | п<br>Ph | Н   | Н   | H   |     |
| 22-79      | Me  | Ph  | Η   | Η   | Η   | Ph  | Η   | Η   | Me  |    |            |     |     |     |     |         |     |     |     | Me  |
| 22-80      | Me  | Ph  | H   | H   | Η   | Η   | Ph  | H   | Me  |    | 22-124     | Ph  | H   | H   | Ph  | H       | Ph  | H   | H   | Me  |
| 22-81      | Me  | Ph  | Η   | Η   | Η   | Η   | Η   | Ph  | Me  |    | 22-125     | Ph  | Н   | Н   | Ph  | Η       | Η   | Ph  | H   | Me  |
| 22-82      | Ph  | Ph  | H   | H   | Η   | Η   | Η   | Н   | Me  | 40 | 22-126     | Ph  | Η   | Η   | Ph  | Η       | Η   | Η   | Ph  | Me  |
| 22-83      | Ph  | Ph  | Η   | Η   | Me  | Η   | H   | H   | Me  | 40 |            |     |     |     |     |         |     |     |     |     |

TABLE 23

| Cpd No. | Ra1 | Ra2 | Ra3 | Ra4 | Ra5 | Rb1 | Rb2 | Rb3 | Rb4 | Rb5 |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 23-1    | Me  | Н   | Н   | Н   | Н   | Н   | Н   | Н   | Н   | Me  |
| 23-2    | Me  | Η   | Η   | H   | H   | Me  | Η   | H   | Η   | Me  |
| 23-3    | Me  | Η   | Η   | Η   | Η   | Η   | Me  | Η   | Η   | Me  |
| 23-4    | Me  | Η   | Η   | Η   | Η   | Η   | Η   | Me  | Η   | Me  |
| 23-5    | Me  | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Me  | Me  |
| 23-6    | Me  | Η   | Η   | Η   | Η   | Ph  | Η   | Η   | Η   | Me  |
| 23-7    | Me  | Η   | Η   | H   | H   | Η   | Ph  | H   | Η   | Me  |
| 23-8    | Me  | Η   | Η   | Η   | Η   | Н   | Η   | Ph  | Η   | Me  |
| 23-9    | Me  | Η   | Η   | H   | H   | Η   | Η   | H   | Ph  | Me  |
| 23-10   | Ph  | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Me  |
| 23-11   | Ph  | Η   | Η   | H   | Η   | Me  | Η   | H   | Η   | Me  |
| 23-12   | Ph  | Η   | Η   | Η   | Η   | Η   | Me  | Η   | Η   | Me  |
| 23-13   | Ph  | Η   | Η   | Η   | Η   | Η   | Η   | Me  | Η   | Me  |
| 23-14   | Ph  | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Me  | Me  |
| 23-15   | Ph  | H   | Η   | H   | H   | Ph  | Η   | H   | H   | Me  |
| 23-16   | Ph  | H   | H   | H   | H   | Н   | Ph  | H   | Η   | Me  |
| 23-17   | Ph  | Η   | Η   | H   | H   | Н   | Η   | Ph  | Η   | Me  |
| 23-18   | Ph  | H   | H   | H   | H   | Н   | H   | H   | Ph  | Me  |
| 23-19   | Me  | Me  | Η   | H   | H   | H   | Η   | H   | H   | Me  |
| 23-20   | Me  | Me  | Η   | H   | H   | Me  | Η   | H   | Η   | Me  |
| 23-21   | Me  | Me  | Η   | H   | Η   | Η   | Me  | H   | Η   | Me  |
| 23-22   | Me  | Me  | Η   | H   | H   | Н   | Η   | Me  | Η   | Me  |
| 23-23   | Me  | Me  | H   | H   | H   | H   | H   | H   | Me  | Me  |
| 23-24   | Me  | Me  | Н   | H   | H   | Ph  | Η   | H   | Η   | Me  |
| 23-25   | Me  | Me  | Η   | Η   | Η   | Η   | Ph  | Н   | Η   | Me  |

153
TABLE 23-continued

|                |          |        |          | IADL.    | E 23-0   | conun   | ueu     |                 |         |          |
|----------------|----------|--------|----------|----------|----------|---------|---------|-----------------|---------|----------|
| Cpd No.        | Ra1      | Ra2    | Ra3      | Ra4      | Ra5      | Rb1     | Rb2     | Rb3             | Rb4     | Rb5      |
| 23-26          | Me       | Me     | Н        | Н        | Н        | Н       | Н       | Ph              | Н       | Me       |
| 23-27          | Me       | Me     | H        | Н        | H        | H       | H       | H               | Ph      | Me       |
| 23-28          | Ph       | Me     | H        | Η        | Η        | Η       | Η       | H               | H       | Me       |
| 23-29          | Ph       | Me     | Η        | Η        | Η        | Me      | Η       | H               | Η       | Me       |
| 23-30          | Ph       | Me     | Η        | H        | H        | H       | Me      | Η               | H       | Me       |
| 23-31          | Ph       | Me     | Η        | Η        | Η        | Η       | Η       | Me              | Η       | Me       |
| 23-32          | Ph       | Me     | H        | H        | H        | H       | H       | H               | Me      | Me       |
| 23-33          | Ph       | Me     | H        | Н        | Η        | Ph      | H       | H               | Η       | Me       |
| 23-34          | Ph       | Me     | H        | H        | Н        | H       | Ph      | H               | Η       | Me       |
| 23-35          | Ph       | Me     | Н        | Н        | Н        | Н       | Н       | Ph              | H       | Me       |
| 23-36          | Ph       | Me     | H        | H        | H        | Н       | Н       | H               | Ph      | Me       |
| 23-37<br>23-38 | Me       | H<br>H | Me<br>Me | H<br>H   | H<br>H   | H       | H<br>H  | H<br>H          | H<br>H  | Me       |
| 23-36          | Me<br>Me | Н      | Me       | Н        | Н        | Me<br>H | п<br>Ме | Н               | п<br>Н  | Me<br>Me |
| 23-40          | Me       | H      | Me       | Н        | Н        | Н       | Н       | Me              | H       | Me       |
| 23-41          | Me       | H      | Me       | Н        | Н        | Н       | Н       | H               | Me      | Me       |
| 23-42          | Me       | H      | Me       | H        | Н        | Ph      | H       | H               | Н       | Me       |
| 23-43          | Me       | Н      | Me       | Н        | Н        | Н       | Ph      | H               | H       | Me       |
| 23-44          | Me       | Н      | Me       | Н        | Н        | Н       | Н       | Ph              | H       | Me       |
| 23-45          | Me       | Н      | Me       | Н        | Н        | Н       | Н       | H               | Ph      | Me       |
| 23-46          | Ph       | H      | Me       | H        | H        | H       | H       | H               | H       | Me       |
| 23-47          | Ph       | Η      | Me       | Н        | Η        | Me      | Η       | Η               | H       | Me       |
| 23-48          | Ph       | Η      | Me       | Н        | Η        | Η       | Me      | Η               | H       | Me       |
| 23-49          | Ph       | H      | Me       | H        | H        | H       | H       | Me              | H       | Me       |
| 23-50          | Ph       | Η      | Me       | Η        | Η        | Η       | Η       | Η               | Me      | Me       |
| 23-51          | Ph       | Η      | Me       | H        | H        | Ph      | H       | H               | H       | Me       |
| 23-52          | Ph       | Η      | Me       | H        | H        | H       | Ph      | H               | H       | Me       |
| 23-53          | Ph       | Η      | Me       | Η        | Η        | Η       | Η       | Ph              | H       | Me       |
| 23-54          | Ph       | H      | Me       | Н        | Η        | Η       | Η       | H               | Ph      | Me       |
| 23-55          | Me       | H      | H        | Me       | Η        | Н       | Н       | H               | Η       | Me       |
| 23-56          | Me       | H      | H        | Me       | Н        | Me      | Н       | H               | H       | Me       |
| 23-57          | Me       | H      | H        | Me       | Н        | Н       | Me      | Н               | H       | Me       |
| 23-58          | Me       | Н      | H        | Me       | Н        | Н       | Н       | Me              | Н       | Me       |
| 23-59          | Me       | H      | H        | Me       | H        | H       | H       | H               | Me      | Me       |
| 23-60          | Me       | H      | H        | Me       | H        | Ph      | H       | H<br>H          | H       | Me       |
| 23-61<br>23-62 | Me<br>Me | H<br>H | H<br>H   | Me<br>Me | H<br>H   | H<br>H  | Ph<br>H | п<br>Ph         | H<br>H  | Me<br>Me |
| 23-63          | Me       | Н      | Н        | Me       | Н        | Н       | Н       | Н               | п<br>Ph | Me       |
| 23-64          | Ph       | Н      | Н        | Me       | Н        | Н       | Н       | Н               | ги<br>Н | Me       |
| 23-65          | Ph       | H      | H        | Me       | Н        | Me      | Н       | H               | H       | Me       |
| 23-66          | Ph       | Н      | Н        | Me       | Н        | Н       | Me      | H               | H       | Me       |
| 23-67          | Ph       | Н      | Η        | Me       | Н        | Н       | Н       | Me              | Н       | Me       |
| 23-68          | Ph       | H      | H        | Me       | Н        | Н       | Н       | Н               | Me      | Me       |
| 23-69          | Ph       | Н      | Н        | Me       | Н        | Ph      | Н       | Н               | H       | Me       |
| 23-70          | Ph       | Η      | H        | Me       | Н        | Н       | Ph      | H               | H       | Me       |
| 23-71          | Ph       | Η      | H        | Me       | Н        | Н       | H       | Ph              | H       | Me       |
| 23-72          | Ph       | Η      | Η        | Me       | Η        | Η       | Η       | Η               | Ph      | Me       |
| 23-73          | Me       | Η      | Η        | Н        | Me       | Η       | Η       | H               | H       | Me       |
| 23-74          | Me       | Η      | Η        | Η        | Me       | Me      | Η       | H               | Η       | Me       |
| 23-75          | Me       | Η      | Η        | Η        | Me       | Η       | Me      | H               | Η       | Me       |
| 23-76          | Me       | Н      | H        | H        | Me       | H       | H       | Me              | Η       | Me       |
| 23-77          | Me       | Н      | Н        | Н        | Me       | H       | Н       | H               | Me      | Me       |
| 23-78          | Me       | H      | H        | H        | Me       | Ph      | H       | H               | H       | Me       |
| 23-79          | Me       | H      | H        | Н        | Me       | H       | Ph      | H               | H       | Me       |
| 23-80          | Me       | Н      | Н        | Н        | Me       | Н       | Н       | Ph              | H       | Me       |
| 23-81<br>23-82 | Me<br>Ph | H<br>H | H<br>H   | H<br>H   | Me<br>Me | H<br>H  | H<br>H  | H<br>H          | Ph<br>H | Me<br>Me |
| 23-82          | Ph       | H      | Н        | Н        | Me       | Me      | Н       | H               | H       | Me       |
| 23-83          | Ph       | H      | H        | Н        | Me       | Н       | Me      | H               | H       | Me       |
| 23-85          | Ph       | H      | Н        | Н        | Me       | Н       | Н       | Me              | Н       | Me       |
| 23-86          | Ph       | H      | H        | Н        | Me       | Н       | Н       | Н               | Me      | Me       |
| 23-87          | Ph       | Н      | H        | Н        | Me       | Ph      | Н       | H               | Н       | Me       |
| 23-88          | Ph       | H      | H        | H        | Me       | H       | Ph      | H               | H       | Me       |
| 23-89          | Ph       | Н      | H        | Н        | Me       | Η       | Η       | Ph              | Η       | Me       |
| 23-90          | Ph       | Н      | H        | Н        | Me       | Н       | Н       | H               | Ph      | Me       |
| 23-91          | Me       | Ph     | H        | H        | H        | H       | H       | H               | H       | Me       |
| 23-92          | Me       | Ph     | Η        | Η        | Η        | Me      | Η       | H               | H       | Me       |
| 23-93          | Me       | Ph     | H        | H        | Н        | Η       | Me      | Η               | Η       | Me       |
| 23-94          | Me       | Ph     | Η        | Н        | Н        | Η       | Η       | Me              | H       | Me       |
| 23-95          | Me       | Ph     | Η        | Н        | Η        | Н       | Η       | Η               | Me      | Me       |
| 23-96          | Me       | Ph     | Η        | Н        | Η        | Ph      | H       | $_{\mathrm{H}}$ | H       | Me       |
| 23-97          | Me       | Ph     | Η        | Η        | Η        | Η       | Ph      | H               | Η       | Me       |
| 23-98          | Me       | Ph     | Н        | Н        | Н        | Н       | Н       | Ph              | H       | Me       |
| 23-99          | Me       | Ph     | Н        | H        | Н        | H       | Н       | H               | Ph      | Me       |
| 23-100         | Ph       | Ph     | H        | H        | H        | Н       | H       | H               | H       | Me       |
| 23-101         | Ph       | Ph     | H        | H        | H        | Me      | H       | H               | H       | Me       |
| 23-102         | Ph       | Ph     | H        | Н        | Н        | Н       | Me      | Н               | H       | Me       |
| 23-103         | Ph       | Ph     | Η        | Н        | Н        | Η       | Η       | Me              | Η       | Me       |

155
TABLE 23-continued

|         |      |     | -   | IADL | L 25-C | omun | ucu |     |      |      |
|---------|------|-----|-----|------|--------|------|-----|-----|------|------|
| Cpd No. | Ra1  | Ra2 | Ra3 | Ra4  | Ra5    | Rb1  | Rb2 | Rb3 | Rb4  | Rb5  |
| 23-104  | Ph   | Ph  | Н   | Н    | Н      | Н    | Н   | H   | Me   | Me   |
| 23-105  | Ph   | Ph  | H   | Η    | Η      | Ph   | H   | H   | H    | Me   |
| 23-106  | Ph   | Ph  | H   | Η    | Η      | Η    | Ph  | H   | H    | Me   |
| 23-107  | Ph   | Ph  | H   | Η    | Η      | Η    | Η   | Ph  | H    | Me   |
| 23-108  | Ph   | Ph  | H   | Η    | H      | Η    | H   | H   | Ph   | Me   |
| 23-109  | Me   | Н   | Ph  | Н    | Н      | Н    | Н   | H   | H    | Me   |
| 23-110  | Me   | Н   | Ph  | Н    | Н      | Me   | Н   | H   | Н    | Me   |
| 23-111  | Me   | Н   | Ph  | H    | H      | Н    | Me  | H   | H    | Me   |
| 23-112  | Me   | H   | Ph  | H    | Н      | H    | Н   | Me  | H    | Me   |
| 23-113  | Me   | Н   | Ph  | Н    | Н      | Н    | Н   | Н   | Me   | Me   |
| 23-114  | Me   | H   | Ph  | H    | Н      | Ph   | H   | H   | Н    | Me   |
| 23-115  | Me   | H   | Ph  | H    | H      | Н    | Ph  | H   | H    | Me   |
| 23-116  | Me   | Н   | Ph  | Н    | Н      | Н    | Н   | Ph  | H    | Me   |
| 23-117  | Me   | H   | Ph  | Н    | Н      | Н    | Н   | H   | Ph   | Me   |
| 23-117  | Ph   | Н   | Ph  | Н    | Н      | Н    | Н   | H   | Н    | Me   |
| 23-118  | Ph   | H   | Ph  | Н    | H      | Me   | Н   | H   | H    | Me   |
| 23-119  | Ph   | H   | Ph  | H    | Н      | H    | Me  | H   | H    | Me   |
|         | Ph   | Н   | Ph  | Н    | Н      | Н    | H   | Ме  | Н    | Me   |
| 23-121  |      | Н   |     |      |        |      |     |     |      |      |
| 23-122  | Ph   |     | Ph  | H    | H      | H    | Н   | H   | Me   | Me   |
| 23-123  | Ph   | H   | Ph  | H    | H      | Ph   | H   | H   | H    | Me   |
| 23-124  | Ph   | H   | Ph  | H    | H      | Н    | Ph  | H   | H    | Me   |
| 23-125  | Ph   | H   | Ph  | H    | H      | Н    | Н   | Ph  | H    | Me   |
| 23-126  | Ph   | Η   | Ph  | H    | Н      | H    | H   | H   | Ph   | Me   |
| 23-127  | Me   | Η   | Η   | Ph   | Н      | Η    | Н   | H   | Н    | Me   |
| 23-128  | Me   | H   | Η   | Ph   | Η      | Me   | Η   | H   | H    | Me   |
| 23-129  | Me   | H   | Η   | Ph   | Η      | Η    | Me  | H   | Η    | Me   |
| 23-130  | Me   | Η   | H   | Ph   | Η      | Η    | Η   | Me  | H    | Me   |
| 23-131  | Me   | Η   | Η   | Ph   | Η      | Η    | Η   | Η   | Me   | Me   |
| 23-132  | Me   | H   | Η   | Ph   | Η      | Ph   | H   | H   | H    | Me   |
| 23-133  | Me   | Η   | Η   | Ph   | Η      | H    | Ph  | H   | H    | Me   |
| 23-134  | Me   | Η   | Η   | Ph   | Η      | Η    | Η   | Ph  | H    | Me   |
| 23-135  | Me   | Η   | Η   | Ph   | Η      | Η    | Η   | H   | Ph   | Me   |
| 23-136  | Ph   | Η   | Η   | Ph   | Η      | Η    | Η   | Η   | H    | Me   |
| 23-137  | Ph   | Η   | Η   | Ph   | Η      | Me   | Η   | Η   | H    | Me   |
| 23-138  | Ph   | Η   | Η   | Ph   | Η      | Η    | Me  | Η   | Η    | Me   |
| 23-139  | Ph   | Η   | Η   | Ph   | Η      | Η    | Η   | Me  | Η    | Me   |
| 23-140  | Ph   | Η   | Η   | Ph   | Η      | Η    | Η   | H   | Me   | Me   |
| 23-141  | Ph   | Η   | H   | Ph   | Η      | Ph   | Η   | H   | H    | Me   |
| 23-142  | Ph   | Η   | Η   | Ph   | Η      | Η    | Ph  | H   | H    | Me   |
| 23-143  | Ph   | H   | H   | Ph   | Η      | H    | H   | Ph  | H    | Me   |
| 23-144  | Ph   | Η   | Η   | Ph   | Η      | Η    | Η   | Η   | Ph   | Me   |
| 23-145  | Me   | Η   | Η   | Η    | Ph     | Н    | Η   | Η   | H    | Me   |
| 23-146  | Me   | H   | H   | Η    | Ph     | Me   | Н   | H   | H    | Me   |
| 23-147  | Me   | Η   | Η   | Η    | Ph     | Η    | Me  | Η   | H    | Me   |
| 23-148  | Me   | Η   | Η   | Η    | Ph     | Η    | Η   | Me  | H    | Me   |
| 23-149  | Me   | Н   | Н   | Η    | Ph     | Η    | H   | H   | Me   | Me   |
| 23-150  | Me   | Н   | Н   | Н    | Ph     | Ph   | Н   | Н   | H    | Me   |
| 23-151  | Me   | Н   | Н   | Н    | Ph     | Н    | Ph  | H   | Н    | Me   |
| 23-152  | Me   | Н   | H   | Н    | Ph     | Н    | Н   | Ph  | Н    | Me   |
| 23-152  | Me   | Н   | H   | Н    | Ph     | Н    | Н   | Н   | Ph   | Me   |
|         |      |     |     |      |        |      |     |     |      |      |
| 23-154  | Ph   | H   | Н   | H    | Ph     | Н    | H   | H   | H    | Me   |
| 23-155  | Ph   | H   | H   | Н    | Ph     | Me   | Н   | H   | H    | Me   |
| 23-156  | Ph   | Η   | Η   | Η    | Ph     | Η    | Me  | H   | Η    | Me   |
| 23-157  | Ph   | Η   | Η   | Η    | Ph     | Η    | Η   | Me  | H    | Me   |
| 23-158  | Ph   | H   | H   | Η    | Ph     | H    | H   | H   | Me   | Me   |
| 23-159  | Ph   | H   | Н   | Η    | Ph     | Ph   | Н   | H   | H    | Me   |
| 23-160  | Ph   | Н   | Н   | Н    | Ph     | Н    | Ph  | Η   | H    | Me   |
| 23-161  | Ph   | Н   | Н   | Н    | Ph     | Н    | Н   | Ph  | Н    | Me   |
| 23-162  | Ph   | Н   | Н   | Н    | Ph     | Н    | Н   | Н   | Ph   | Me   |
| 23-102  | 1 11 | 11  | 11  | 11   | 1 11   | 11   | 11  | 11  | 1 11 | 1710 |

TABLE 24

| Cpd No. | Ra1 | Ra2 | Ra3 | Ra4 | Ra5 | Ra6 | Ra7 | Rb1 | Rb2 | Rb3 | Rb4 | Rb5 |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 24-1    | Me  | Н   | Н   | Н   | Н   | Н   | Н   | Н   | Н   | Н   | Н   | Me  |
| 24-2    | Me  | Η   | Η   | Η   | Η   | Η   | Η   | Me  | Η   | Η   | Η   | Me  |
| 24-3    | Me  | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Me  | Η   | Η   | Me  |
| 24-4    | Me  | Η   | Η   | Η   | Η   | Η   | Η   | H   | Η   | Me  | Η   | Me  |
| 24-5    | Me  | Η   | Η   | H   | Η   | Η   | Η   | Η   | Η   | Η   | Me  | Me  |
| 24-6    | Me  | H   | H   | H   | H   | H   | H   | Ph  | H   | H   | H   | Me  |
| 24-7    | Me  | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Ph  | Η   | Η   | Me  |
| 24-8    | Me  | Η   | Η   | H   | H   | Η   | H   | H   | H   | Ph  | H   | Me  |
| 24-9    | Me  | H   | H   | H   | H   | H   | H   | H   | H   | H   | Ph  | Me  |
| 24-10   | Ph  | Η   | Η   | H   | Н   | Η   | Η   | H   | Η   | Η   | Η   | Me  |
| 24-11   | Ph  | H   | H   | H   | H   | H   | H   | Me  | H   | H   | H   | Me  |

157
TABLE 24-continued

|                |          |          |          | 1A       | DLE A    | 24-001 | nimue  | u       |         |         |         |          |
|----------------|----------|----------|----------|----------|----------|--------|--------|---------|---------|---------|---------|----------|
| Cpd No.        | Ra1      | Ra2      | Ra3      | Ra4      | Ra5      | Ra6    | Ra7    | Rb1     | Rb2     | Rb3     | Rb4     | Rb5      |
| 24-12          | Ph       | Н        | Н        | Н        | Н        | Н      | Н      | Н       | Me      | Н       | Н       | Me       |
| 24-13          | Ph       | H        | H        | H        | H        | H      | Н      | Н       | Η       | Me      | Н       | Me       |
| 24-14          | Ph       | H        | H        | Η        | Η        | H      | Н      | H       | Н       | Н       | Me      | Me       |
| 24-15<br>24-16 | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H   | H<br>H   | H<br>H | H<br>H | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | Me<br>Me |
| 24-10          | Ph       | H        | H        | Н        | H        | H      | Н      | H       | Н       | Ph      | H       | Me       |
| 24-18          | Ph       | Н        | Н        | Н        | Н        | Н      | Н      | Н       | Н       | Н       | Ph      | Me       |
| 24-19          | Me       | Me       | Η        | Η        | Η        | Η      | Η      | Η       | Η       | Η       | Η       | Me       |
| 24-20          | Me       | Me       | H        | H        | H        | H      | H      | Me      | H       | H       | H       | Me       |
| 24-21<br>24-22 | Me<br>Me | Me<br>Me | H<br>H   | H<br>H   | H<br>H   | H<br>H | H<br>H | H<br>H  | Me<br>H | H<br>Me | H<br>H  | Me<br>Me |
| 24-23          | Me       | Me       | Н        | Н        | Н        | Н      | H      | H       | H       | Н       | Me      | Me       |
| 24-24          | Me       | Me       | Η        | Η        | Η        | Η      | Η      | Ph      | Η       | Η       | Η       | Me       |
| 24-25          | Me       | Me       | H        | H        | H        | H      | H      | H       | Ph      | H       | H       | Me       |
| 24-26<br>24-27 | Me<br>Me | Me<br>Me | H<br>H   | H<br>H   | H<br>H   | H<br>H | H<br>H | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | Me<br>Me |
| 24-28          | Ph       | Me       | H        | H        | H        | H      | H      | H       | H       | H       | Н       | Me       |
| 24-29          | Ph       | Me       | Η        | Η        | Η        | Η      | Η      | Me      | Η       | Η       | Η       | Me       |
| 24-30          | Ph       | Me       | H        | Н        | H        | H      | Н      | H       | Me      | Н       | Н       | Me       |
| 24-31<br>24-32 | Ph<br>Ph | Me<br>Me | H<br>H   | H<br>H   | H<br>H   | H<br>H | H<br>H | H<br>H  | H<br>H  | Me<br>H | H<br>Me | Me<br>Me |
| 24-33          | Ph       | Me       | Н        | Н        | Н        | Н      | Н      | Ph      | H       | Н       | Н       | Me       |
| 24-34          | Ph       | Me       | Η        | Η        | Η        | Η      | Η      | Η       | Ph      | Η       | Η       | Me       |
| 24-35          | Ph       | Me       | H        | H        | H        | H      | Н      | H       | H       | Ph      | H       | Me       |
| 24-36<br>24-37 | Ph<br>Me | Me<br>H  | H<br>Me  | H<br>H   | H<br>H   | H<br>H | H<br>H | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | Me<br>Me |
| 24-38          | Me       | H        | Me       | Н        | Н        | Н      | Н      | Me      | H       | Н       | Н       | Me       |
| 24-39          | Me       | Η        | Me       | Η        | Η        | Н      | Н      | Н       | Me      | Н       | Н       | Me       |
| 24-40          | Me       | Η        | Me       | H        | H        | H      | Η      | Η       | Η       | Me      | Н       | Me       |
| 24-41<br>24-42 | Me<br>Me | H<br>H   | Me<br>Me | H<br>H   | H<br>H   | H<br>H | H<br>H | H<br>Ph | H<br>H  | H<br>H  | Me<br>H | Me<br>Me |
| 24-42          | Me       | Н        | Me       | Н        | Н        | Н      | Н      | Н       | Ph      | Н       | Н       | Me       |
| 24-44          | Me       | Η        | Me       | Η        | Н        | Н      | Н      | Н       | Η       | Ph      | Н       | Me       |
| 24-45          | Me       | Η        | Me       | Η        | Η        | Η      | Н      | Η       | Η       | Η       | Ph      | Me       |
| 24-46<br>24-47 | Ph<br>Ph | H<br>H   | Me<br>Me | H<br>H   | H<br>H   | H<br>H | H<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  | Me<br>Me |
| 24-47          | Ph       | Н        | Me       | Н        | Н        | Н      | Н      | H       | Me      | Н       | Н       | Me       |
| 24-49          | Ph       | Η        | Me       | Η        | Η        | Η      | Н      | Н       | Н       | Me      | Н       | Me       |
| 24-50          | Ph       | Η        | Me       | Н        | Η        | Η      | Н      | Η       | Η       | Η       | Me      | Me       |
| 24-51<br>24-52 | Ph<br>Ph | H<br>H   | Me       | H<br>H   | H<br>H   | H<br>H | H<br>H | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | Me<br>Me |
| 24-52          | Ph       | H        | Me<br>Me | Н        | Н        | Н      | Н      | Н       | Н       | Ph      | Н       | Me       |
| 24-54          | Ph       | Н        | Me       | Н        | Η        | Н      | Н      | Н       | Н       | Н       | Ph      | Me       |
| 24-55          | Me       | Η        | Н        | Me       | Н        | Н      | Н      | Н       | Н       | Η       | Н       | Me       |
| 24-56<br>24-57 | Me<br>Me | H<br>H   | H<br>H   | Me<br>Me | H<br>H   | H<br>H | H<br>H | Me<br>H | H<br>Me | H<br>H  | H<br>H  | Me<br>Me |
| 24-58          | Me       | H        | H        | Me       | H        | Н      | Н      | H       | H       | Me      | Н       | Me       |
| 24-59          | Me       | Η        | Н        | Me       | Η        | Н      | Η      | Н       | Н       | Н       | Me      | Me       |
| 24-60          | Me       | Η        | Н        | Me       | Η        | Н      | Н      | Ph      | Н       | Н       | Н       | Me       |
| 24-61<br>24-62 | Me<br>Me | H<br>H   | H<br>H   | Me<br>Me | H<br>H   | H<br>H | H<br>H | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | Me<br>Me |
| 24-63          | Me       | H        | H        | Me       | H        | H      | Н      | H       | H       | Н       | Ph      | Me       |
| 24-64          | Ph       | Η        | Н        | Me       | Η        | Н      | Н      | Н       | Н       | Н       | Н       | Me       |
| 24-65          | Ph       | H        | H        | Me       | H        | H      | H      | Me      | Н       | H       | H       | Me       |
| 24-66<br>24-67 | Ph<br>Ph | H<br>H   | H<br>H   | Me<br>Me | H<br>H   | H<br>H | H<br>H | H<br>H  | Me<br>H | H<br>Me | H<br>H  | Me<br>Me |
| 24-68          | Ph       | Н        | Н        | Me       | Н        | Н      | Н      | Н       | Н       | Н       | Me      | Me       |
| 24-69          | Ph       | Η        | Н        | Me       | H        | H      | Н      | Ph      | Η       | Н       | Н       | Me       |
| 24-70          | Ph       | H        | H        | Me       | H        | H      | H      | H       | Ph      | H       | H       | Me       |
| 24-71<br>24-72 | Ph<br>Ph | H<br>H   | H<br>H   | Me<br>Me | H<br>H   | H<br>H | H<br>H | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | Me<br>Me |
| 24-72          | Me       | H        | H        | H        | Me       | H      | H      | H       | H       | H       | Н       | Me       |
| 24-74          | Me       | H        | H        | H        | Me       | H      | Н      | Me      | Η       | H       | Н       | Me       |
| 24-75          | Me       | H        | H        | H        | Me       | H      | H      | H       | Me      | Н       | H       | Me       |
| 24-76<br>24-77 | Me<br>Me | H<br>H   | H<br>H   | H<br>H   | Me<br>Me | H<br>H | H<br>H | H<br>H  | H<br>H  | Me<br>H | H<br>Me | Me<br>Me |
| 24-77          | Me       | H        | H        | H        | Me       | H      | Н      | Ph      | H       | H       | H       | Me       |
| 24-79          | Me       | Н        | Н        | Н        | Me       | Н      | Н      | Н       | Ph      | Н       | Н       | Me       |
| 24-80          | Me       | H        | Н        | H        | Me       | Н      | Н      | Н       | H       | Ph      | H       | Me       |
| 24-81          | Me       | H        | H        | H        | Me       | H      | H      | H       | H       | H       | Ph      | Me       |
| 24-82<br>24-83 | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H   | Me<br>Me | H<br>H | H<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  | Me<br>Me |
| 24-83          | Ph       | H        | H        | Н        | Me       | H      | Н      | Н       | Me      | Н       | Н       | Me       |
| 24-85          | Ph       | Η        | Η        | Η        | Me       | Η      | Η      | Η       | Η       | Me      | Η       | Me       |
| 24-86          | Ph       | H        | H        | H        | Me       | H      | H      | H       | H       | H       | Me      | Me       |
| 24-87<br>24-88 | Ph<br>Ph | H<br>H   | H<br>H   | Н        | Me<br>Me | H<br>H | Н      | Ph<br>⊔ | H<br>Ph | H<br>H  | H<br>H  | Me<br>Me |
| 24-88          | Ph       | Н        | Н        | H<br>H   | Me<br>Me | Н      | H<br>H | H<br>H  | Pn<br>H | н<br>Ph | Н       | Me<br>Me |
| 02             | * **     | **       |          |          | 1110     |        |        | **      | **      |         |         | .,,,,    |

159
TABLE 24-continued

|                  |          |          |          | 17       | MDL/L  | 24-00    | mmuc     | -u      |         |         |         |          |
|------------------|----------|----------|----------|----------|--------|----------|----------|---------|---------|---------|---------|----------|
| Cpd No.          | Ra1      | Ra2      | Ra3      | Ra4      | Ra5    | Ra6      | Ra7      | Rb1     | Rb2     | Rb3     | Rb4     | Rb5      |
| 24-90            | Ph       | Н        | Н        | Н        | Me     | Н        | Н        | Н       | Н       | Н       | Ph      | Me       |
| 24-91            | Me       | H        | Н        | Н        | Н      | Me       | Н        | Н       | Н       | Н       | Н       | Me       |
| 24-92            | Me       | H        | H        | Н        | Η      | Me       | Η        | Me      | Н       | H       | H       | Me       |
| 24-93            | Me       | Η        | Η        | Η        | Η      | Me       | Η        | Η       | Me      | Η       | Η       | Me       |
| 24-94            | Me       | H        | H        | H        | Н      | Me       | Н        | H       | H       | Me      | Н       | Me       |
| 24-95            | Me       | H<br>H   | H<br>H   | H<br>H   | Н      | Me       | H<br>H   | H<br>Ph | H<br>H  | H<br>H  | Me<br>H | Me       |
| 24-96<br>24-97   | Me<br>Me | Н        | Н        | Н        | H<br>H | Me<br>Me | Н        | Н       | н<br>Ph | Н       | Н       | Me<br>Me |
| 24-98            | Me       | H        | Н        | Н        | Н      | Me       | Н        | H       | Н       | Ph      | Н       | Me       |
| 24-99            | Me       | Η        | Η        | Η        | Н      | Me       | Η        | Η       | Η       | Η       | Ph      | Me       |
| 24-100           | Ph       | H        | H        | Η        | H      | Me       | Η        | Η       | Η       | H       | Η       | Me       |
| 24-101           | Ph       | H        | H        | H        | H      | Me       | H        | Me      | Н       | H       | H       | Me       |
| 24-102<br>24-103 | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H   | H<br>H | Me<br>Me | H<br>H   | H<br>H  | Me<br>H | H<br>Me | H<br>H  | Me<br>Me |
| 24-104           | Ph       | Н        | Н        | Н        | Н      | Me       | Н        | Н       | Н       | Н       | Me      | Me       |
| 24-105           | Ph       | Н        | Н        | Н        | Н      | Me       | Н        | Ph      | Η       | Н       | Н       | Me       |
| 24-106           | Ph       | Η        | Η        | Η        | Η      | Me       | Η        | Η       | Ph      | Η       | Η       | Me       |
| 24-107           | Ph       | H        | H        | Η        | H      | Me       | H        | H       | H       | Ph      | H       | Me       |
| 24-108           | Ph       | H<br>H   | H<br>H   | H<br>H   | H      | Me<br>H  | H        | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | Me       |
| 24-109<br>24-110 | Me<br>Me | Н        | Н        | Н        | H<br>H | Н        | Me<br>Me | п<br>Ме | Н       | Н       | Н       | Me<br>Me |
| 24-111           | Me       | Н        | Н        | Н        | Н      | Н        | Me       | Н       | Me      | Н       | Н       | Me       |
| 24-112           | Me       | H        | H        | Η        | H      | H        | Me       | H       | H       | Me      | Η       | Me       |
| 24-113           | Me       | H        | H        | Н        | Η      | Η        | Me       | H       | H       | H       | Me      | Me       |
| 24-114           | Me       | H        | H        | H        | H      | H        | Me       | Ph      | H       | H       | H       | Me       |
| 24-115<br>24-116 | Me<br>Me | H<br>H   | H<br>H   | H<br>H   | H<br>H | H<br>H   | Me<br>Me | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | Me<br>Me |
| 24-117           | Me       | H        | H        | Н        | Н      | Н        | Me       | H       | H       | Н       | Ph      | Me       |
| 24-118           | Ph       | Н        | Н        | Н        | Н      | Н        | Me       | Н       | Н       | Н       | Н       | Me       |
| 24-119           | Ph       | H        | H        | H        | H      | H        | Me       | Me      | H       | H       | H       | Me       |
| 24-120           | Ph       | H        | H        | Η        | H      | H        | Me       | H       | Me      | H       | H       | Me       |
| 24-121           | Ph       | H        | H<br>H   | H        | H      | H<br>H   | Me       | H       | H       | Me      | H       | Me       |
| 24-122<br>24-123 | Ph<br>Ph | H<br>H   | Н        | H<br>H   | H<br>H | Н        | Me<br>Me | H<br>Ph | H<br>H  | H<br>H  | Me<br>H | Me<br>Me |
| 24-124           | Ph       | H        | Н        | Н        | Н      | Н        | Me       | Н       | Ph      | Н       | Н       | Me       |
| 24-125           | Ph       | H        | H        | Η        | Н      | Н        | Me       | H       | Η       | Ph      | Η       | Me       |
| 24-126           | Ph       | Η        | Η        | Η        | Η      | Η        | Me       | Η       | Η       | Η       | Ph      | Me       |
| 24-127           | Me       | Ph       | H        | H        | H      | H        | H        | H       | H       | H       | H       | Me       |
| 24-128<br>24-129 | Me<br>Me | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H | H<br>H   | H<br>H   | Me<br>H | H<br>Me | H<br>H  | H<br>H  | Me<br>Me |
| 24-130           | Me       | Ph       | Н        | Н        | Н      | Н        | Н        | Н       | Н       | Me      | Н       | Me       |
| 24-131           | Me       | Ph       | Н        | Н        | Н      | Н        | Н        | Н       | Η       | Н       | Me      | Me       |
| 24-132           | Me       | Ph       | Η        | Η        | Η      | Η        | Η        | Ph      | Η       | Η       | Η       | Me       |
| 24-133           | Me       | Ph       | H        | Н        | H      | H        | Н        | Н       | Ph      | H       | Н       | Me       |
| 24-134<br>24-135 | Me<br>Me | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H | H<br>H   | H<br>H   | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | Me<br>Me |
| 24-136           | Ph       | Ph       | Н        | Н        | Н      | Н        | Н        | Н       | Н       | Н       | Н       | Me       |
| 24-137           | Ph       | Ph       | H        | Η        | Н      | Н        | H        | Me      | H       | Н       | Η       | Me       |
| 24-138           | Ph       | Ph       | H        | Η        | Η      | Η        | Η        | Η       | Me      | H       | H       | Me       |
| 24-139           | Ph       | Ph       | H        | Н        | H      | H        | H        | Н       | H       | Me      | Н       | Me       |
| 24-140<br>24-141 | Ph<br>Ph | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H | H<br>H   | H<br>H   | H<br>Ph | H<br>H  | H<br>H  | Me<br>H | Me<br>Me |
| 24-142           | Ph       | Ph       | Н        | Н        | Н      | Н        | Н        | Н       | Ph      | Н       | Н       | Me       |
| 24-143           | Ph       | Ph       | Н        | Η        | Η      | Η        | Η        | Η       | Η       | Ph      | Η       | Me       |
| 24-144           | Ph       | Ph       | Η        | Η        | Н      | Н        | Н        | Η       | Η       | Η       | Ph      | Me       |
| 24-145           | Me       | H        | Ph       | H        | H      | H        | H        | H<br>M- | H       | H       | H       | Me<br>M- |
| 24-146<br>24-147 | Me<br>Me | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H | H<br>H   | H<br>H   | Me<br>H | H<br>Me | H<br>H  | H<br>H  | Me<br>Me |
| 24-148           | Me       | H        | Ph       | Н        | Н      | Н        | Н        | H       | Н       | Me      | H       | Me       |
| 24-149           | Me       | H        | Ph       | Η        | H      | H        | Η        | H       | H       | H       | Me      | Me       |
| 24-150           | Me       | Η        | Ph       | Η        | Н      | Н        | Н        | Ph      | Η       | Η       | Η       | Me       |
| 24-151           | Me       | H        | Ph       | Н        | H      | H        | H        | H       | Ph      | H       | H       | Me       |
| 24-152<br>24-153 | Me<br>Me | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H | H<br>H   | H<br>H   | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | Me<br>Me |
| 24-154           | Ph       | Н        | Ph       | Н        | Н      | Н        | Н        | Н       | Н       | Н       | Н       | Me       |
| 24-155           | Ph       | H        | Ph       | H        | H      | H        | H        | Me      | H       | H       | H       | Me       |
| 24-156           | Ph       | H        | Ph       | Η        | H      | H        | Η        | H       | Me      | H       | H       | Me       |
| 24-157           | Ph       | H        | Ph       | Н        | H      | H        | Н        | H       | H       | Me      | Н       | Me       |
| 24-158<br>24-159 | Ph<br>Ph | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H | H<br>H   | H<br>H   | H<br>Ph | H<br>H  | H<br>H  | Me<br>H | Me<br>Me |
| 24-139           | Ph       | Н        | Ph       | Н        | Н      | Н        | Н        | Н       | Ph      | Н       | Н       | Me       |
| 24-161           | Ph       | H        | Ph       | H        | Η      | Η        | Н        | H       | Н       | Ph      | Н       | Me       |
| 24-162           | Ph       | H        | Ph       | H        | Н      | Н        | H        | Н       | Η       | Н       | Ph      | Me       |
| 24-163           | Me       | H        | H        | Ph       | H      | H        | H        | H       | H       | H       | H       | Me       |
| 24-164<br>24-165 | Me<br>Me | H<br>H   | H<br>H   | Ph<br>Ph | H<br>H | H<br>H   | H<br>H   | Me<br>H | H<br>Me | H<br>H  | H<br>H  | Me<br>Me |
| 24-166           | Me       | H        | H        | Ph       | Н      | Н        | Н        | Н       | Н       | Me      | Н       | Me       |
| 24-167           | Me       | H        | Н        | Ph       | Н      | Н        | Н        | Н       | H       | Н       | Me      | Me       |
|                  |          |          |          |          |        |          |          |         |         |         |         |          |

TABLE 24-continued

| C. IN            | D 1      | D 2       | D 2    | D 4      | D 5      | D (      | D 7      | DI 1    | DI 2    | DI 2    | DI 4    | DI.5     |
|------------------|----------|-----------|--------|----------|----------|----------|----------|---------|---------|---------|---------|----------|
| Cpd No.          | Ra1      | Ra2       | Ra3    | Ra4      | Ra5      | Ra6      | Ra7      | Rb1     | Rb2     | Rb3     | Rb4     | Rb5      |
| 24-168           | Me       | H         | Н      | Ph       | H        | Н        | H        | Ph      | H       | Н       | H       | Me       |
| 24-169           | Me       | Н         | Н      | Ph       | Н        | Н        | Н        | H       | Ph      | H       | Н       | Me       |
| 24-170           | Me       | H         | H      | Ph       | H        | H        | H        | H       | H       | Ph      | H       | Me       |
| 24-171<br>24-172 | Me<br>Ph | H<br>H    | H<br>H | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H   | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | Me<br>Me |
| 24-172           | Ph       | Н         | Н      | Ph       | Н        | Н        | Н        | П<br>Ме | Н       | Н       | Н       | Me       |
| 24-173           | Ph       | Н         | Н      | Ph       | Н        | Н        | Н        | Н       | Мe      | Н       | Н       | Me       |
| 24-175           | Ph       | H         | Н      | Ph       | Н        | Н        | Н        | H       | Н       | Me      | Н       | Me       |
| 24-176           | Ph       | H         | H      | Ph       | H        | H        | H        | H       | H       | Н       | Me      | Me       |
| 24-177           | Ph       | H         | H      | Ph       | H        | Н        | Н        | Ph      | H       | Н       | H       | Me       |
| 24-178           | Ph       | Η         | H      | Ph       | Η        | Η        | Η        | H       | Ph      | Н       | Η       | Me       |
| 24-179           | Ph       | Η         | H      | Ph       | H        | H        | H        | H       | H       | Ph      | H       | Me       |
| 24-180           | Ph       | Η         | Η      | Ph       | Η        | Η        | Η        | Η       | H       | H       | Ph      | Me       |
| 24-181           | Me       | Η         | Η      | Η        | Ph       | Η        | Η        | Η       | Η       | Η       | Η       | Me       |
| 24-182           | Me       | Η         | Η      | Η        | Ph       | Η        | Η        | Me      | Η       | Η       | Η       | Me       |
| 24-183           | Me       | H         | H      | H        | Ph       | Η        | H        | Η       | Me      | Н       | H       | Me       |
| 24-184           | Me       | H         | H      | H        | Ph       | H        | H        | H       | H       | Me      | Н       | Me       |
| 24-185           | Me       | H         | H      | H        | Ph       | H        | H        | H       | H       | H       | Me      | Me       |
| 24-186           | Me       | $_{ m H}$ | H<br>H | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H   | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | Me<br>Me |
| 24-187<br>24-188 | Me<br>Me | Н         | Н      | Н        | Pn<br>Ph | Н        | Н        | Н       | Pn<br>H | н<br>Ph | Н       | Me<br>Me |
| 24-189           | Me       | Н         | Н      | Н        | Ph       | Н        | Н        | Н       | Н       | Н       | Ph      | Me       |
| 24-190           | Ph       | H         | H      | Н        | Ph       | Н        | H        | H       | H       | Н       | Н       | Me       |
| 24-191           | Ph       | H         | H      | Н        | Ph       | Н        | Н        | Me      | H       | Н       | Н       | Me       |
| 24-192           | Ph       | Н         | Н      | Н        | Ph       | Н        | Н        | H       | Me      | Н       | Н       | Me       |
| 24-193           | Ph       | H         | H      | H        | Ph       | H        | H        | H       | H       | Me      | H       | Me       |
| 24-194           | Ph       | H         | H      | H        | Ph       | H        | H        | H       | H       | H       | Me      | Me       |
| 24-195           | Ph       | Η         | Η      | Η        | Ph       | H        | Η        | Ph      | Η       | Η       | Η       | Me       |
| 24-196           | Ph       | H         | H      | Η        | Ph       | Η        | Η        | H       | Ph      | Η       | Η       | Me       |
| 24-197           | Ph       | Η         | Η      | H        | Ph       | Η        | H        | Η       | H       | Ph      | H       | Me       |
| 24-198           | Ph       | H         | H      | H        | Ph       | H        | H        | H       | H       | H       | Ph      | Me       |
| 24-199<br>24-200 | Me       | H<br>H    | H<br>H | H<br>H   | H<br>H   | Ph<br>Ph | H<br>H   | H       | H<br>H  | H<br>H  | H<br>H  | Me       |
| 24-200           | Me<br>Me | Н         | Н      | Н        | Н        | Ph       | Н        | Me<br>H | п<br>Ме | Н       | Н       | Me<br>Me |
| 24-201           | Me       | Н         | Н      | Н        | Н        | Ph       | Н        | Н       | H       | Me      | Н       | Me       |
| 24-203           | Me       | H         | Н      | Н        | Н        | Ph       | Н        | H       | Н       | Н       | Me      | Me       |
| 24-204           | Me       | H         | H      | Н        | H        | Ph       | Н        | Ph      | H       | Н       | Н       | Me       |
| 24-205           | Me       | Н         | Н      | Н        | H        | Ph       | Н        | H       | Ph      | Н       | Н       | Me       |
| 24-206           | Me       | Η         | H      | Η        | Η        | Ph       | Н        | H       | H       | Ph      | Η       | Me       |
| 24-207           | Me       | Η         | Η      | Η        | Η        | Ph       | Η        | H       | Η       | Η       | Ph      | Me       |
| 24-208           | Ph       | Η         | Η      | Η        | Η        | Ph       | Η        | Η       | Η       | Η       | Η       | Me       |
| 24-209           | Ph       | Η         | Η      | Η        | Η        | Ph       | Η        | Me      | Η       | Η       | Η       | Me       |
| 24-210           | Ph       | H         | H      | H        | Н        | Ph       | Н        | H       | Me      | Н       | Н       | Me       |
| 24-211           | Ph       | H<br>H    | H      | H        | H        | Ph       | H        | H       | H       | Me      | H<br>M- | Me<br>M- |
| 24-212<br>24-213 | Ph<br>Ph | Н         | H<br>H | H<br>H   | H<br>H   | Ph<br>Ph | H<br>H   | H<br>Ph | H<br>H  | H<br>H  | Me<br>H | Me<br>Me |
| 24-213           | Ph<br>Ph | Н         | Н      | Н        | Н        | Ph<br>Ph | Н        | Рп<br>Н | н<br>Ph | Н       | Н       | Me       |
| 24-215           | Ph       | H         | H      | Н        | H        | Ph       | Н        | H       | Н       | Ph      | H       | Me       |
| 24-216           | Ph       | Н         | Н      | Н        | Н        | Ph       | Н        | H       | Н       | Н       | Ph      | Me       |
| 24-217           | Me       | Н         | Н      | Н        | Н        | Н        | Ph       | Н       | Н       | Н       | Н       | Me       |
| 24-218           | Me       | Η         | Η      | Η        | Η        | Η        | Ph       | Me      | Η       | Η       | Η       | Me       |
| 24-219           | Me       | Η         | Η      | Η        | Η        | Η        | Ph       | Η       | Me      | Н       | Η       | Me       |
| 24-220           | Me       | Η         | Η      | Η        | Η        | Η        | Ph       | Η       | Η       | Me      | Η       | Me       |
| 24-221           | Me       | Η         | Η      | Η        | Η        | Η        | Ph       | Η       | Η       | Н       | Me      | Me       |
| 24-222           | Me       | Н         | Н      | Н        | Н        | Н        | Ph       | Ph      | H       | H       | Н       | Me       |
| 24-223           | Me       | H         | H      | H        | H        | H        | Ph       | H       | Ph      | H       | H       | Me       |
| 24-224<br>24-225 | Me       | Н         | Н      | H<br>H   | Н        | Н        | Ph       | Н       | Н       | Ph      | H<br>Dh | Me       |
| 24-225           | Me<br>Ph | H<br>H    | H<br>H | H<br>H   | H<br>H   | H<br>H   | Ph<br>Ph | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | Me<br>Me |
| 24-226           | Ph       | Н         | Н      | Н        | Н        | Н        | Ph       | н<br>Ме | Н       | Н       | Н       | Me       |
| 24-227           | Ph       | H         | H      | H        | H        | H        | Ph       | H       | Me      | H       | H       | Me       |
| 24-229           | Ph       | H         | H      | Н        | H        | H        | Ph       | H       | Н       | Me      | H       | Me       |
| 24-230           | Ph       | Н         | Н      | Н        | Н        | Н        | Ph       | Н       | Н       | Н       | Me      | Me       |
| 24-231           | Ph       | Η         | Η      | Н        | Н        | Н        | Ph       | Ph      | Η       | Н       | Н       | Me       |
| 24-232           | Ph       | Η         | Η      | Η        | Η        | Н        | Ph       | Η       | Ph      | Н       | Н       | Me       |
| 24-233           | Ph       | Η         | Η      | Η        | Η        | Η        | Ph       | Η       | Η       | Ph      | Η       | Me       |
| 24-234           | Ph       | Η         | H      | Η        | Η        | Η        | Ph       | Η       | Η       | Η       | Ph      | Me       |

|         |     | TABI | LE 25 |     |     | 60 | ed      |     |     |     |     |     |
|---------|-----|------|-------|-----|-----|----|---------|-----|-----|-----|-----|-----|
| Cpd No. | Ra1 | Ra2  | Ra3   | Rb1 | Rb2 |    | Cpd No. | Ra1 | Ra2 | Ra3 | Rb1 | Rb2 |
| 25-1    | Me  | Me   | Me    | Н   | Н   |    | 25-4    | Me  | Me  | Me  | Ph  | Н   |
| 25-2    | Me  | Me   | Me    | Me  | H   | 65 | 25-5    | Me  | Me  | Me  | H   | Ph  |
| 25.2    |     |      |       | **  |     |    | 25.6    | TN1 |     |     | **  | **  |

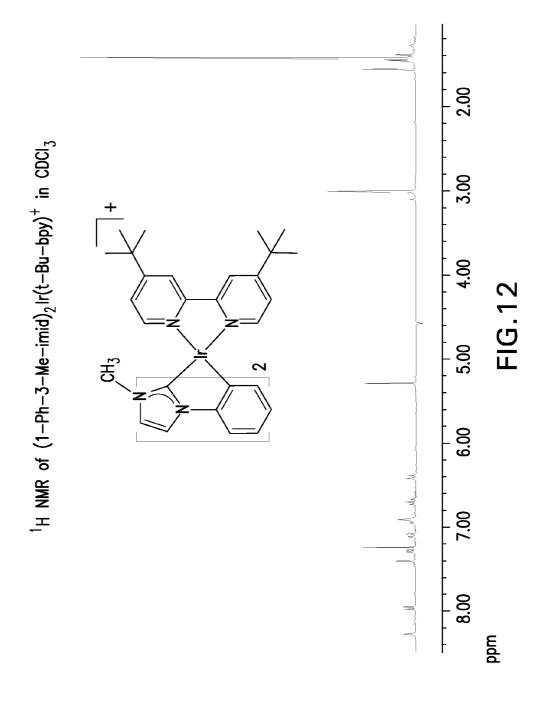
163
TABLE 25-continued

164
TABLE 26-continued

| Cpd No. | Ra1 | Ra2  | Ra3        | Rb1 | Rb2 |    | Cpd No. | Ra1 | Ra2 | Ra3 | Rb1 | Rb2 | Rb3 | Rb4 |
|---------|-----|------|------------|-----|-----|----|---------|-----|-----|-----|-----|-----|-----|-----|
| 25-7    | Ph  | Me   | Me         | Me  | Н   | _  | 26-37   | Me  | Me  | Ph  | Н   | Н   | Н   | Н   |
| 25-8    | Ph  | Me   | Me         | H   | Me  | 5  | 26-38   | Me  | Me  | Ph  | Me  | H   | H   | Η   |
| 25-9    | Ph  | Me   | Me         | Ph  | H   |    | 26-39   | Me  | Me  | Ph  | H   | Me  | H   | Η   |
| 25-10   | Ph  | Me   | Me         | H   | Ph  |    | 26-40   | Me  | Me  | Ph  | Η   | H   | Me  | Η   |
| 25-11   | Me  | Ph   | Me         | H   | H   |    | 26-41   | Me  | Me  | Ph  | H   | Η   | Η   | Me  |
| 25-12   | Me  | Ph   | Me         | Me  | H   |    | 26-42   | Me  | Me  | Ph  | Ph  | Η   | H   | Η   |
| 25-13   | Me  | Ph   | Me         | H   | Me  |    | 26-43   | Me  | Me  | Ph  | Η   | Ph  | Η   | Η   |
| 25-14   | Me  | Ph   | Me         | Ph  | H   | 10 | 26-44   | Me  | Me  | Ph  | H   | Η   | Ph  | Η   |
| 25-15   | Me  | Ph   | Me         | H   | Ph  |    | 26-45   | Me  | Me  | Ph  | H   | H   | H   | Ph  |
| 25-16   | Ph  | Ph   | Me         | H   | H   |    | 26-46   | Ph  | Me  | Ph  | H   | H   | H   | Η   |
| 25-17   | Ph  | Ph   | Me         | Me  | Н   |    | 26-47   | Ph  | Me  | Ph  | Me  | H   | H   | Η   |
| 25-18   | Ph  | Ph   | Me         | H   | Me  |    | 26-48   | Ph  | Me  | Ph  | H   | Me  | H   | Η   |
| 25-19   | Ph  | Ph   | Me         | Ph  | H   |    | 26-49   | Ph  | Me  | Ph  | H   | H   | Me  | Η   |
| 25-20   | Ph  | Ph   | Me         | H   | Ph  | 15 | 26-50   | Ph  | Me  | Ph  | Η   | H   | Η   | Me  |
| 25-21   | Me  | Me   | Ph         | H   | H   |    | 26-51   | Ph  | Me  | Ph  | Ph  | H   | H   | Η   |
| 25-22   | Me  | Me   | Ph         | Me  | H   |    | 26-52   | Ph  | Me  | Ph  | H   | Ph  | H   | Η   |
| 25-23   | Me  | Me   | Ph         | H   | Me  |    | 26-53   | Ph  | Me  | Ph  | Η   | H   | Ph  | Η   |
| 25-24   | Me  | Me   | Ph         | Ph  | H   |    | 26-54   | Ph  | Me  | Ph  | Η   | H   | Η   | Ph  |
| 25-25   | Me  | Me   | Ph         | H   | Ph  |    | 26-55   | Me  | Ph  | Ph  | Η   | H   | H   | Η   |
| 25-26   | Ph  | Me   | Ph         | H   | H   | 20 | 26-56   | Me  | Ph  | Ph  | Me  | H   | Η   | Η   |
| 25-27   | Ph  | Me   | Ph         | Me  | H   | 20 | 26-57   | Me  | Ph  | Ph  | Η   | Me  | Η   | Η   |
| 25-28   | Ph  | Me   | Ph         | H   | Me  |    | 26-58   | Me  | Ph  | Ph  | Η   | Η   | Me  | Η   |
| 25-29   | Ph  | Me   | $_{ m Ph}$ | Ph  | H   |    | 26-59   | Me  | Ph  | Ph  | Η   | Η   | Η   | Me  |
| 25-30   | Ph  | Me   | Ph         | H   | Ph  |    | 26-60   | Me  | Ph  | Ph  | Ph  | Η   | Η   | Η   |
| 25-31   | Me  | Ph   | Ph         | H   | H   |    | 26-61   | Me  | Ph  | Ph  | Η   | Ph  | H   | H   |
| 25-32   | Me  | Ph   | Ph         | Me  | H   | 25 | 26-62   | Me  | Ph  | Ph  | Η   | Η   | Ph  | Η   |
| 25-33   | Me  | Ph   | Ph         | H   | Me  | 25 | 26-63   | Me  | Ph  | Ph  | H   | H   | H   | Ph  |
| 25-34   | Me  | Ph   | Ph         | Ph  | H   |    | 26-64   | Ph  | Ph  | Ph  | Η   | H   | H   | Η   |
| 25-35   | Me  | Ph   | Ph         | H   | Ph  |    | 26-65   | Ph  | Ph  | Ph  | Me  | H   | Η   | H   |
| 25-36   | Ph  | Ph   | Ph         | H   | Н   |    | 26-66   | Ph  | Ph  | Ph  | Н   | Me  | H   | H   |
| 25-37   | Ph  | Ph   | Ph         | Me  | Н   |    | 26-67   | Ph  | Ph  | Ph  | Н   | H   | Me  | Η   |
| 25-38   | Ph  | Ph   | Ph         | Н   | Me  |    | 26-68   | Ph  | Ph  | Ph  | Н   | Н   | H   | Me  |
| 25-39   | Ph  | Ph   | Ph         | Ph  | Н   | 30 | 26-69   | Ph  | Ph  | Ph  | Ph  | Н   | H   | Н   |
| 25-40   | Ph  | Ph   | Ph         | Н   | Ph  |    | 26-70   | Ph  | Ph  | Ph  | Н   | Ph  | H   | H   |
| 25 40   | 111 | 1 11 | 111        | 11  | 111 | _  | 26-71   | Ph  | Ph  | Ph  | H   | Н   | Ph  | Н   |
|         |     |      |            |     |     | _  | 26-72   | Ph  | Ph  | Ph  | Н   | Н   | Н   | Ph  |

TABLE 26

| 3 | 4 |
|---|---|
| J |   |


|              |          |          | 17 11    | )LL 20  |         | 33     |        |    |         |     |     |     |      |      |     |     |     |
|--------------|----------|----------|----------|---------|---------|--------|--------|----|---------|-----|-----|-----|------|------|-----|-----|-----|
| Cpd No.      | Ra1      | Ra2      | Ra3      | Rb1     | Rb2     | Rb3    | Rb4    | _  |         |     |     | Т   | ABLI | E 27 |     |     |     |
| 26-1<br>26-2 | Me<br>Me | Me<br>Me | Me<br>Me | H<br>Me | H<br>H  | H<br>H | H<br>H |    | Cpd No. | Ra1 | Ra2 | Ra3 | Rb1  | Rb2  | Rb3 | Rb4 | Rb5 |
| 26-2         | Me       | Me       | Me       | H       | п<br>Ме | Н      | Н      |    | 27-1    | Me  | Me  | Me  | Н    | Н    | Н   | Н   | Me  |
| 26-4         | Me       | Me       | Me       | Н       | Н       | Me     | H      | 40 | 27-2    | Me  | Me  | Me  | Me   | H    | Н   | Н   | Me  |
| 26-5         | Me       | Me       | Me       | H       | H       | Н      | Me     |    | 27-3    | Me  | Me  | Me  | Н    | Me   | Н   | H   | Me  |
| 26-6         | Me       | Me       | Me       | Ph      | Н       | Н      | Н      |    | 27-4    | Me  | Me  | Me  | Н    | Н    | Me  | Н   | Me  |
| 26-7         | Me       | Me       | Me       | Н       | Ph      | Н      | H      |    | 27-5    | Me  | Me  | Me  | H    | H    | Н   | Me  | Me  |
| 26-8         | Me       | Me       | Me       | Н       | Н       | Ph     | H      |    | 27-6    | Me  | Me  | Me  | Ph   | H    | H   | Н   | Me  |
| 26-9         | Me       | Me       | Me       | Н       | Н       | Н      | Ph     |    | 27-7    | Me  | Me  | Me  | Н    | Ph   | Н   | Н   | Me  |
| 26-10        | Ph       | Me       | Me       | H       | H       | H      | Н      | 45 | 27-8    | Me  | Me  | Me  | H    | Н    | Ph  | H   | Me  |
| 26-11        | Ph       | Me       | Me       | Me      | Н       | Н      | Н      |    | 27-9    | Me  | Me  | Me  | Н    | Н    | Н   | Ph  | Me  |
| 26-12        | Ph       | Me       | Me       | Н       | Me      | Н      | Н      |    | 27-10   | Ph  | Me  | Me  | Н    | Н    | Н   | Н   | Me  |
| 26-13        | Ph       | Me       | Me       | Н       | Н       | Me     | Н      |    | 27-11   | Ph  | Me  | Me  | Me   | Н    | H   | Н   | Me  |
| 26-14        | Ph       | Me       | Me       | H       | Н       | H      | Me     |    | 27-12   | Ph  | Me  | Me  | H    | Me   | Н   | H   | Me  |
| 26-15        | Ph       | Me       | Me       | Ph      | Н       | Н      | Н      |    | 27-13   | Ph  | Me  | Me  | Н    | Н    | Me  | Н   | Me  |
| 26-16        | Ph       | Me       | Me       | Н       | Ph      | H      | Н      | 50 | 27-14   | Ph  | Me  | Me  | Н    | Н    | Н   | Me  | Me  |
| 26-17        | Ph       | Me       | Me       | H       | H       | Ph     | Н      |    | 27-15   | Ph  | Me  | Me  | Ph   | H    | Н   | H   | Me  |
| 26-18        | Ph       | Me       | Me       | H       | Н       | H      | Ph     |    | 27-16   | Ph  | Me  | Me  | Н    | Ph   | Н   | Н   | Me  |
| 26-19        | Me       | Ph       | Me       | Н       | Н       | Н      | Н      |    | 27-17   | Ph  | Me  | Me  | Н    | Н    | Ph  | Н   | Me  |
| 26-20        | Me       | Ph       | Me       | Me      | H       | H      | Н      |    | 27-18   | Ph  | Me  | Me  | Η    | H    | Н   | Ph  | Me  |
| 26-21        | Me       | Ph       | Me       | H       | Me      | H      | H      |    | 27-19   | Me  | Ph  | Me  | Н    | Н    | Н   | Н   | Me  |
| 26-22        | Me       | Ph       | Me       | H       | H       | Me     | H      | 55 | 27-20   | Me  | Ph  | Me  | Me   | H    | H   | H   | Me  |
| 26-23        | Me       | Ph       | Me       | H       | H       | H      | Me     | 33 | 27-21   | Me  | Ph  | Me  | H    | Me   | Н   | Н   | Me  |
| 26-24        | Me       | Ph       | Me       | Ph      | Н       | H      | Н      |    | 27-22   | Me  | Ph  | Me  | Η    | Н    | Me  | Η   | Me  |
| 26-25        | Me       | Ph       | Me       | Η       | Ph      | H      | H      |    | 27-23   | Me  | Ph  | Me  | Η    | Η    | Н   | Me  | Me  |
| 26-26        | Me       | Ph       | Me       | Η       | Η       | Ph     | H      |    | 27-24   | Me  | Ph  | Me  | Ph   | Η    | Н   | Η   | Me  |
| 26-27        | Me       | Ph       | Me       | Η       | H       | H      | Ph     |    | 27-25   | Me  | Ph  | Me  | Η    | Ph   | Η   | Η   | Me  |
| 26-28        | Ph       | Ph       | Me       | Η       | H       | H      | H      | -  | 27-26   | Me  | Ph  | Me  | Η    | H    | Ph  | Η   | Me  |
| 26-29        | Ph       | Ph       | Me       | Me      | H       | H      | H      | 60 | 27-27   | Me  | Ph  | Me  | Η    | H    | Η   | Ph  | Me  |
| 26-30        | Ph       | Ph       | Me       | H       | Me      | H      | H      |    | 27-28   | Ph  | Ph  | Me  | Η    | H    | Н   | Н   | Me  |
| 26-31        | Ph       | Ph       | Me       | H       | H       | Me     | H      |    | 27-29   | Ph  | Ph  | Me  | Me   | H    | H   | Η   | Me  |
| 26-32        | Ph       | Ph       | Me       | Η       | Η       | H      | Me     |    | 27-30   | Ph  | Ph  | Me  | H    | Me   | Н   | Η   | Me  |
| 26-33        | Ph       | Ph       | Me       | Ph      | H       | H      | H      |    | 27-31   | Ph  | Ph  | Me  | Η    | H    | Me  | Η   | Me  |
| 26-34        | Ph       | Ph       | Me       | H       | Ph      | H      | H      |    | 27-32   | Ph  | Ph  | Me  | H    | H    | H   | Me  | Me  |
| 26-35        | Ph       | Ph       | Me       | Η       | H       | Ph     | H      | 65 | 27-33   | Ph  | Ph  | Me  | Ph   | H    | Н   | Η   | Me  |
| 26-36        | Ph       | Ph       | Me       | Η       | H       | H      | Ph     |    | 27-34   | Ph  | Ph  | Me  | H    | Ph   | H   | H   | Me  |

166
TABLE 28-continued

|                |          |          | 17 11    |         | -conti  | maca    |         |         |          | _    | TABLE 28-continued |          |          |          |         |         |         |         |         |         |
|----------------|----------|----------|----------|---------|---------|---------|---------|---------|----------|------|--------------------|----------|----------|----------|---------|---------|---------|---------|---------|---------|
| Cpd No.        |          | Ra2      |          |         |         |         | Rb3     | Rb4     | Rb5      | _    | Cpd<br>No.         | Ra1      | Ra2      | Ra3      | Rb1     | Rb2     | Rb3     | Rb4     | Rb5     | Rb6     |
| 27-35<br>27-36 | Ph<br>Ph | Ph<br>Ph | Me<br>Me |         | H<br>H  |         | Ph<br>H | H<br>Ph | Me<br>Me | 5    | 28-32              | Me       | Ph       | Me       | Н       | Н       | Н       | Н       | Me      | Н       |
| 27-30          | Me       | Me       | Ph       | Н       | Н       |         | п<br>Н  | Н       | Me       | ,    | 28-32              | Me       | Ph       | Me       | Н       | Н       | Н       | Н       | H       | п<br>Ме |
| 27-38          | Me       | Me       | Ph       | Me      | Н       |         | Н       | Η       | Me       |      | 28-34              | Me       | Ph       | Me       | Ph      | Η       | Η       | Η       | Η       | Н       |
| 27-39          | Me       | Me       |          | Н       | Me      |         | Н       | H       | Me       |      | 28-35              | Me       | Ph       | Me       | H       | Ph      | H       | H       | H       | Н       |
| 27-40<br>27-41 | Me<br>Me | Me<br>Me | Ph<br>Ph | H<br>H  | H<br>H  |         | Me<br>H | H<br>Me | Me<br>Me |      | 28-36<br>28-37     | Me<br>Me | Ph<br>Ph | Me<br>Me | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  |
| 27-41          | Me       | Me       | Ph       | Ph      | Н       |         | н<br>Н  | H       | Me       | 10   | 28-37              | Me       | Ph       | Me       | Н       | Н       | Н       | H       | н<br>Ph | Н       |
| 27-43          | Me       | Me       | Ph       | Н       | Ph      |         | H       | H       | Me       | 10   | 28-39              | Me       | Ph       | Me       | H       | H       | H       | Н       | Н       | Ph      |
| 27-44          | Me       | Me       | Ph       | Η       | Η       |         | Ph      | Η       | Me       |      | 28-40              | Ph       | Ph       | Me       | Η       | Η       | Η       | Η       | Η       | Н       |
| 27-45          | Me       | Me       | Ph       | Н       | Н       |         | H       | Ph      | Me<br>M- |      | 28-41              | Ph       | Ph       | Me<br>M- | Me      | Н       | H       | H       | H       | H       |
| 27-46<br>27-47 | Ph<br>Ph | Me<br>Me | Ph<br>Ph | H<br>Me | H<br>H  |         | H<br>H  | H<br>H  | Me<br>Me |      | 28-42<br>28-43     | Ph<br>Ph | Ph<br>Ph | Me<br>Me | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  |
| 27-48          | Ph       | Me       | Ph       | Н       | Me      |         | H       | H       | Me       | 15   | 28-44              | Ph       | Ph       | Me       | H       | Н       | Н       | Me      | H       | H       |
| 27-49          | Ph       | Me       | Ph       | Η       | Η       |         | Me      | Η       | Me       | 13   | 28-45              | Ph       | Ph       | Me       | Η       | Η       | Η       | Η       | Me      | Н       |
| 27-50          | Ph       | Me       | Ph       | H       | Н       |         | H       | Me      | Me       |      | 28-46              | Ph       | Ph       | Me       | H       | Н       | Н       | Н       | H       | Me      |
| 27-51<br>27-52 | Ph<br>Ph | Me<br>Me | Ph<br>Ph | Ph<br>H | H<br>Ph |         | H<br>H  | H<br>H  | Me<br>Me |      | 28-47<br>28-48     | Ph<br>Ph | Ph<br>Ph | Me<br>Me | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 27-53          | Ph       | Me       | Ph       | Н       | Н       |         | Ph      | H       | Me       |      | 28-49              | Ph       | Ph       | Me       | Н       | Н       | Ph      | Н       | Н       | H       |
| 27-54          | Ph       | Me       | Ph       | Η       | Η       |         | Н       | Ph      | Me       | 20   | 28-50              | Ph       | Ph       | Me       | Η       | Η       | Η       | Ph      | Η       | Η       |
| 27-55          | Me       | Ph       | Ph       | Н       | H       |         | H       | H       | Me       | 20   | 28-51              | Ph       | Ph       | Me       | H       | H       | H       | H       | Ph      | H       |
| 27-56<br>27-57 | Me<br>Me | Ph<br>Ph | Ph<br>Ph | Me<br>H | H<br>Me |         | H<br>H  | H<br>H  | Me<br>Me |      | 28-52<br>28-53     | Ph<br>Me | Ph<br>Me | Me<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph<br>H |
| 27-58          | Me       | Ph       | Ph       | Н       | Н       |         | Me      | H       | Me       |      | 28-54              | Me       | Me       | Ph       | Me      | Н       | Н       | Н       | Н       | H       |
| 27-59          | Me       | Ph       | Ph       | Η       | Η       |         | Η       | Me      | Me       |      | 28-55              | Me       | Me       | Ph       | Η       | Me      | Η       | Η       | Η       | Н       |
| 27-60          | Me       | Ph       | Ph       | Ph      | Н       |         | Η       | Η       | Me       | 25   | 28-56              | Me       | Me       | Ph       | H       | H       | Me      | H       | H       | H       |
| 27-61          | Me       | Ph       | Ph       | H<br>H  | Ph      |         | H<br>Di | H       | Me       | 25   | 28-57<br>28-58     | Me<br>Me | Me<br>Me | Ph<br>Ph | H<br>H  | H<br>H  | H<br>H  | Me<br>H | H<br>Me | H<br>H  |
| 27-62<br>27-63 | Me<br>Me | Ph<br>Ph | Ph<br>Ph | Н       | H<br>H  |         | Ph<br>H | H<br>Ph | Me<br>Me |      | 28-59              | Me       | Me       | Ph       | H       | Н       | Н       | Н       | Н       | Me      |
| 27-64          | Ph       | Ph       | Ph       | Н       | Н       |         | H       | Н       | Me       |      | 28-60              | Me       | Me       | Ph       | Ph      | Η       | Η       | Η       | Η       | Н       |
| 27-65          | Ph       | Ph       | Ph       | Me      | Н       |         | Н       | Η       | Me       |      | 28-61              | Me       | Me       | Ph       | H       | Ph      | H       | H       | H       | H       |
| 27-66          | Ph       | Ph       | Ph       | Н       | Me      |         | H       | Η       | Me       | 20   | 28-62<br>28-63     | Me<br>Me | Me<br>Me | Ph<br>Ph | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  |
| 27-67          | Ph       | Ph       | Ph       | Н       | Н       |         | Me      | Н       | Me       | 30   | 28-64              | Me       | Me       | Ph       | Н       | Н       | Н       | Н       | Ph      | Н       |
| 27-68<br>27-69 | Ph<br>Ph | Ph<br>Ph | Ph<br>Ph | H<br>Ph | H<br>H  |         | H<br>H  | Me<br>H | Me<br>Me |      | 28-65              | Me       | Me       | Ph       | Η       | Η       | Η       | Η       | Η       | Ph      |
| 27-70          | Ph       | Ph       | Ph       | Н       | л<br>Ph |         | п<br>Н  | Н       | Me       |      | 28-66              | Ph       | Me       | Ph       | Н       | Н       | Н       | Н       | H       | H       |
| 27-71          | Ph       | Ph       | Ph       | Н       | Н       |         | Ph      | Η       | Me       |      | 28-67<br>28-68     | Ph<br>Ph | Me<br>Me | Ph<br>Ph | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 27-72          | Ph       | Ph       | Ph       | Н       | Η       |         | H       | Ph      | Me       | 35   | 28-69              | Ph       | Me       | Ph       | Н       | Н       | Me      | Н       | Н       | Н       |
|                |          |          |          |         |         |         |         |         |          | - 33 | 28-70              | Ph       | Me       | Ph       | Н       | H       | Η       | Me      | Н       | H       |
|                |          |          |          |         |         |         |         |         |          |      | 28-71              | Ph       | Me       | Ph       | Η       | Η       | Η       | Η       | Me      | Η       |
|                |          |          |          | TARI    | LE 28   |         |         |         |          |      | 28-72              | Ph       | Me       | Ph       | H       | Н       | Н       | H       | H       | Me      |
|                |          |          |          | 1, 11,  | DD 20   |         |         |         |          | -    | 28-73<br>28-74     | Ph<br>Ph | Me<br>Me | Ph<br>Ph | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| Cpd            |          |          |          |         |         |         |         |         |          | 40   | 28-75              | Ph       | Me       | Ph       | Н       | Н       | Ph      | Н       | Н       | Н       |
| No.            | Ra1      | Ra2      | Ra3      | Rb1     | Rb2     | Rb3     | Rb4     | Rb:     | 5 Rb6    | _    | 28-76              | Ph       | Me       | Ph       | Η       | H       | H       | Ph      | Η       | Н       |
| 28-1           | Me       | Me       | Me       | Н       | Н       | Н       | Н       | Н       | Н        |      | 28-77              | Ph       | Me       | Ph       | Η       | Η       | Η       | Η       | Ph      | Η       |
| 28-2           | Me       | Me       | Me       | Me      | Н       | Η       | H       | H       | H        |      | 28-78              | Ph       | Me       | Ph       | H       | Н       | H       | Н       | H       | Ph      |
| 28-3           | Me       | Me       | Me       | H       | Me      | Н       | H       | H       | H        |      | 28-79<br>28-80     | Me<br>Me | Ph<br>Ph | Ph<br>Ph | H<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 28-4<br>28-5   | Me<br>Me | Me<br>Me | Me<br>Me | H<br>H  | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H   | 45   | 28-81              | Me       | Ph       | Ph       | Н       | Me      | Н       | Н       | Н       | H       |
| 28-6           | Me       | Me       | Me       | Н       | Н       | Н       | Н       | Me      |          |      | 28-82              | Me       | Ph       | Ph       | Η       | Η       | Me      | Η       | Η       | Н       |
| 28-7           | Me       | Me       | Me       | H       | Н       | Η       | Η       | Η       | Me       |      | 28-83              | Me       | Ph       | Ph       | H       | Η       | Η       | Me      | H       | H       |
| 28-8<br>28-9   | Me       | Me       | Me       | Ph      | Н       | H       | H<br>H  | H       | H        |      | 28-84              | Me       | Ph       | Ph       | H       | Н       | Н       | Н       | Me      | H       |
| 28-10          | Me<br>Me | Me<br>Me | Me<br>Me | H<br>H  | Ph<br>H | H<br>Ph | H       | H<br>H  | H<br>H   |      | 28-85<br>28-86     | Me<br>Me | Ph<br>Ph | Ph<br>Ph | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H |
| 28-11          | Me       | Me       | Me       | Н       | Η       | Η       | Ph      | Н       | Н        | 50   | 28-87              | Me       | Ph       | Ph       | Н       | Ph      | Н       | Н       | Н       | Н       |
| 28-12          | Me       | Me       | Me       | Η       | Н       | H       | Н       | Ph      | H        |      | 28-88              | Me       | Ph       | Ph       | Η       | Η       | Ph      | Η       | Η       | Н       |
| 28-13<br>28-14 | Me<br>Ph | Me<br>Me | Me<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph<br>H  |      | 28-89              | Me       | Ph       | Ph       | Η       | Η       | Η       | Ph      | Η       | Η       |
| 28-15          | Ph       | Me       | Me       | Me      | Н       | Н       | Н       | Н       | H        |      | 28-90              | Me       | Ph       | Ph       | Н       | Н       | Н       | Н       | Ph      | H       |
| 28-16          | Ph       | Me       | Me       | Н       | Me      | Η       | Н       | Н       | Н        |      | 28-91<br>28-92     | Me<br>Ph | Ph<br>Ph | Ph       | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph      |
| 28-17          | Ph       | Me       | Me       | H       | H       | Me      | Н       | Н       | Н        | 55   | 28-92              | Ph<br>Ph | Ph       | Ph<br>Ph | н<br>Ме | Н       | Н       | Н       | Н       | H<br>H  |
| 28-18          | Ph<br>Ph | Me<br>Me | Me       | Н       | Н       | Н       | Mе      | H<br>Ma | Н        |      | 28-94              | Ph       | Ph       | Ph       | Н       | Me      | Н       | Н       | Н       | H       |
| 28-19<br>28-20 | Ph<br>Ph | Me<br>Me | Me<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H | H<br>Me  |      | 28-95              | Ph       | Ph       | Ph       | Н       | Н       | Me      | Н       | Н       | Н       |
| 28-21          | Ph       | Me       | Me       | Ph      | Н       | Н       | H       | Н       | Н        |      | 28-96              | Ph       | Ph       | Ph       | Η       | Η       | H       | Me      | Η       | H       |
| 28-22          | Ph       | Me       | Me       | H       | Ph      | H       | H       | Н       | H        |      | 28-97              | Ph       | Ph       | Ph       | H       | Н       | H       | H       | Me      | H<br>M- |
| 28-23          | Ph<br>Ph | Me<br>Me | Me       | Н       | Н       | Ph      | H<br>Ph | Н       | Н        | 60   | 28-98<br>28-99     | Ph<br>Ph | Ph<br>Ph | Ph<br>Ph | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H |
| 28-24<br>28-25 | Ph<br>Ph | Me<br>Me | Me<br>Me | H<br>H  | H<br>H  | H<br>H  | Pn<br>H | H<br>Ph | H<br>H   |      | 28-100             | Ph       | Ph       | Ph       | Н       | п<br>Ph | Н       | Н       | Н       | Н       |
| 28-26          | Ph       | Me       | Me       | H       | Н       | Н       | Н       | Н       | Ph       |      | 28-100             | Ph       | Ph       | Ph       | Н       | Н       | Ph      | Н       | Н       | Н       |
| 28-27          | Me       | Ph       | Me       | Η       | Η       | Η       | Н       | Η       | H        |      | 28-102             | Ph       | Ph       | Ph       | H       | H       | H       | Ph      | H       | H       |
| 28-28          | Me<br>Me | Ph       | Me       | Me      | H<br>Ma | Н       | Н       | Н       | Н        |      | 28-103             | Ph       | Ph       | Ph       | Н       | Н       | Н       | H       | Ph      | H       |
| 28-29<br>28-30 | Me<br>Me | Ph<br>Ph | Me<br>Me | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H   | 65   | 28-104             | Ph       | Ph       | Ph       | Н       | Н       | Н       | Н       | Н       | Ph      |
| 28-31          | Me       | Ph       | Me       | Н       | Н       | Н       | Me      | Н       | H        |      |                    |          |          |          |         |         |         |         |         |         |
|                |          |          |          |         |         |         |         |         |          |      |                    |          |          |          |         |         |         |         |         |         |

TABLE 29

| 1ABLE 29       |          |          |          |        |         |         |           |         |         |        |  |
|----------------|----------|----------|----------|--------|---------|---------|-----------|---------|---------|--------|--|
| Cpd No.        | Ra1      | Ra2      | Ra3      | Rb1    | Rb2     | Rb3     | Rb4       | Rb5     | Rb6     | Rb7    |  |
| 29-1           | Me       | Me       | Me       | Н      | Н       | Н       | Н         | Н       | Н       | Н      |  |
| 29-2           | Me       | Me       | Me       | Me     | Η       | H       | H         | Н       | Η       | H      |  |
| 29-3           | Me       | Me       | Me       | Η      | Me      | Η       | Η         | Η       | Η       | Η      |  |
| 29-4           | Me       | Me       | Me       | H      | H       | Me      | H         | H       | H       | H      |  |
| 29-5<br>29-6   | Me       | Me       | Me       | H<br>H | H<br>H  | H<br>H  | Me<br>H   | H<br>Ma | Н       | H<br>H |  |
| 29-6           | Me<br>Me | Me<br>Me | Me<br>Me | Н      | Н       | Н       | Н         | Me<br>H | H<br>Me | Н      |  |
| 29-8           | Me       | Me       | Me       | H      | H       | H       | H         | H       | H       | Me     |  |
| 29-9           | Me       | Me       | Me       | Ph     | H       | H       | H         | H       | H       | Н      |  |
| 29-10          | Me       | Me       | Me       | Η      | Ph      | H       | Η         | Η       | H       | Η      |  |
| 29-11          | Me       | Me       | Me       | H      | H       | Ph      | H         | Η       | H       | H      |  |
| 29-12          | Me       | Me       | Me       | H      | H       | H       | Ph        | H       | H       | H      |  |
| 29-13<br>29-14 | Me<br>Me | Me<br>Me | Me<br>Me | H<br>H | H<br>H  | H<br>H  | $_{ m H}$ | Ph<br>H | H<br>Ph | H<br>H |  |
| 29-14          | Ph       | Me       | Me       | Н      | Н       | Н       | Н         | Н       | Н       | Ph     |  |
| 29-16          | Ph       | Me       | Me       | Н      | Н       | Н       | H         | Н       | H       | Н      |  |
| 29-17          | Ph       | Me       | Me       | Me     | H       | H       | Η         | Η       | H       | H      |  |
| 29-18          | Ph       | Me       | Me       | Η      | Me      | H       | H         | Η       | H       | Η      |  |
| 29-19          | Ph       | Me       | Me       | Н      | Н       | Me      | H         | Н       | H       | H      |  |
| 29-20<br>29-21 | Ph<br>Ph | Me<br>Me | Me       | H<br>H | H<br>H  | H<br>H  | Me<br>H   | H<br>Me | H<br>H  | H<br>H |  |
| 29-21          | Ph       | Me       | Me<br>Me | Н      | Н       | Н       | Н         | H       | п<br>Ме | Н      |  |
| 29-23          | Ph       | Me       | Me       | Н      | Н       | Н       | H         | Н       | Н       | Me     |  |
| 29-24          | Ph       | Me       | Me       | Ph     | H       | H       | H         | H       | H       | H      |  |
| 29-25          | Ph       | Me       | Me       | Η      | Ph      | Η       | Η         | Η       | Η       | Η      |  |
| 29-26          | Ph       | Me       | Me       | H      | H       | Ph      | H         | Η       | H       | H      |  |
| 29-27          | Ph       | Me       | Me       | H      | H       | H       | Ph        | H       | H       | H      |  |
| 29-28<br>29-29 | Ph<br>Ph | Me<br>Me | Me<br>Me | H<br>H | H<br>H  | H<br>H  | $_{ m H}$ | Ph<br>H | H<br>Ph | H<br>H |  |
| 29-30          | Ph       | Me       | Me       | Н      | Н       | H       | H         | H       | Н       | Ph     |  |
| 29-31          | Me       | Ph       | Me       | H      | H       | H       | H         | H       | H       | Н      |  |
| 29-32          | Me       | Ph       | Me       | Me     | H       | H       | H         | H       | H       | H      |  |
| 29-33          | Me       | Ph       | Me       | Η      | Me      | Η       | Η         | Η       | H       | Η      |  |
| 29-34          | Me       | Ph       | Me       | H      | H       | Me      | H         | H       | H       | H      |  |
| 29-35<br>29-36 | Me<br>Me | Ph<br>Ph | Me<br>Me | H<br>H | H<br>H  | H<br>H  | Me<br>H   | H<br>Me | H<br>H  | H<br>H |  |
| 29-37          | Me       | Ph       | Me       | H      | Н       | H       | H         | H       | Me      | H      |  |
| 29-38          | Me       | Ph       | Me       | Н      | Н       | Н       | H         | Н       | Н       | Me     |  |
| 29-39          | Me       | Ph       | Me       | Ph     | H       | Н       | Η         | Η       | H       | H      |  |
| 29-40          | Me       | Ph       | Me       | Η      | Ph      | Η       | Η         | H       | H       | Η      |  |
| 29-41          | Me       | Ph       | Me       | Н      | Н       | Ph      | H         | Н       | Н       | H      |  |
| 29-42<br>29-43 | Me<br>Me | Ph<br>Ph | Me<br>Me | H<br>H | H<br>H  | H<br>H  | Ph<br>H   | H<br>Ph | H<br>H  | H<br>H |  |
| 29-43          | Me       | Ph       | Me       | H      | Н       | H       | H         | Н       | Ph      | Н      |  |
| 29-45          | Ph       | Ph       | Me       | Н      | Н       | H       | H         | Η       | Н       | Ph     |  |
| 29-46          | Ph       | Ph       | Me       | H      | Η       | H       | H         | H       | H       | Η      |  |
| 29-47          | Ph       | Ph       | Me       | Me     | Н       | H       | H         | Η       | H       | H      |  |
| 29-48          | Ph       | Ph       | Me       | Н      | Me      | H       | H         | H<br>H  | H       | H      |  |
| 29-49<br>29-50 | Ph<br>Ph | Ph<br>Ph | Me<br>Me | H<br>H | H<br>H  | Me<br>H | H<br>Me   | Н       | H<br>H  | H<br>H |  |
| 29-51          | Ph       | Ph       | Me       | H      | H       | Н       | Н         | Me      | H       | H      |  |
| 29-52          | Ph       | Ph       | Me       | Η      | H       | H       | H         | Н       | Me      | H      |  |
| 29-53          | Ph       | Ph       | Me       | Η      | Η       | Η       | Η         | Η       | Η       | Me     |  |
| 29-54          | Ph       | Ph       | Me       | Ph     | H       | H       | H         | H       | Н       | H      |  |
| 29-55          | Ph       | Ph<br>Ph | Me       | Н      | Ph      | H       | Н         | Н       | Н       | Н      |  |
| 29-56<br>29-57 | Ph<br>Ph | Ph       | Me<br>Me | H<br>H | H<br>H  | Ph<br>H | H<br>Ph   | H<br>H  | H<br>H  | H<br>H |  |
| 29-58          | Ph       | Ph       | Me       | Н      | Н       | Н       | Н         | Ph      | Н       | Н      |  |
| 29-59          | Ph       | Ph       | Me       | H      | H       | Н       | H         | Η       | Ph      | H      |  |
| 29-60          | Ph       | Ph       | Me       | Η      | Η       | H       | Η         | Η       | H       | Ph     |  |
| 29-61          | Me       | Me       | Ph       | Η      | H       | H       | H         | Η       | H       | H      |  |
| 29-62          | Me       | Me       | Ph       | Me     | H       | H       | H         | H       | H       | H      |  |
| 29-63<br>29-64 | Me<br>Me | Me<br>Me | Ph<br>Ph | H<br>H | Me<br>H | H<br>Me | H<br>H    | H<br>H  | H<br>H  | H<br>H |  |
| 29-65          | Me       | Me       | Ph       | Н      | Н       | Н       | Me        | Н       | Н       | Н      |  |
| 29-66          | Me       | Me       | Ph       | H      | H       | H       | H         | Me      | H       | H      |  |
| 29-67          | Me       | Me       | Ph       | Η      | Η       | H       | H         | Η       | Me      | Η      |  |
| 29-68          | Me       | Me       | Ph       | H      | Н       | H       | H         | Η       | Η       | Me     |  |
| 29-69          | Me       | Me       | Ph       | Ph     | H       | H       | H         | H       | H       | H      |  |
| 29-70<br>29-71 | Me<br>Me | Me<br>Me | Ph<br>Ph | H<br>H | Ph<br>H | H<br>Ph | H<br>H    | H<br>H  | H<br>H  | H<br>H |  |
| 29-71          | Me       | Me       | Ph       | Н      | Н       | Н       | л<br>Ph   | Н       | Н       | Н      |  |
| 29-73          | Me       | Me       | Ph       | Н      | Н       | Н       | Н         | Ph      | Н       | Н      |  |
| 29-74          | Me       | Me       | Ph       | Η      | Η       | H       | H         | H       | Ph      | H      |  |
| 29-75          | Ph       | Me       | Ph       | Η      | H       | H       | Η         | H       | H       | Ph     |  |
| 29-76          | Ph       | Me       | Ph       | Н      | H       | H       | H         | H       | H       | H      |  |
| 29-77          | Ph       | Me       | Ph       | Me     | H       | H       | H         | H       | H       | H      |  |
| 29-78          | Ph       | Me       | Ph       | Н      | Me      | Н       | Η         | Н       | Н       | Н      |  |



169
TABLE 29-continued

| IN ADEL 29-Continued |     |     |            |     |     |     |     |     |      |     |
|----------------------|-----|-----|------------|-----|-----|-----|-----|-----|------|-----|
| Cpd No.              | Ra1 | Ra2 | Ra3        | Rb1 | Rb2 | Rb3 | Rb4 | Rb5 | Rb6  | Rb7 |
| 29-79                | Ph  | Me  | Ph         | Н   | Н   | Me  | Н   | Н   | Н    | Н   |
| 29-80                | Ph  | Me  | Ph         | Η   | Η   | Η   | Me  | Η   | Η    | Η   |
| 29-81                | Ph  | Me  | Ph         | Η   | Η   | Η   | Η   | Me  | Η    | Η   |
| 29-82                | Ph  | Me  | Ph         | Η   | Η   | Η   | Η   | Η   | Me   | Η   |
| 29-83                | Ph  | Me  | Ph         | Η   | Η   | Η   | H   | Η   | Η    | Me  |
| 29-84                | Ph  | Me  | Ph         | Ph  | Η   | H   | H   | Η   | Η    | Η   |
| 29-85                | Ph  | Me  | Ph         | Η   | Ph  | H   | H   | Н   | Η    | Η   |
| 29-86                | Ph  | Me  | Ph         | H   | H   | Ph  | H   | Η   | H    | H   |
| 29-87                | Ph  | Me  | Ph         | Η   | Η   | H   | Ph  | Η   | Η    | Η   |
| 29-88                | Ph  | Me  | Ph         | H   | H   | H   | H   | Ph  | H    | H   |
| 29-89                | Ph  | Me  | Ph         | H   | H   | H   | H   | Η   | Ph   | Η   |
| 29-90                | Ph  | Me  | Ph         | H   | Н   | H   | H   | Н   | Н    | Ph  |
| 29-91                | Me  | Ph  | Ph         | H   | H   | H   | H   | H   | H    | Η   |
| 29-92                | Me  | Ph  | Ph         | Me  | Н   | H   | Η   | Н   | Н    | Η   |
| 29-93                | Me  | Ph  | Ph         | H   | Me  | H   | H   | Н   | Н    | Η   |
| 29-94                | Me  | Ph  | $_{ m Ph}$ | H   | Η   | Me  | H   | H   | H    | Η   |
| 29-95                | Me  | Ph  | Ph         | Н   | Η   | Η   | Me  | Η   | Η    | Η   |
| 29-96                | Me  | Ph  | Ph         | Η   | Η   | Η   | H   | Me  | Η    | Η   |
| 29-97                | Me  | Ph  | Ph         | H   | Η   | H   | H   | H   | Me   | H   |
| 29-98                | Me  | Ph  | Ph         | H   | Н   | Н   | H   | Н   | Н    | Me  |
| 29-99                | Me  | Ph  | Ph         | Ph  | H   | H   | H   | H   | H    | H   |
| 29-100               | Me  | Ph  | Ph         | Н   | Ph  | Н   | H   | Н   | Н    | H   |
| 29-101               | Me  | Ph  | Ph         | H   | Н   | Ph  | H   | Н   | Н    | H   |
| 29-102               | Me  | Ph  | Ph         | H   | H   | H   | Ph  | H   | H    | H   |
| 29-103               | Me  | Ph  | Ph         | Η   | Η   | Η   | Η   | Ph  | Η    | Η   |
| 29-104               | Me  | Ph  | Ph         | H   | Η   | H   | H   | H   | Ph   | H   |
| 29-105               | Ph  | Ph  | Ph         | H   | H   | H   | H   | H   | H    | Ph  |
| 29-106               | Ph  | Ph  | Ph         | H   | Н   | Н   | H   | Н   | Н    | H   |
| 29-107               | Ph  | Ph  | Ph         | Me  | H   | H   | H   | Н   | H    | H   |
| 29-108               | Ph  | Ph  | Ph         | Н   | Me  | Н   | H   | Н   | Н    | Н   |
| 29-109               | Ph  | Ph  | Ph         | Н   | Н   | Me  | H   | Н   | Н    | Н   |
| 29-110               | Ph  | Ph  | Ph         | Н   | Н   | Н   | Me  | Н   | Н    | Н   |
| 29-111               | Ph  | Ph  | Ph         | Н   | Н   | Н   | H   | Me  | Н    | Н   |
| 29-111               | Ph  | Ph  | Ph         | Н   | Н   | Н   | H   | H   | Me   | Н   |
|                      |     |     |            |     |     |     |     |     |      |     |
| 29-113               | Ph  | Ph  | Ph         | H   | Н   | H   | H   | H   | H    | Me  |
| 29-114               | Ph  | Ph  | Ph         | Ph  | H   | H   | Н   | Н   | Н    | H   |
| 29-115               | Ph  | Ph  | Ph         | Н   | Ph  | H   | Н   | Н   | Н    | H   |
| 29-116               | Ph  | Ph  | Ph         | Η   | Η   | Ph  | H   | Н   | Н    | Η   |
| 29-117               | Ph  | Ph  | Ph         | H   | Η   | Η   | Ph  | Η   | Η    | H   |
| 29-118               | Ph  | Ph  | Ph         | Η   | H   | H   | Η   | Ph  | H    | Η   |
|                      | Ph  | Ph  | Ph         | Н   | Н   | H   | H   | Н   | Ph   | Η   |
| 29-119               | PII | LII | 1 11       | 11  | 11  | 11  | 11  | 11  | 1 11 | 11  |

TABLE 30

| Cpd No. | Ra1 | Ra2 | Ra3 | Rb1 | Rb2 | Rb3 | Rb4 | Rb5 | Rb6 | Rb7 | Rb8 |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 30-1    | Me  | Me  | Me  | Н   | Н   | Н   | Н   | Н   | Н   | Н   | Н   |
| 30-2    | Me  | Me  | Me  | Me  | Η   | Η   | Η   | Η   | Η   | Η   | H   |
| 30-3    | Me  | Me  | Me  | Η   | Me  | Η   | Η   | Η   | Η   | Η   | H   |
| 30-4    | Me  | Me  | Me  | Η   | Η   | Me  | Η   | Η   | Η   | Η   | Η   |
| 30-5    | Me  | Me  | Me  | Η   | Η   | Η   | Me  | Η   | Η   | Η   | H   |
| 30-6    | Me  | Me  | Me  | Η   | Η   | Η   | Η   | Me  | Η   | Η   | H   |
| 30-7    | Me  | Me  | Me  | Η   | Η   | Η   | Η   | Η   | Me  | Η   | Η   |
| 30-8    | Me  | Me  | Me  | Η   | Η   | Η   | Η   | Η   | Η   | Me  | Η   |
| 30-9    | Me  | Me  | Me  | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Me  |
| 30-10   | Me  | Me  | Me  | Ph  | Η   | Η   | Η   | Η   | Η   | Η   | H   |
| 30-11   | Me  | Me  | Me  | Η   | Ph  | Η   | Η   | Η   | Η   | Η   | Η   |
| 30-12   | Me  | Me  | Me  | Η   | Η   | Ph  | Η   | Η   | Η   | Η   | Η   |
| 30-13   | Me  | Me  | Me  | Η   | Η   | Η   | Ph  | Η   | Η   | Η   | H   |
| 30-14   | Me  | Me  | Me  | H   | Η   | Η   | Η   | Ph  | Η   | Η   | H   |
| 30-15   | Me  | Me  | Me  | Η   | Η   | Η   | Η   | Η   | Ph  | Η   | Η   |
| 30-16   | Me  | Me  | Me  | Η   | Η   | Η   | Η   | Η   | Η   | Ph  | H   |
| 30-17   | Me  | Me  | Me  | H   | Η   | Η   | Η   | Η   | Η   | Η   | Ph  |
| 30-18   | Ph  | Me  | Me  | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   |
| 30-19   | Ph  | Me  | Me  | Me  | Η   | Η   | Η   | Η   | Η   | Η   | Η   |
| 30-20   | Ph  | Me  | Me  | Η   | Me  | Η   | Η   | Η   | Η   | Η   | Η   |
| 30-21   | Ph  | Me  | Me  | Η   | Η   | Me  | Η   | Η   | Η   | Η   | Η   |
| 30-22   | Ph  | Me  | Me  | Η   | Η   | Η   | Me  | Η   | Η   | Η   | Η   |
| 30-23   | Ph  | Me  | Me  | Η   | Η   | Η   | Η   | Me  | Η   | Η   | Η   |
| 30-24   | Ph  | Me  | Me  | Η   | Η   | Η   | Η   | Η   | Me  | Η   | Η   |
| 30-25   | Ph  | Me  | Me  | Η   | Η   | Η   | Η   | H   | Η   | Me  | H   |
| 30-26   | Ph  | Me  | Me  | Η   | Η   | Η   | Η   | Η   | H   | Η   | Me  |
| 30-27   | Ph  | Me  | Me  | Ph  | Η   | Η   | Η   | Η   | Η   | Η   | Η   |
| 30-28   | Ph  | Me  | Me  | Η   | Ph  | Η   | Η   | Н   | Η   | Η   | Н   |

TABLE 30-continued

|                  |          |          |          | IABL    | Æ 30-   | contir  | iuea    |         |         |         |         |
|------------------|----------|----------|----------|---------|---------|---------|---------|---------|---------|---------|---------|
| Cpd No.          | Ra1      | Ra2      | Ra3      | Rb1     | Rb2     | Rb3     | Rb4     | Rb5     | Rb6     | Rb7     | Rb8     |
| 30-29            | Ph       | Me       | Me       | Н       | Н       | Ph      | Н       | Н       | Н       | Н       | Н       |
| 30-30            | Ph       | Me       | Me       | Η       | Η       | Η       | Ph      | H       | Н       | Н       | Η       |
| 30-31            | Ph       | Me<br>M- | Me<br>M- | H       | H       | H       | H       | Ph      | H       | H       | H       |
| 30-32<br>30-33   | Ph<br>Ph | Me<br>Me | Me<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  |
| 30-34            | Ph       | Me       | Me       | Н       | Н       | Н       | Н       | H       | H       | Н       | Ph      |
| 30-35            | Me       | Ph       | Me       | H       | H       | Н       | H       | Η       | H       | Н       | Η       |
| 30-36            | Me       | Ph       | Me       | Me      | Н       | Н       | Η       | Η       | Н       | Н       | H       |
| 30-37<br>30-38   | Me       | Ph       | Me<br>Me | H<br>H  | Me<br>H | H<br>Me | Н       | Н       | Н       | Н       | Н       |
| 30-38            | Me<br>Me | Ph<br>Ph | Me<br>Me | Н       | Н       | H       | H<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 30-40            | Me       | Ph       | Me       | Н       | Н       | H       | Н       | Me      | H       | H       | Н       |
| 30-41            | Me       | Ph       | Me       | H       | Η       | H       | H       | H       | Me      | H       | H       |
| 30-42            | Me       | Ph       | Me       | H       | Н       | H       | H       | H       | Н       | Me      | Н       |
| 30-43<br>30-44   | Me       | Ph       | Me<br>Me | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H |
| 30-44            | Me<br>Me | Ph<br>Ph | Me<br>Me | Н       | п<br>Ph | Н       | Н       | Н       | Н       | Н       | Н       |
| 30-46            | Me       | Ph       | Me       | Н       | Н       | Ph      | Н       | Н       | Н       | Н       | Н       |
| 30-47            | Me       | Ph       | Me       | H       | H       | H       | Ph      | H       | H       | H       | H       |
| 30-48            | Me       | Ph       | Me       | Н       | H       | H       | H       | Ph      | H       | H       | H       |
| 30-49<br>30-50   | Me       | Ph       | Me       | H<br>H  | H       | H       | H       | H       | Ph<br>H | H<br>Ph | H<br>H  |
| 30-50            | Me<br>Me | Ph<br>Ph | Me<br>Me | Н       | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Н       | Н       | п<br>Ph |
| 30-52            | Ph       | Ph       | Me       | Н       | Н       | Н       | Н       | H       | Н       | Н       | Н       |
| 30-53            | Ph       | Ph       | Me       | Me      | Н       | Н       | Η       | Η       | Н       | Н       | H       |
| 30-54            | Ph       | Ph       | Me       | H       | Me      | Η       | H       | Η       | H       | H       | H       |
| 30-55            | Ph       | Ph       | Me       | Н       | Н       | Me      | Н       | H       | Н       | Н       | H       |
| 30-56<br>30-57   | Ph<br>Ph | Ph<br>Ph | Me<br>Me | H<br>H  | H<br>H  | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  |
| 30-58            | Ph       | Ph       | Me       | H       | H       | Н       | H       | H       | Me      | H       | H       |
| 30-59            | Ph       | Ph       | Me       | Н       | Н       | H       | H       | H       | Н       | Me      | Н       |
| 30-60            | Ph       | Ph       | Me       | Н       | Η       | Η       | Η       | Η       | Η       | Η       | Me      |
| 30-61            | Ph       | Ph       | Me       | Ph      | H       | Н       | Н       | Н       | Н       | Н       | Н       |
| 30-62<br>30-63   | Ph<br>Ph | Ph       | Me       | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 30-64            | Ph       | Ph<br>Ph | Me<br>Me | Н       | Н       | Н       | п<br>Ph | Н       | Н       | Н       | Н       |
| 30-65            | Ph       | Ph       | Me       | Н       | Н       | Н       | Н       | Ph      | Н       | Н       | Н       |
| 30-66            | Ph       | Ph       | Me       | H       | H       | H       | H       | H       | Ph      | H       | H       |
| 30-67            | Ph       | Ph       | Me       | H       | H       | H       | H       | H       | H       | Ph      | H       |
| 30-68<br>30-69   | Ph<br>Me | Ph<br>Me | Me<br>Ph | H<br>H  | Ph<br>H |
| 30-70            | Me       | Me       | Ph       | Me      | Н       | Н       | Н       | H       | H       | Н       | H       |
| 30-71            | Me       | Me       | Ph       | Н       | Me      | H       | H       | H       | H       | H       | H       |
| 30-72            | Me       | Me       | Ph       | Η       | Η       | Me      | Η       | Η       | Η       | Η       | Η       |
| 30-73            | Me       | Me       | Ph       | Н       | H       | H       | Me      | Н       | H       | H       | H       |
| 30-74<br>30-75   | Me<br>Me | Me<br>Me | Ph<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  |
| 30-76            | Me       | Me       | Ph       | Н       | Н       | Н       | Н       | H       | H       | Me      | Н       |
| 30-77            | Me       | Me       | Ph       | Н       | Н       | Н       | Н       | Η       | Н       | Н       | Me      |
| 30-78            | Me       | Me       | Ph       | Ph      | Н       | Н       | Η       | Η       | Н       | Н       | Η       |
| 30-79            | Me       | Me       | Ph       | Н       | Ph      | H       | Н       | H       | Н       | Н       | H       |
| 30-80<br>30-81   | Me<br>Me | Me<br>Me | Ph<br>Ph | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 30-82            | Me       | Me       | Ph       | Н       | Н       | Н       | Н       | Ph      | Н       | Н       | Н       |
| 30-83            | Me       | Me       | Ph       | H       | Η       | H       | H       | H       | Ph      | H       | Н       |
| 30-84            | Me       | Me       | Ph       | Η       | Н       | Η       | Η       | Η       | Н       | Ph      | Η       |
| 30-85            | Me       | Me       | Ph       | Н       | Н       | Н       | Н       | H       | Н       | Н       | Ph      |
| 30-86<br>30-87   | Ph<br>Ph | Me<br>Me | Ph<br>Ph | H<br>Me | H<br>H  |
| 30-88            | Ph       | Me       | Ph       | Н       | Me      | Н       | Н       | Н       | Н       | Н       | Н       |
| 30-89            | Ph       | Me       | Ph       | Н       | Н       | Me      | Н       | Η       | Н       | Н       | H       |
| 30-90            | Ph       | Me       | Ph       | Η       | Η       | Η       | Me      | Η       | Н       | Н       | Η       |
| 30-91<br>30-92   | Ph       | Me       | Ph       | H       | H       | H       | H       | Me      | H       | H       | H       |
| 30-92            | Ph<br>Ph | Me<br>Me | Ph<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H | H<br>Me | H<br>H  |
| 30-94            | Ph       | Me       | Ph       | Н       | Н       | Н       | Н       | H       | Н       | Н       | Me      |
| 30-95            | Ph       | Me       | Ph       | Ph      | Η       | Н       | H       | H       | H       | Н       | Н       |
| 30-96            | Ph       | Me       | Ph       | H       | Ph      | H       | H       | H       | H       | H       | Η       |
| 30-97            | Ph       | Me       | Ph       | H       | H       | Ph      | H       | H       | H       | H       | H       |
| 30-98<br>30-99   | Ph<br>Ph | Me<br>Me | Ph<br>Ph | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  |
| 30-99            | Ph       | Me       | Ph       | Н       | Н       | Н       | Н       | Н       | л<br>Ph | Н       | Н       |
| 30-101           | Ph       | Me       | Ph       | Н       | Н       | Н       | Н       | Н       | Н       | Ph      | Н       |
| 30-102           | Ph       | Me       | Ph       | Η       | Н       | Η       | Η       | Η       | Н       | Н       | Ph      |
| 30-103           | Me       | Ph       | Ph       | H       | H       | H       | H       | H       | H       | H       | H       |
| 30-104<br>30-105 | Me<br>Me | Ph<br>Ph | Ph<br>Ph | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Н       |
| 30-105           | Me<br>Me | Pn<br>Ph | Ph<br>Ph | H<br>H  | ме<br>Н | н<br>Ме | H<br>H  | H<br>H  | н<br>Н  | н<br>Н  | H<br>H  |
| 20 100           | 1110     | 111      | 1 11     | **      | **      | 1410    | **      | 11      | 11      | **      | **      |

173 TABLE 30-continued

| Cpd No. | Ra1 | Ra2 | Ra3 | Rb1 | Rb2 | Rb3 | Rb4 | Rb5 | Rb6 | Rb7 | Rb8 |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 30-107  | Me  | Ph  | Ph  | Н   | Н   | Н   | Me  | Н   | Н   | Н   | Н   |
| 30-108  | Me  | Ph  | Ph  | Η   | Η   | Η   | Η   | Me  | Η   | Η   | Η   |
| 30-109  | Me  | Ph  | Ph  | Η   | Η   | Η   | H   | Η   | Me  | Η   | H   |
| 30-110  | Me  | Ph  | Ph  | Η   | Η   | Η   | Η   | Η   | Η   | Me  | Η   |
| 30-111  | Me  | Ph  | Ph  | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Me  |
| 30-112  | Me  | Ph  | Ph  | Ph  | Η   | Η   | Η   | Η   | Η   | Η   | Η   |
| 30-113  | Me  | Ph  | Ph  | Η   | Ph  | Η   | Η   | Η   | Η   | Η   | H   |
| 30-114  | Me  | Ph  | Ph  | Η   | Η   | Ph  | Η   | Η   | Η   | Η   | H   |
| 30-115  | Me  | Ph  | Ph  | Η   | Η   | Η   | Ph  | Η   | Η   | Η   | H   |
| 30-116  | Me  | Ph  | Ph  | Η   | Η   | Η   | Η   | Ph  | H   | H   | H   |
| 30-117  | Me  | Ph  | Ph  | Η   | Η   | H   | H   | Η   | Ph  | H   | H   |
| 30-118  | Me  | Ph  | Ph  | Η   | Η   | Η   | Η   | Η   | Η   | Ph  | H   |
| 30-119  | Me  | Ph  | Ph  | H   | H   | H   | H   | H   | H   | H   | Ph  |
| 30-120  | Ph  | Ph  | Ph  | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   |
| 30-121  | Ph  | Ph  | Ph  | Me  | Η   | Η   | Η   | Η   | Η   | Η   | H   |
| 30-122  | Ph  | Ph  | Ph  | H   | Me  | H   | H   | H   | H   | H   | H   |
| 30-123  | Ph  | Ph  | Ph  | Η   | Η   | Me  | Η   | Η   | Η   | Η   | H   |
| 30-124  | Ph  | Ph  | Ph  | H   | H   | H   | Me  | H   | H   | H   | H   |
| 30-125  | Ph  | Ph  | Ph  | H   | H   | H   | H   | Me  | H   | H   | H   |
| 30-126  | Ph  | Ph  | Ph  | Η   | Η   | Η   | Η   | Η   | Me  | Η   | H   |
| 30-127  | Ph  | Ph  | Ph  | H   | H   | H   | H   | H   | H   | Me  | H   |
| 30-128  | Ph  | Ph  | Ph  | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Me  |
| 30-129  | Ph  | Ph  | Ph  | Ph  | Η   | Η   | Η   | Η   | Η   | Η   | H   |
| 30-130  | Ph  | Ph  | Ph  | Η   | Ph  | Η   | Η   | H   | H   | H   | H   |
| 30-131  | Ph  | Ph  | Ph  | Η   | Η   | Ph  | Η   | Η   | Η   | Η   | Η   |
| 30-132  | Ph  | Ph  | Ph  | H   | H   | H   | Ph  | H   | H   | H   | H   |
| 30-133  | Ph  | Ph  | Ph  | H   | H   | H   | H   | Ph  | H   | H   | H   |
| 30-134  | Ph  | Ph  | Ph  | H   | Η   | H   | H   | H   | Ph  | H   | H   |
| 30-135  | Ph  | Ph  | Ph  | H   | H   | H   | H   | H   | H   | Ph  | H   |
| 30-136  | Ph  | Ph  | Ph  | Η   | H   | Η   | Н   | Н   | Н   | Н   | Ph  |

| TABLE 31-continue | d |
|-------------------|---|
|-------------------|---|

|         |     |     | TABL | E 31   |     |     |         | TABLE 31-continued |              |     |     |     |            |      |     |     |     |
|---------|-----|-----|------|--------|-----|-----|---------|--------------------|--------------|-----|-----|-----|------------|------|-----|-----|-----|
| Cpd No. | Ra1 | Ra2 | Rb1  | Rb2    | Rb3 | Rb4 | Rb5     |                    | Cpd No.      | Ra1 | Rai | 2   | Rb1        | Rb2  | Rb3 | Rb4 | Rb5 |
| 31-1    | Me  | Н   | Н    | Н      | Н   | Н   | Н       | _                  | 31-41        | Ph  | Me  |     | Н          | Ph   | Н   | Н   | Н   |
| 31-2    | Me  | Η   | Me   | Η      | Η   | Η   | Η       | 35                 | 31-42        | Ph  | Me  |     | H          | Η    | Ph  | Η   | H   |
| 31-3    | Me  | H   | H    | Me     | H   | Η   | H       |                    | 31-43        | Ph  | Me  |     | H          | Н    | H   | Ph  | H   |
| 31-4    | Me  | H   | H    | H      | Me  | Η   | H       |                    | 31-44        | Ph  | Me  |     | H          | Н    | H   | H   | Ph  |
| 31-5    | Me  | H   | H    | H      | H   | Me  | Η       |                    | 31-45        | Me  | Ph  |     | H          | Η    | H   | Η   | Η   |
| 31-6    | Me  | H   | H    | Н      | Н   | Η   | Me      |                    | 31-46        | Me  | Ph  |     | Me         | Н    | Н   | H   | H   |
| 31-7    | Me  | H   | Ph   | H      | H   | Η   | H       |                    | 31-47        | Me  | Ph  |     | H          | Me   | H   | H   | Η   |
| 31-8    | Me  | Η   | H    | Ph     | H   | Η   | Η       | 40                 | 31-48        | Me  | Ph  |     | H          | Η    | Me  | Η   | Η   |
| 31-9    | Me  | H   | H    | H      | Ph  | Η   | H       |                    | 31-49        | Me  | Ph  |     | H          | Η    | H   | Me  | H   |
| 31-10   | Me  | Η   | Η    | Η      | Η   | Ph  | Η       |                    | 31-50        | Me  | Ph  |     | H          | Η    | Η   | Η   | Me  |
| 31-11   | Me  | Η   | Η    | Η      | Η   | Η   | Ph      |                    | 31-51        | Me  | Ph  |     | Ph         | Η    | Η   | Η   | H   |
| 31-12   | Ph  | Η   | Η    | Η      | Η   | Η   | Η       |                    | 31-52        | Me  | Ph  |     | H          | Ph   | Η   | Η   | H   |
| 31-13   | Ph  | Η   | Me   | Η      | Η   | Η   | Η       |                    | 31-53        | Me  | Ph  |     | H          | Η    | Ph  | Η   | H   |
| 31-14   | Ph  | Η   | Η    | Me     | Η   | Η   | Η       | 4.5                | 31-54        | Me  | Ph  |     | H          | Η    | Η   | Ph  | H   |
| 31-15   | Ph  | Η   | H    | Η      | Me  | Η   | Η       | 45                 | 31-55        | Me  | Ph  |     | H          | Η    | Η   | Η   | Ph  |
| 31-16   | Ph  | H   | H    | Н      | H   | Me  | Η       |                    | 31-56        | Ph  | Ph  |     | H          | H    | H   | H   | H   |
| 31-17   | Ph  | H   | H    | Н      | H   | Η   | Me      |                    | 31-57        | Ph  | Ph  |     | Me         | Η    | H   | H   | H   |
| 31-18   | Ph  | H   | Ph   | H      | H   | H   | H       |                    | 31-58        | Ph  | Ph  |     | H          | Me   | Η   | Η   | H   |
| 31-19   | Ph  | H   | H    | Ph     | H   | Η   | H       |                    | 31-59        | Ph  | Ph  |     | Н          | Н    | Me  | Н   | H   |
| 31-20   | Ph  | H   | H    | H      | Ph  | Η   | Η       |                    | 31-60        | Ph  | Ph  |     | H          | Н    | Н   | Me  | H   |
| 31-21   | Ph  | H   | H    | H      | H   | Ph  | H       | 50                 | 31-61        | Ph  | Ph  |     | H          | Н    | Н   | Н   | Me  |
| 31-22   | Ph  | H   | H    | H      | H   | H   | Ph      |                    | 31-62        | Ph  | Ph  |     | Ph         | Н    | Н   | Н   | Н   |
| 31-23   | Me  | Me  | H    | Н      | H   | H   | H       |                    | 31-63        | Ph  | Ph  |     | H          | Ph   | Н   | Н   | H   |
| 31-24   | Me  | Me  | Me   | H      | H   | Η   | H       |                    | 31-64        | Ph  | Ph  |     | H          | Н    | Ph  | H   | H   |
| 31-25   | Me  | Me  | H    | Me     | H   | H   | Η       |                    | 31-65        | Ph  | Ph  |     | H          | Н    | H   | Ph  | H   |
| 31-26   | Me  | Me  | H    | H      | Me  | H   | H       |                    |              |     |     |     |            |      |     |     |     |
| 31-27   | Me  | Me  | H    | Н      | Н   | Me  | H       | 55                 | 31-66        | Ph  | Ph  |     | Н          | Н    | Н   | H   | Ph  |
| 31-28   | Me  | Me  | H    | Н      | H   | Н   | Me      |                    |              |     |     |     |            |      |     |     |     |
| 31-29   | Me  | Me  | Ph   | Н      | Н   | Н   | Н       |                    |              |     |     |     |            |      |     |     |     |
| 31-30   | Me  | Me  | Н    | Ph     | Н   | Н   | H       |                    |              |     |     |     |            |      |     |     |     |
| 31-31   | Me  | Me  | H    | Н      | Ph  | H   | H       |                    |              |     |     |     | [ABLI      | E 32 |     |     |     |
| 31-32   | Me  | Me  | H    | Н      | Н   | Ph  | Н       |                    |              |     |     |     |            |      |     |     |     |
| 31-32   | Me  | Me  | Н    | Н      | Н   | Н   | Ph      | 60                 | Cpd No.      | Ra1 | Ra2 | Ra3 | Rb1        | Rb2  | Rb3 | Rb4 | Rb5 |
|         |     |     |      | Н      |     |     | ги<br>Н | 00                 | <del>-</del> |     |     |     |            |      |     |     |     |
| 31-34   | Ph  | Me  | H    | H<br>H | H   | H   |         |                    | 32-1         | H   | H   | Η   | Η          | Η    | H   | H   | H   |
| 31-35   | Ph  | Me  | Me   |        | H   | Н   | Н       |                    | 32-2         | H   | H   | Η   | Me         | Η    | Н   | H   | H   |
| 31-36   | Ph  | Me  | H    | Me     | Н   | H   | H       |                    | 32-3         | H   | H   | Η   | Η          | Me   | H   | H   | H   |
| 31-37   | Ph  | Me  | H    | Н      | Me  | Η   | Η       |                    | 32-4         | Η   | Η   | Η   | Η          | Η    | Me  | H   | H   |
| 31-38   | Ph  | Me  | H    | Η      | Η   | Me  | H       |                    | 32-5         | H   | H   | Η   | H          | H    | H   | Me  | H   |
| 31-39   | Ph  | Me  | Η    | Η      | Н   | Η   | Me      | 65                 | 32-6         | Η   | Η   | Η   | Η          | Η    | Н   | H   | Me  |
| 31-40   | Ph  | Me  | Ph   | H      | Η   | H   | H       |                    | 32-7         | Η   | Η   | H   | $_{ m Ph}$ | Η    | H   | Η   | H   |

175
TABLE 32-continued

176
TABLE 32-continued

|         |     |     |     |     |     |     |                 |     | _  |         |     |     |     |     |     |     |     |     |
|---------|-----|-----|-----|-----|-----|-----|-----------------|-----|----|---------|-----|-----|-----|-----|-----|-----|-----|-----|
| Cpd No. | Ra1 | Ra2 | Ra3 | Rb1 | Rb2 | Rb3 | Rb4             | Rb5 | _  | Cpd No. | Ra1 | Ra2 | Ra3 | Rb1 | Rb2 | Rb3 | Rb4 | Rb5 |
| 32-8    | Н   | Н   | Н   | Н   | Ph  | Н   | Н               | Н   | _  | 32-44   | Н   | Н   | Me  | Н   | Н   | Н   | Н   | Ph  |
| 32-9    | Η   | Η   | Η   | Η   | Η   | Ph  | Η               | Η   | 5  | 32-45   | Ph  | Η   | Η   | Η   | Η   | H   | Η   | Η   |
| 32-10   | Η   | Η   | Η   | Η   | Η   | Η   | Ph              | H   |    | 32-46   | Ph  | Η   | Η   | Me  | Η   | Η   | Η   | Η   |
| 32-11   | Η   | Η   | Η   | Η   | Η   | Η   | Η               | Ph  |    | 32-47   | Ph  | Η   | Η   | Η   | Me  | Η   | Η   | Η   |
| 32-12   | Me  | Η   | Η   | Η   | Η   | H   | Η               | Η   |    | 32-48   | Ph  | Η   | Η   | Η   | Η   | Me  | Η   | Η   |
| 32-13   | Me  | Η   | Η   | Me  | Η   | H   | Η               | H   |    | 32-49   | Ph  | Η   | Η   | Η   | Η   | H   | Me  | Η   |
| 32-14   | Me  | Η   | Η   | Η   | Me  | Η   | Η               | Η   |    | 32-50   | Ph  | Η   | Η   | Η   | Η   | Η   | Η   | Me  |
| 32-15   | Me  | Η   | Η   | Η   | Η   | Me  | Η               | H   | 10 | 32-51   | Ph  | Η   | Η   | Ph  | Η   | H   | Η   | Η   |
| 32-16   | Me  | Η   | Η   | Η   | Η   | Η   | Me              | H   |    | 32-52   | Ph  | Η   | Η   | Η   | Ph  | Η   | Η   | Η   |
| 32-17   | Me  | Η   | Η   | Η   | Η   | Η   | H               | Me  |    | 32-53   | Ph  | Η   | Η   | Η   | Η   | Ph  | H   | Η   |
| 32-18   | Me  | Η   | Η   | Ph  | Η   | Η   | Η               | H   |    | 32-54   | Ph  | Η   | Η   | Η   | Η   | H   | Ph  | Η   |
| 32-19   | Me  | Η   | Η   | Η   | Ph  | Η   | Η               | H   |    | 32-55   | Ph  | Η   | Η   | Η   | Η   | Η   | Η   | Ph  |
| 32-20   | Me  | Η   | Η   | Η   | Η   | Ph  | H               | H   |    | 32-56   | Η   | Ph  | Η   | Η   | Η   | H   | H   | Η   |
| 32-21   | Me  | Η   | Η   | Η   | Η   | H   | Ph              | H   | 15 | 32-57   | Η   | Ph  | H   | Me  | Η   | H   | H   | Η   |
| 32-22   | Me  | Η   | Η   | Η   | Η   | Η   | Η               | Ph  | 13 | 32-58   | Η   | Ph  | Η   | Η   | Me  | Η   | Η   | Η   |
| 32-23   | Η   | Me  | Η   | Η   | Η   | Η   | H               | H   |    | 32-59   | Η   | Ph  | Η   | Η   | Η   | Me  | H   | Η   |
| 32-24   | Η   | Me  | Η   | Me  | Η   | Η   | Η               | Η   |    | 32-60   | Η   | Ph  | Η   | Η   | Η   | Η   | Me  | Η   |
| 32-25   | Η   | Me  | Η   | Η   | Me  | H   | H               | H   |    | 32-61   | Н   | Ph  | Η   | Η   | Η   | H   | H   | Me  |
| 32-26   | Η   | Me  | Η   | Η   | Η   | Me  | Η               | Η   |    | 32-62   | Η   | Ph  | Η   | Ph  | Η   | H   | Η   | Η   |
| 32-27   | Η   | Me  | Η   | Η   | Η   | Η   | Me              | Η   | 20 | 32-63   | Η   | Ph  | H   | Η   | Ph  | H   | H   | Η   |
| 32-28   | Η   | Me  | Η   | Η   | Η   | Η   | Η               | Me  | 20 | 32-64   | Η   | Ph  | Η   | Η   | Η   | Ph  | Η   | Η   |
| 32-29   | Η   | Me  | Η   | Ph  | Η   | Η   | Η               | Η   |    | 32-65   | Н   | Ph  | H   | Н   | Н   | Н   | Ph  | H   |
| 32-30   | Η   | Me  | Η   | Η   | Ph  | Η   | Η               | H   |    | 32-66   | Н   | Ph  | Н   | Н   | Н   | Н   | Н   | Ph  |
| 32-31   | Η   | Me  | Η   | Η   | Η   | Ph  | H               | H   |    | 32-67   | Н   | Н   | Ph  | Н   | Н   | Н   | Н   | Н   |
| 32-32   | Η   | Me  | Η   | Η   | Η   | H   | Ph              | H   |    | 32-68   | Н   | H   | Ph  | Me  | Н   | Н   | Н   | Н   |
| 32-33   | Η   | Me  | Η   | H   | Η   | H   | H               | Ph  |    | 32-69   | Н   | Н   | Ph  | Н   | Me  | Н   | Н   | Н   |
| 32-34   | Η   | Η   | Me  | H   | Η   | H   | H               | H   | 25 | 32-70   | Н   | Н   | Ph  | Н   | Н   | Me  | Н   | Н   |
| 32-35   | Η   | Η   | Me  | Me  | Η   | Η   | Η               | H   |    | 32-70   | Н   | Н   | Ph  | H   | Н   | Н   | Me  | Н   |
| 32-36   | Η   | Η   | Me  | H   | Me  | H   | H               | H   |    | 32-71   | н   | Н   | Ph  | Н   | Н   | Н   | H   |     |
| 32-37   | Η   | Η   | Me  | Η   | Η   | Me  | H               | H   |    |         |     |     |     |     |     |     |     | Me  |
| 32-38   | Η   | Η   | Me  | Η   | Η   | Η   | Me              | H   |    | 32-73   | H   | H   | Ph  | Ph  | H   | H   | H   | H   |
| 32-39   | Η   | Η   | Me  | Η   | Η   | Η   | H               | Me  |    | 32-74   | Н   | Η   | Ph  | Η   | Ph  | H   | H   | H   |
| 32-40   | Η   | Η   | Me  | Ph  | Η   | Η   | Η               | Η   | 30 |         | Η   | Η   | Ph  | H   | Η   | Ph  | Η   | Η   |
| 32-41   | Η   | Η   | Me  | H   | Ph  | H   | H               | H   |    | 32-76   | Η   | Η   | Ph  | Η   | Η   | Η   | Ph  | Η   |
| 32-42   | H   | H   | Me  | H   | Η   | Ph  | $_{\mathrm{H}}$ | H   |    | 32-77   | Η   | Η   | Ph  | Η   | Η   | H   | H   | Ph  |
| 32-43   | Η   | Η   | Me  | Η   | Η   | Н   | Ph              | Η   |    |         |     |     |     |     |     |     |     |     |

TABLE 33

| 33-1 Me H H H H H H H H H Me Me 33-2 Me H H H Me H H H H H H Me Me 33-3 Me H H H H Me H H H H H Me Me 33-4 Me H H H H H Me H H H H Me Me 33-5 Me H H H H H H Me H H H Me Me 33-6 Me H H H H H H H Me H Me Me 33-6 Me H H H H H H H Me Me Me 33-7 Me H H H H H H H H Me Me Me 33-8 Me H H H H H H H H H H Me Me 33-9 Me H H H H H H H H H H Me Me 33-10 Me H H H H H H H H H H H Me Me 33-11 Me H H H H H H H H H H Me Me 33-12 Me H H H H H H H H H H Me Me 33-13 Me H H H H H H H H H H Me Me 33-14 Ph H H H H H H H H H H H Me Me 33-15 Ph H H H H H H H H H H H ME Me 33-16 Me H H H H H H H H H H ME ME 33-17 Me H H H H H H H H H H ME ME 33-18 Me H H H H H H H H H H H ME ME 33-19 Me H H H H H H H H H H H ME ME 33-10 Me H H H H H H H H H H ME ME 33-11 Me H H H H H H H H H H ME ME 33-12 Me M H H H H H H H H H H H ME ME 33-15 Ph H H H H H H H H H H H ME ME 33-16 Ph H H H H H H H H H H H ME ME 33-17 Ph H H H H H H H H H H H ME ME 33-18 Ph H H H H H H H H H H ME ME 33-19 Ph H H H H H H H H H H ME ME 33-20 Ph H H H H H H H H H ME ME 33-21 Ph H H H H H H H H H H ME ME 33-22 Ph H H H H H H H H H H H ME ME 33-23 Ph H H H H H H H H H H H ME ME 33-24 Ph H H H H H H H H H H ME ME 33-25 Ph H H H H H H H H H H H ME ME 33-26 Ph H H H H H H H H H H H ME ME 33-27 Me Me H H H H H H H H H H ME ME 33-33 ME ME ME H H H H H H H H ME ME 33-33 ME ME ME H H H H H H H H H ME ME 33-33 ME ME ME H H H H H H H H H ME ME 33-33 ME ME ME H H H H H H H H ME ME 33-33 ME ME ME H H H H H H H H H ME ME 33-33 ME ME ME H H H H H H H H H ME ME 33-33 ME ME ME H H H H H H H H H H ME ME 33-33 ME ME ME H H H H H H H H H H ME ME 33-33 ME ME ME H H H H H H H H H H ME ME 33-33 ME ME ME H H H H H H H H H H H ME ME 33-34 ME ME ME H H H H H H H H H H H ME ME 33-34 ME ME ME H H H H H H H H H H H H ME ME 33-34 ME ME ME H H H H H H H H H H H H H ME ME 33-34 ME ME H H H H H H H H H H H H H H H H ME 33-34 ME ME H H H H H H H H H H H H H H H H ME 33-34 ME ME ME H H H H H H H H H H H H H H ME 33-34 ME ME H H H H H H H H H H H H H H H H ME 33-34 ME ME H H H H H H H H H H H H H H H H H | Cpd No. | Ra1 | Ra2 | Ra3 | Rb1 | Rb2 | Rb3 | Rb4 | Rb5 | Rb6 | Rb7 | Rb8 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 33-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 33-1    | Me  |     |     |     |     |     |     |     | Н   | Me  | Me  |
| 33-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |     |     |     |     |     |     |     |     |     |     |     |
| 33-5         Me         H         H         H         H         H         H         H         Me         H         H         Me         Me         H         Me         H         H         H         H         H         H         H         H         Me         Me <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |     |     |     |     |     |     |     |     |     |     |     |
| 33-6         Me         H         H         H         H         H         H         H         H         Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | Me  |     |     |     |     |     |     |     |     |     | Me  |
| 33-7         Me         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |     |     |     |     |     |     |     |     |     |     |     |
| 33-8         Me         H         H         Ph         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |     |     |     |     |     |     |     |     |     |     |     |
| 33-9         Me         H         H         H         Ph         H         H         H         Me         Me           33-10         Me         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |     |     |     |     |     |     |     |     |     |     |     |
| 33-10         Me         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |     |     |     |     |     |     |     |     |     |     |     |
| 33-11         Me         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |     |     |     |     |     |     |     |     |     |     |     |
| 33-12         Me         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |     |     |     |     |     |     |     |     |     |     |     |
| 33-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |     |     |     |     |     |     |     |     |     |     |     |
| 33-14         Ph         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |     |     |     |     |     |     |     |     |     |     |     |
| 33-15         Ph         H         H         Me         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |     |     |     |     |     |     |     |     |     |     |     |
| 33-16         Ph         H         H         H         H         H         H         H         H         H         H         Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |     |     |     |     |     |     |     |     |     |     |     |
| 33-17         Ph         H         H         H         H         H         H         H         H         Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |     |     |     |     |     |     |     |     |     |     |     |
| 33-18         Ph         H         H         H         H         H         Me         H         H         Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |     |     |     |     |     |     |     |     |     |     |     |
| 33-19         Ph         H         H         H         H         H         H         Me         Me         Me         Me         Me         Me         33-20         Ph         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |     |     |     |     |     |     |     |     |     |     |     |
| 33-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |     |     |     |     |     |     |     |     |     |     |     |
| 33-21         Ph         H         H         Ph         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |     |     |     |     |     |     |     |     |     |     |     |
| 33-22         Ph         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |     |     |     |     |     |     |     |     |     |     |     |
| 33-23         Ph         H         H         H         H         H         H         H         H         Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |     |     |     |     |     |     |     |     |     |     |     |
| 33-24         Ph         H         H         H         H         H         H         H         Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | Ph  |     |     |     |     | H   |     |     |     | Me  | Me  |
| 33-25         Ph         H         H         H         H         H         H         H         Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 33-23   | Ph  | Η   | Η   | Η   | Η   | Ph  | Η   | Η   | Η   | Me  | Me  |
| 33-26         Ph         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H <td>33-24</td> <td>Ph</td> <td>Η</td> <td>Η</td> <td>Η</td> <td>Η</td> <td>Η</td> <td>Ph</td> <td>Η</td> <td>Η</td> <td>Me</td> <td>Me</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 33-24   | Ph  | Η   | Η   | Η   | Η   | Η   | Ph  | Η   | Η   | Me  | Me  |
| 33-27         Me         Me         H         H         H         H         H         H         H         H         Me         Me         Me         Me         Me         Me         Me         H         H         H         H         H         H         H         H         Me         Me         Me         Me         Me         Me         Me         H         H         H         H         H         H         H         H         Me         Me </td <td>33-25</td> <td>Ph</td> <td>H</td> <td>H</td> <td>H</td> <td>H</td> <td>H</td> <td>H</td> <td>Ph</td> <td>H</td> <td>Me</td> <td>Me</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 33-25   | Ph  | H   | H   | H   | H   | H   | H   | Ph  | H   | Me  | Me  |
| 33-28         Me         Me         H         Me         H         H         H         H         H         H         Me         Me         Me         Me         Me         Me         Me         H         H         H         H         H         H         H         H         H         H         Me         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 33-26   | Ph  | H   | Η   | Η   | Η   | H   | H   | Η   | Ph  | Me  | Me  |
| 33-29 Me Me H H Me H H H Me Me Me 33-30 Me Me H H H H Me H H H Me Me 33-31 Me Me H H H H H Me H H Me Me 33-31 Me Me H H H H H H Me H Me Me 33-33 Me Me H H H H H H H Me Me Me 33-34 Me Me H H H H H H H H Me Me Me 33-34 Me Me H H Ph H H H H H M Me Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 33-27   | Me  | Me  | Η   | Η   | Η   | H   | H   | Η   | Η   | Me  | Me  |
| 33-30 Me Me H H H H Me H H Me Me<br>33-31 Me Me H H H H H Me H H Me Me<br>33-32 Me Me H H H H H H Me H Me Me<br>33-33 Me Me H H H H H H H Me Me Me<br>33-34 Me Me H Ph H H H H H Me Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 33-28   | Me  | Me  | Η   | Me  | Η   | H   | H   | Η   | Η   | Me  | Me  |
| 33-30 Me Me H H H H Me H H Me Me<br>33-31 Me Me H H H H H Me H H Me Me<br>33-32 Me Me H H H H H H Me H Me Me<br>33-33 Me Me H H H H H H H Me Me Me<br>33-34 Me Me H Ph H H H H H Me Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 33-29   | Me  | Me  | H   | Η   | Me  | Н   | Н   | Н   | Н   | Me  | Me  |
| 33-31 Me Me H H H H H Me H H Me Me<br>33-32 Me Me H H H H H H Me H Me Me<br>33-33 Me Me H H H H H H H Me Me Me<br>33-34 Me Me H Ph H H H H Me Me Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 33-30   | Me  | Me  | Н   | Н   | Н   | Me  | Н   |     | Н   | Me  | Me  |
| 33-32 Me Me H H H H H Me H Me Me<br>33-33 Me Me H H H H H H H Me Me Me<br>33-34 Me Me H Ph H H H H Me Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |     |     |     |     |     |     |     |     |     |     |     |
| 33-33 Me Me H H H H H H Me Me Me 33-34 Me Me H Ph H H H H H Me Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |     |     |     |     |     |     |     |     |     |     |     |
| 33-34 Me Me H Ph H H H H Me Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |     |     |     |     |     |     |     |     |     |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |     |     |     |     |     |     |     |     |     |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 33-35   | Me  | Me  | Н   | Н   | Ph  | Н   | Н   | H   | H   | Me  | Me  |

177
TABLE 33-continued

|                  |          |          |          |         | ∠E 33   | • • • • • • • • • • • • • • • • • • • • |         |         |         |          |          |
|------------------|----------|----------|----------|---------|---------|-----------------------------------------|---------|---------|---------|----------|----------|
| Cpd No.          | Ra1      | Ra2      | Ra3      | Rb1     | Rb2     | Rb3                                     | Rb4     | Rb5     | Rb6     | Rb7      | Rb8      |
| 33-36            | Me       | Me       | Н        | Н       | Н       | Ph                                      | Н       | Н       | Н       | Me       | Me       |
| 33-37            | Me       | Me       | Н        | 1-I     | Н       | Н                                       | Ph      | Н       | Н       | Me       | Me       |
| 33-38            | Me       | Me       | Η        | Η       | Η       | Η                                       | Η       | Ph      | Н       | Me       | Me       |
| 33-39            | Me       | Me       | H        | H       | H       | H                                       | H       | H       | Ph      | Me       | Me       |
| 33-40<br>33-41   | Ph<br>Ph | Me<br>Me | H<br>H   | H<br>Me | H<br>H  | H<br>H                                  | H<br>H  | H<br>H  | H<br>H  | Me<br>Me | Me<br>Me |
| 33-42            | Ph       | Me       | Н        | Н       | Me      | Н                                       | Н       | Н       | Н       | Me       | Me       |
| 33-43            | Ph       | Me       | Η        | Η       | Η       | Me                                      | Η       | Η       | H       | Me       | Me       |
| 33-44            | Ph       | Me       | H        | H       | H       | H                                       | Me      | Н       | H       | Me       | Me       |
| 33-45<br>33-46   | Ph<br>Ph | Me<br>Me | H<br>H   | H<br>H  | H<br>H  | H<br>H                                  | H<br>H  | Me<br>H | H<br>Me | Me<br>Me | Me<br>Me |
| 33-47            | Ph       | Me       | H        | Ph      | Н       | Н                                       | H       | H       | Н       | Me       | Me       |
| 33-48            | Ph       | Me       | Н        | H       | Ph      | H                                       | Η       | H       | Н       | Me       | Me       |
| 33-49            | Ph       | Me       | Η        | Η       | Η       | Ph                                      | H       | Η       | Η       | Me       | Me       |
| 33-50<br>33-51   | Ph<br>Ph | Me<br>Me | H<br>H   | H<br>H  | H<br>H  | H<br>H                                  | Ph<br>H | H<br>Ph | H<br>H  | Me<br>Me | Me<br>Me |
| 33-52            | Ph       | Me       | H        | H       | H       | H                                       | H       | Н       | Ph      | Me       | Me       |
| 33-53            | Me       | Н        | Me       | Н       | Н       | Н                                       | Н       | Н       | Н       | Me       | Me       |
| 33-54            | Me       | Н        | Me       | Me      | Η       | Η                                       | Η       | Η       | Н       | Me       | Me       |
| 33-55<br>33-56   | Me<br>Me | H<br>H   | Me<br>Me | H<br>H  | Me<br>H | H<br>Me                                 | H<br>H  | H<br>H  | H<br>H  | Me<br>Me | Me       |
| 33-57            | Me       | Н        | Me       | Н       | Н       | H                                       | П<br>Ме | Н       | Н       | Me       | Me<br>Me |
| 33-58            | Me       | Н        | Me       | Н       | Н       | Н                                       | Н       | Me      | Н       | Me       | Me       |
| 33-59            | Me       | Η        | Me       | Η       | Η       | Η                                       | Η       | Η       | Me      | Me       | Me       |
| 33-60            | Me       | H        | Me       | Ph      | H       | H                                       | H       | H       | H       | Me       | Me       |
| 33-61<br>33-62   | Me<br>Me | H<br>H   | Me<br>Me | H<br>H  | Ph<br>H | H<br>Ph                                 | H<br>H  | H<br>H  | H<br>H  | Me<br>Me | Me<br>Me |
| 33-63            | Me       | Н        | Me       | Н       | Н       | Н                                       | Ph      | Н       | Н       | Me       | Me       |
| 33-64            | Me       | H        | Me       | H       | H       | H                                       | Η       | Ph      | H       | Me       | Me       |
| 33-65            | Me       | Η        | Me       | Η       | Н       | Η                                       | Η       | Η       | Ph      | Me       | Me       |
| 33-66<br>33-67   | Ph<br>Ph | H<br>H   | Me<br>Me | H<br>Me | H<br>H  | H<br>H                                  | H<br>H  | H<br>H  | H<br>H  | Me<br>Me | Me<br>Me |
| 33-68            | Ph       | H        | Me       | H       | Me      | H                                       | Н       | H       | H       | Me       | Me       |
| 33-69            | Ph       | Н        | Me       | Н       | Н       | Me                                      | Н       | Н       | Н       | Me       | Me       |
| 33-70            | Ph       | Η        | Me       | Η       | Η       | Η                                       | Me      | Η       | Н       | Me       | Me       |
| 33-71            | Ph<br>Ph | H<br>H   | Me<br>Me | H<br>H  | H<br>H  | H<br>H                                  | H<br>H  | Me<br>H | H<br>Me | Me<br>Me | Me       |
| 33-72<br>33-73   | Ph       | Н        | Me       | Ph      | Н       | Н                                       | Н       | Н       | H       | Me       | Me<br>Me |
| 33-74            | Ph       | Н        | Me       | Н       | Ph      | Н                                       | Н       | Н       | Н       | Me       | Me       |
| 33-75            | Ph       | Η        | Me       | Η       | Η       | Ph                                      | Η       | Η       | Н       | Me       | Me       |
| 33-76            | Ph       | Н        | Me       | Н       | Н       | Н                                       | Ph      | H       | H       | Me       | Me       |
| 33-77<br>33-78   | Ph<br>Ph | H<br>H   | Me<br>Me | H<br>H  | H<br>H  | H<br>H                                  | H<br>H  | Ph<br>H | H<br>Ph | Me<br>Me | Me<br>Me |
| 33-79            | Me       | Ph       | Н        | Н       | Н       | Н                                       | Н       | Н       | Н       | Me       | Me       |
| 33-80            | Me       | Ph       | Η        | Me      | Η       | Η                                       | Η       | Η       | Η       | Me       | Me       |
| 33-81            | Me       | Ph       | H        | H       | Me      | H                                       | H       | H       | H       | Me       | Me       |
| 33-82<br>33-83   | Me<br>Me | Ph<br>Ph | H<br>H   | H<br>H  | H<br>H  | Me<br>H                                 | H<br>Me | H<br>H  | H<br>H  | Me<br>Me | Me<br>Me |
| 33-84            | Me       | Ph       | Н        | Н       | Н       | Н                                       | Н       | Me      | Н       | Me       | Me       |
| 33-85            | Me       | Ph       | Η        | Η       | Η       | Η                                       | Η       | Η       | Me      | Me       | Me       |
| 33-86            | Me       | Ph       | H        | Ph      | H       | H                                       | H       | H       | H       | Me       | Me       |
| 33-87<br>33-88   | Me<br>Me | Ph<br>Ph | H<br>H   | H<br>H  | Ph<br>H | H<br>Ph                                 | H<br>H  | H<br>H  | H<br>H  | Me<br>Me | Me<br>Me |
| 33-89            | Me       | Ph       | Н        | Н       | Н       | Н                                       | Ph      | Н       | Н       | Me       | Me       |
| 33-90            | Me       | Ph       | Η        | Η       | Η       | Η                                       | Η       | Ph      | Η       | Me       | Me       |
| 33-91            | Me       | Ph       | H        | H       | H       | H                                       | H       | H       | Ph      | Me       | Me       |
| 33-92<br>33-93   | Ph<br>Ph | Ph<br>Ph | H<br>H   | H<br>Me | H<br>H  | H<br>H                                  | H<br>H  | H<br>H  | H<br>H  | Me<br>Me | Me<br>Me |
| 33-94            | Ph       | Ph       | H        | Н       | Me      | Н                                       | Н       | H       | H       | Me       | Me       |
| 33-95            | Ph       | Ph       | Η        | Η       | Η       | Me                                      | Η       | Η       | Н       | Me       | Me       |
| 33-96            | Ph       | Ph       | H        | H       | H       | H                                       | Me      | Н       | H       | Me       | Me       |
| 33-97<br>33-98   | Ph<br>Ph | Ph<br>Ph | H<br>H   | H<br>H  | H<br>H  | H<br>H                                  | H<br>H  | Me<br>H | H<br>Me | Me<br>Me | Me<br>Me |
| 33-99            | Ph       | Ph       | H        | Ph      | H       | H                                       | H       | H       | H       | Me       | Me       |
| 33-100           | Ph       | Ph       | Η        | Η       | Ph      | Η                                       | Η       | Η       | Η       | Me       | Me       |
| 33-101           | Ph       | Ph       | Η        | Η       | Η       | Ph                                      | Η       | Η       | Н       | Me       | Me       |
| 33-102           | Ph       | Ph       | Н        | Н       | Н       | Н                                       | Ph      | H<br>Ph | Н       | Me       | Me       |
| 33-103<br>33-104 | Ph<br>Ph | Ph<br>Ph | H<br>H   | H<br>H  | H<br>H  | H<br>H                                  | H<br>H  | Ph<br>H | H<br>Ph | Me<br>Me | Me<br>Me |
| 33-105           | Me       | Н        | Ph       | Н       | Н       | Н                                       | Н       | H       | Н       | Me       | Me       |
| 33-106           | Me       | Η        | Ph       | Me      | Η       | Η                                       | Η       | Η       | Н       | Me       | Me       |
| 33-107           | Me       | Н        | Ph       | Н       | Ме      | H<br>Mo                                 | Н       | Н       | Н       | Me       | Me       |
| 33-108<br>33-109 | Me<br>Me | H<br>H   | Ph<br>Ph | H<br>H  | H<br>H  | Me<br>H                                 | H<br>Me | H<br>H  | H<br>H  | Me<br>Me | Me<br>Me |
| 33-102           | Me       | Н        | Ph       | Н       | Н       | Н                                       | Н       | Me      | Н       | Me       | Me       |
| 33-111           | Me       | Η        | Ph       | Η       | Η       | Η                                       | Η       | Η       | Me      | Me       | Me       |
| 33-112           | Me       | Н        | Ph       | Ph      | H       | H                                       | Н       | Н       | Н       | Me       | Me       |
| 33-113           | Me       | Н        | Ph       | Η       | Ph      | Η                                       | Η       | Н       | Н       | Me       | Me       |

179
TABLE 33-continued

| Cpd No. | Ra1 | Ra2 | Ra3 | Rb1 | Rb2 | Rb3 | Rb4 | Rb5 | Rb6 | Rb7 | Rb8 |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 33-114  | Me  | Н   | Ph  | Н   | Н   | Ph  | Н   | Н   | Н   | Me  | Me  |
| 33-115  | Me  | H   | Ph  | H   | H   | H   | Ph  | H   | H   | Me  | Me  |
| 33-116  | Me  | Η   | Ph  | Η   | Η   | Η   | Η   | Ph  | Η   | Me  | Me  |
| 33-117  | Me  | Η   | Ph  | Η   | Η   | Η   | Η   | Η   | Ph  | Me  | Me  |
| 33-118  | Ph  | Η   | Ph  | Н   | Н   | Н   | Η   | Η   | Η   | Me  | Me  |
| 33-119  | Ph  | H   | Ph  | Me  | Н   | H   | H   | H   | Η   | Me  | Me  |
| 33-120  | Ph  | Η   | Ph  | Η   | Me  | Η   | Η   | Η   | Η   | Me  | Me  |
| 33-121  | Ph  | H   | Ph  | Н   | Η   | Me  | Η   | H   | Η   | Me  | Me  |
| 33-122  | Ph  | H   | Ph  | Η   | Η   | Η   | Me  | H   | H   | Me  | Me  |
| 33-123  | Ph  | H   | Ph  | Н   | Η   | Η   | Η   | Me  | Η   | Me  | Me  |
| 33-124  | Ph  | H   | Ph  | Η   | Η   | Η   | Η   | H   | Me  | Me  | Me  |
| 33-125  | Ph  | Η   | Ph  | Ph  | Η   | Η   | Η   | Η   | Η   | Me  | Me  |
| 33-126  | Ph  | H   | Ph  | H   | Ph  | H   | H   | H   | H   | Me  | Me  |
| 33-127  | Ph  | H   | Ph  | Н   | Η   | Ph  | Η   | Η   | Η   | Me  | Me  |
| 33-128  | Ph  | Н   | Ph  | Н   | Н   | Н   | Ph  | H   | H   | Me  | Me  |
| 33-129  | Ph  | Н   | Ph  | Н   | Н   | Н   | Н   | Ph  | Н   | Me  | Me  |
| 33-130  | Ph  | Η   | Ph  | Η   | Η   | Η   | Н   | Н   | Ph  | Me  | Me  |

TABLE 34

|         |      |     |      |     | 12.1 | DLL. | 77  |     |     |     |      |      |
|---------|------|-----|------|-----|------|------|-----|-----|-----|-----|------|------|
| Cpd No. | Ra1  | Ra2 | Ra3  | Ra4 | Rb1  | Rb2  | Rb3 | Rb4 | Rb5 | Rb6 | Rb7  | Rb8  |
| 34-1    | Me   | Н   | Н    | Н   | Н    | Н    | Н   | Н   | Н   | Н   | Me   | Me   |
| 34-2    | Me   | Η   | Η    | Η   | Me   | Η    | Η   | Η   | Η   | Η   | Me   | Me   |
| 34-3    | Me   | H   | H    | H   | H    | Me   | Η   | H   | H   | H   | Me   | Me   |
| 34-4    | Me   | Η   | Η    | Η   | Η    | Η    | Me  | Η   | Η   | Η   | Me   | Me   |
| 34-5    | Me   | H   | Н    | Н   | Н    | Н    | H   | Me  | Н   | Н   | Me   | Me   |
| 34-6    | Me   | H   | H    | H   | H    | H    | Η   | H   | Me  | H   | Me   | Me   |
| 34-7    | Me   | Η   | Η    | Η   | Η    | Η    | Η   | Η   | Η   | Me  | Me   | Me   |
| 34-8    | Me   | H   | H    | Η   | Ph   | Η    | Η   | H   | H   | Η   | Me   | Me   |
| 34-9    | Me   | H   | H    | H   | H    | Ph   | Η   | H   | H   | H   | Me   | Me   |
| 34-10   | Me   | Η   | H    | Н   | Н    | Η    | Ph  | Н   | Н   | Н   | Me   | Me   |
| 34-11   | Me   | Н   | H    | Н   | Н    | H    | H   | Ph  | Н   | H   | Me   | Me   |
| 34-12   | Me   | Н   | Н    | Н   | Н    | Н    | H   | Н   | Ph  | Н   | Me   | Me   |
| 34-13   | Me   | H   | Н    | Н   | Н    | Н    | Н   | H   | Н   | Ph  | Me   | Me   |
| 34-14   | Ph   | Н   | H    | Н   | Н    | Н    | H   | H   | Н   | H   | Me   | Me   |
| 34-15   | Ph   | Н   | Н    | Н   | Me   | Н    | Н   | Н   | Н   | Н   | Me   | Me   |
| 34-16   | Ph   | Н   | Η    | Н   | Н    | Me   | Н   | Н   | Н   | Н   | Me   | Me   |
| 34-17   | Ph   | H   | H    | Н   | Н    | Н    | Me  | Н   | Н   | Н   | Me   | Me   |
| 34-18   | Ph   | H   | H    | Н   | Н    | Н    | Н   | Me  | Н   | Н   | Me   | Me   |
| 34-19   | Ph   | Н   | Н    | Н   | Н    | Н    | Н   | Н   | Me  | Н   | Me   | Me   |
| 34-20   | Ph   | H   | Н    | Н   | Н    | Н    | Н   | Н   | Н   | Me  | Me   | Me   |
| 34-21   | Ph   | H   | H    | Н   | Ph   | Н    | H   | H   | Н   | Н   | Me   | Me   |
| 34-22   | Ph   | H   | H    | Н   | Н    | Ph   | H   | H   | H   | Н   | Me   | Me   |
| 34-23   | Ph   | H   | H    | Н   | Н    | Н    | Ph  | H   | H   | Н   | Me   | Me   |
| 34-24   | Ph   | H   | H    | Н   | Н    | Н    | Н   | Ph  | Н   | Н   | Me   | Me   |
| 34-25   | Ph   | H   | H    | Н   | Н    | Н    | H   | Н   | Ph  | H   | Me   | Me   |
| 34-26   | Ph   | H   | H    | Н   | Н    | Н    | H   | H   | Н   | Ph  | Me   | Me   |
| 34-27   | Me   | Me  | H    | H   | Н    | H    | H   | H   | H   | Н   | Me   | Me   |
| 34-28   | Me   | Me  | H    | Н   | Me   | Н    | Н   | Н   | Н   | Н   | Me   | Me   |
| 34-29   | Me   | Me  | H    | Н   | Н    | Me   | Н   | Н   | Н   | Н   | Me   | Me   |
| 34-30   | Me   | Me  | H    | H   | H    | Н    | Me  | H   | H   | H   | Me   | Me   |
| 34-31   | Me   | Me  | H    | Н   | Н    | Н    | Н   | Me  | H   | Н   | Me   | Me   |
| 34-32   | Me   | Me  | Н    | Н   | Н    | Н    | Н   | H   | Me  | Н   | Me   | Me   |
| 34-33   | Me   | Me  | H    | H   | H    | H    | H   | H   | Н   | Me  | Me   | Me   |
| 34-34   | Me   | Me  | H    | Н   | Ph   | Н    | H   | H   | H   | Н   | Me   | Me   |
| 34-35   | Me   | Me  | H    | H   | Н    | Ph   | H   | H   | H   | H   | Me   | Me   |
| 34-36   | Me   | Me  | Н    | Н   | Н    | Н    | Ph  | Н   | Н   | Н   | Me   | Me   |
| 34-37   | Me   | Me  | H    | Н   | Н    | Н    | Н   | Ph  | H   | Н   | Me   | Me   |
| 34-38   | Me   | Me  | H    | H   | H    | H    | H   | H   | Ph  | H   | Me   | Me   |
| 34-39   | Me   | Me  | H    | Н   | Н    | Н    | H   | Н   | Н   | Ph  | Me   | Me   |
| 34-40   | Ph   | Me  | Н    | Н   | Н    | Н    | Н   | H   | Н   | Н   | Me   | Me   |
| 34-41   | Ph   | Me  | H    | H   | Me   | H    | H   | H   | H   | H   | Me   | Me   |
| 34-42   | Ph   | Me  | H    | Н   | Н    | Me   | H   | Н   | Н   | Н   | Me   | Me   |
| 34-43   | Ph   | Me  | H    | H   | Н    | Н    | Me  | H   | Н   | H   | Me   | Me   |
| 34-44   | Ph   | Me  | H    | H   | Н    | H    | Н   | Me  | H   | H   | Me   | Me   |
| 34-45   | Ph   | Me  | Н    | Н   | Н    | Н    | Н   | Н   | Me  | Н   | Me   | Me   |
| 34-46   | Ph   | Me  | H    | Н   | Н    | H    | H   | H   | Н   | Me  | Me   | Me   |
| 34-47   | Ph   | Me  | Н    | Н   | Ph   | Н    | Н   | Н   | Н   | Н   | Me   | Me   |
| 34-48   | Ph   | Me  | H    | Н   | Н    | Ph   | Н   | Н   | Н   | Н   | Me   | Me   |
| 34-49   | Ph   | Me  | H    | Н   | Н    | Н    | Ph  | H   | Н   | Н   | Me   | Me   |
| 34-50   | Ph   | Me  | H    | H   | Н    | Н    | Н   | Ph  | Н   | H   | Me   | Me   |
| 34-50   | Ph   | Me  | H    | H   | Н    | Н    | H   | Н   | Ph  | H   | Me   | Me   |
| 34-52   | Ph   | Me  | H    | Н   | Н    | Н    | Н   | H   | Н   | Ph  | Me   | Me   |
| 34-52   | Me   | H   | Мe   | Н   | Н    | Н    | Н   | Н   | Н   | Н   | Me   | Me   |
| シオーシン   | IVIC | II  | IVIC | TT  | II   | TT   | 11  | TT  | 11  | 11  | IVIC | TATE |

TABLE 34-continued

|                  |          |          |          | 12       | DLE     | 34-co   | mimue   | zu –    |           |         |          |          |
|------------------|----------|----------|----------|----------|---------|---------|---------|---------|-----------|---------|----------|----------|
| Cpd No.          | Ra1      | Ra2      | Ra3      | Ra4      | Rb1     | Rb2     | Rb3     | Rb4     | Rb5       | Rb6     | Rb7      | Rb8      |
| 34-54            | Me       | Н        | Me       | Н        | Me      | Н       | Н       | Н       | Н         | Н       | Me       | Me       |
| 34-55            | Me       | Η        | Me       | Η        | H       | Me      | H       | Η       | Η         | H       | Me       | Me       |
| 34-56            | Me       | H        | Me       | H        | H       | H       | Me      | Н       | H         | H       | Me       | Me       |
| 34-57<br>34-58   | Me<br>Me | H<br>H   | Me<br>Me | H<br>H   | H<br>H  | H<br>H  | H<br>H  | Me<br>H | H<br>Me   | H<br>H  | Me<br>Me | Me<br>Me |
| 34-59            | Me       | H        | Me       | Н        | Н       | Н       | Н       | H       | Н         | Me      | Me       | Me       |
| 34-60            | Me       | Η        | Me       | Η        | Ph      | Η       | Η       | Η       | Η         | Η       | Me       | Me       |
| 34-61            | Me       | H        | Me       | Н        | H       | Ph      | H       | H       | H         | Н       | Me       | Me       |
| 34-62<br>34-63   | Me<br>Me | H<br>H   | Me<br>Me | H<br>H   | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H    | H<br>H  | Me<br>Me | Me<br>Me |
| 34-64            | Me       | H        | Me       | Н        | Н       | Н       | Н       | Н       | Ph        | Н       | Me       | Me       |
| 34-65            | Me       | Η        | Me       | Η        | Η       | Η       | Η       | Η       | Η         | Ph      | Me       | Me       |
| 34-66            | Ph       | H        | Me       | Н        | Н       | H       | H       | H       | H         | H       | Me       | Me       |
| 34-67<br>34-68   | Ph<br>Ph | H<br>H   | Me<br>Me | H<br>H   | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H    | H<br>H  | Me<br>Me | Me<br>Me |
| 34-69            | Ph       | Н        | Me       | Н        | Н       | Н       | Me      | Н       | Н         | Н       | Me       | Me       |
| 34-70            | Ph       | Η        | Me       | Η        | Η       | Η       | Η       | Me      | Η         | Η       | Me       | Me       |
| 34-71            | Ph       | H        | Me       | H        | Н       | H       | H       | H       | Me        | Н       | Me       | Me       |
| 34-72<br>34-73   | Ph<br>Ph | H<br>H   | Me<br>Me | H<br>H   | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H    | Me<br>H | Me<br>Me | Me<br>Me |
| 34-74            | Ph       | Н        | Me       | Н        | Н       | Ph      | Н       | Н       | Н         | Н       | Me       | Me       |
| 34-75            | Ph       | Η        | Me       | Η        | Η       | Η       | Ph      | Η       | Η         | Η       | Me       | Me       |
| 34-76            | Ph       | H        | Me       | H        | H       | H       | H       | Ph      | H         | H       | Me       | Me       |
| 34-77<br>34-78   | Ph<br>Ph | H<br>H   | Me<br>Me | H<br>H   | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph<br>H   | H<br>Ph | Me<br>Me | Me<br>Me |
| 34-79            | Me       | H        | Н        | Me       | Н       | Н       | Н       | H       | H         | Н       | Me       | Me       |
| 34-80            | Me       | Η        | Η        | Me       | Me      | H       | Η       | Η       | H         | H       | Me       | Me       |
| 34-81            | Me       | H        | H        | Me       | Н       | Me      | Н       | H       | H         | H       | Me       | Me       |
| 34-82<br>34-83   | Me<br>Me | H<br>H   | H<br>H   | Me<br>Me | H<br>H  | H<br>H  | Me<br>H | H<br>Me | H<br>H    | H<br>H  | Me<br>Me | Me<br>Me |
| 34-84            | Me       | H        | Н        | Me       | Н       | Н       | H       | Н       | Me        | Н       | Me       | Me       |
| 34-85            | Me       | Η        | Η        | Me       | Η       | Η       | Η       | Η       | Η         | Me      | Me       | Me       |
| 34-86            | Me       | Н        | Н        | Me       | Ph      | H       | H       | Н       | H         | Н       | Me       | Me       |
| 34-87<br>34-88   | Me<br>Me | H<br>H   | H<br>H   | Me<br>Me | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H    | H<br>H  | Me<br>Me | Me<br>Me |
| 34-89            | Me       | Н        | Н        | Me       | Н       | Н       | Н       | Ph      | H         | Н       | Me       | Me       |
| 34-90            | Me       | Η        | Η        | Me       | Η       | Н       | Η       | Η       | Ph        | Н       | Me       | Me       |
| 34-91            | Me       | H        | H        | Me       | H       | H       | H       | H       | H         | Ph      | Me       | Me       |
| 34-92<br>34-93   | Ph<br>Ph | H<br>H   | H<br>H   | Me<br>Me | H<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H    | H<br>H  | Me<br>Me | Me<br>Me |
| 34-94            | Ph       | Н        | Н        | Me       | Н       | Me      | Н       | Н       | Н         | Н       | Me       | Me       |
| 34-95            | Ph       | Η        | Η        | Me       | Η       | Η       | Me      | Η       | Η         | Η       | Me       | Me       |
| 34-96            | Ph       | H        | H        | Me       | Н       | H       | H       | Me      | H         | H       | Me       | Me       |
| 34-97<br>34-98   | Ph<br>Ph | H<br>H   | H<br>H   | Me<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H   | H<br>Me | Me<br>Me | Me<br>Me |
| 34-99            | Ph       | Н        | Н        | Me       | Ph      | Н       | Н       | Н       | Н         | Н       | Me       | Me       |
| 34-100           | Ph       | Η        | Η        | Me       | Η       | Ph      | Н       | Η       | Η         | Н       | Me       | Me       |
| 34-101           | Ph       | H<br>H   | H        | Me       | H       | H<br>H  | Ph      | H       | H<br>H    | H       | Me       | Me       |
| 34-102<br>34-103 | Ph<br>Ph | Н        | H<br>H   | Me<br>Me | H<br>H  | Н       | H<br>H  | Ph<br>H | п<br>Ph   | H<br>H  | Me<br>Me | Me<br>Me |
| 34-104           | Ph       | Η        | Η        | Me       | Η       | Η       | Н       | Η       | Н         | Ph      | Me       | Me       |
| 34-105           | Me       | Ph       | Η        | H        | Н       | Н       | Н       | H       | Н         | Н       | Me       | Me       |
| 34-106<br>34-107 | Me<br>Me | Ph<br>Ph | H<br>H   | H<br>H   | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H    | H<br>H  | Me<br>Me | Me<br>Me |
| 34-107           | Me       | Ph       | H        | Н        | Н       | Н       | Me      | H       | H         | Н       | Me       | Me       |
| 34-109           | Me       | Ph       | Η        | Η        | Η       | Η       | Η       | Me      | Η         | H       | Me       | Me       |
| 34-110           | Me       | Ph       | H        | Н        | Н       | H       | H       | Н       | Me        | Н       | Me       | Me       |
| 34-111<br>34-112 | Me<br>Me | Ph<br>Ph | H<br>H   | H<br>H   | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H    | Me<br>H | Me<br>Me | Me<br>Me |
| 34-113           | Me       | Ph       | Н        | Н        | Н       | Ph      | Н       | Н       | Н         | Н       | Me       | Me       |
| 34-114           | Me       | Ph       | Η        | Η        | Η       | Η       | Ph      | Η       | Η         | Н       | Me       | Me       |
| 34-115           | Me       | Ph       | H        | H        | Н       | H       | H       | Ph      | H         | Н       | Me       | Me       |
| 34-116<br>34-117 | Me<br>Me | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph<br>H   | H<br>Ph | Me<br>Me | Me<br>Me |
| 34-118           | Ph       | Ph       | Н        | Н        | Н       | Н       | Н       | Н       | Н         | Н       | Me       | Me       |
| 34-119           | Ph       | Ph       | Η        | Η        | Me      | Η       | Н       | Η       | Η         | Н       | Me       | Me       |
| 34-120           | Ph<br>Ph | Ph       | Н        | Н        | Н       | Mе      | H<br>Mo | Н       | Н         | Н       | Me       | Me       |
| 34-121<br>34-122 | Ph<br>Ph | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H  | H<br>H  | Me<br>H | H<br>Me | $_{ m H}$ | H<br>H  | Me<br>Me | Me<br>Me |
| 34-123           | Ph       | Ph       | H        | Н        | Н       | Н       | Н       | Н       | Me        | Н       | Me       | Me       |
| 34-124           | Ph       | Ph       | H        | Η        | H       | Η       | Η       | Η       | Η         | Me      | Me       | Me       |
| 34-125           | Ph       | Ph       | Н        | Н        | Ph      | H       | Н       | Н       | Н         | Н       | Me       | Me       |
| 34-126<br>34-127 | Ph<br>Ph | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H    | H<br>H  | Me<br>Me | Me<br>Me |
| 34-128           | Ph       | Ph       | H        | Н        | Н       | Н       | Н       | Ph      | H         | Н       | Me       | Me       |
| 34-129           | Ph       | Ph       | Η        | Η        | H       | H       | Η       | Η       | Ph        | H       | Me       | Me       |
| 34-130           | Ph       | Ph       | H        | H        | Н       | H       | H       | H       | H         | Ph      | Me       | Me       |
| 34-131           | Me       | H        | Ph       | Н        | Н       | Н       | Η       | H       | Н         | Н       | Me       | Me       |

**183**TABLE 34-continued

| Cpd No.          | Ra1      | Ra2    | Ra3    | Ra4      | Rb1     | Rb2     | Rb3     | Rb4     | Rb5     | Rb6    | Rb7      | Rb8      |
|------------------|----------|--------|--------|----------|---------|---------|---------|---------|---------|--------|----------|----------|
| 34-132           | Me       | Н      | Ph     | Н        | Me      | Н       | Н       | Н       | Н       | Н      | Me       | Me       |
| 34-133           | Me       | Η      | Ph     | Η        | Η       | Me      | Η       | Η       | Η       | Η      | Me       | Me       |
| 34-134           | Me       | Η      | Ph     | Η        | H       | Η       | Me      | H       | H       | H      | Me       | Me       |
| 34-135           | Me       | Η      | Ph     | Η        | Η       | Η       | Η       | Me      | H       | Η      | Me       | Me       |
| 34-136           | Me       | Η      | Ph     | Η        | Η       | Η       | Η       | Η       | Me      | Η      | Me       | Me       |
| 34-137           | Me       | Η      | Ph     | Η        | H       | Η       | H       | H       | H       | Me     | Me       | Me       |
| 34-138           | Me       | Η      | Ph     | Η        | Ph      | Η       | Η       | Η       | H       | H      | Me       | Me       |
| 34-139           | Me       | Η      | Ph     | Η        | Η       | Ph      | Η       | H       | H       | H      | Me       | Me       |
| 34-140           | Me       | Η      | Ph     | Η        | Η       | Η       | Ph      | H       | H       | Η      | Me       | Me       |
| 34-141           | Me       | Η      | Ph     | Η        | Η       | Η       | Η       | Ph      | H       | H      | Me       | Me       |
| 34-142           | Me       | Η      | Ph     | Η        | Η       | Η       | Η       | H       | Ph      | H      | Me       | Me       |
| 34-143           | Me       | Η      | Ph     | Η        | Η       | Η       | Η       | Η       | Η       | Ph     | Me       | Me       |
| 34-144           | Ph       | Η      | Ph     | Η        | Η       | Η       | Η       | H       | H       | H      | Me       | Me       |
| 34-145           | Ph       | Η      | Ph     | Η        | Me      | Η       | Η       | Η       | Η       | Η      | Me       | Me       |
| 34-146           | Ph       | Η      | Ph     | Η        | Η       | Me      | Η       | H       | H       | H      | Me       | Me       |
| 34-147           | Ph       | H      | Ph     | H        | Η       | H       | Me      | H       | H       | H      | Me       | Me       |
| 34-148           | Ph       | H      | Ph     | H        | Η       | H       | H       | Me      | H       | H      | Me       | Me       |
| 34-149           | Ph       | H      | Ph     | H        | Η       | H       | H       | H       | Me      | H      | Me       | Me       |
| 34-150           | Ph       | Η      | Ph     | Η        | Η       | Η       | Η       | Η       | Η       | Me     | Me       | Me       |
| 34-151           | Ph       | Η      | Ph     | H        | Ph      | H       | Н       | Н       | Н       | Н      | Me       | Me       |
| 34-152           | Ph       | H      | Ph     | H        | Н       | Ph      | H       | Н       | Н       | Н      | Me       | Me       |
| 34-153           | Ph       | H      | Ph     | H        | Н       | H       | Ph      | H       | Н       | Н      | Me       | Me       |
| 34-154           | Ph       | H      | Ph     | H        | H       | H       | H       | Ph      | H       | H      | Me       | Me       |
| 34-155           | Ph       | H      | Ph     | Н        | Н       | H       | Н       | H       | Ph      | H      | Me       | Me       |
| 34-156           | Ph       | H      | Ph     | H        | H       | H       | H       | H       | H       | Ph     | Me       | Me       |
| 34-157           | Me       | H      | H      | Ph       | Н       | H       | H       | H       | H       | H      | Me       | Me       |
| 34-158           | Me       | H<br>H | H<br>H | Ph<br>Ph | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H | Me       | Me       |
| 34-159<br>34-160 | Me<br>Me | Н      | Н      | Ph       | Н       | H       | п<br>Ме | Н       | Н       | Н      | Me<br>Me | Me<br>Me |
| 34-161           | Me       | Н      | Н      | Ph       | Н       | Н       | H       | П<br>Ме | Н       | Н      | Me       | Me       |
| 34-161           | Me       | Н      | Н      | Ph       | Н       | Н       | Н       | Н       | П<br>Ме | Н      | Me       | Me       |
| 34-163           | Me       | Н      | Н      | Ph       | Н       | Н       | Н       | Н       | Н       | Me     | Me       | Me       |
| 34-164           | Me       | H      | H      | Ph       | Ph      | H       | Н       | H       | H       | Н      | Me       | Me       |
| 34-165           | Me       | H      | Н      | Ph       | Н       | Ph      | Н       | H       | H       | Н      | Me       | Me       |
| 34-166           | Me       | H      | H      | Ph       | H       | Н       | Ph      | H       | Н       | Н      | Me       | Me       |
| 34-167           | Me       | H      | Н      | Ph       | Н       | Н       | Н       | Ph      | Н       | Н      | Me       | Me       |
| 34-168           | Me       | H      | H      | Ph       | Н       | Н       | Н       | Н       | Ph      | Н      | Me       | Me       |
| 34-169           | Me       | Н      | Н      | Ph       | Н       | Н       | Н       | Н       | Н       | Ph     | Me       | Me       |
| 34-170           | Ph       | Н      | Н      | Ph       | Н       | Н       | Н       | Н       | Н       | Н      | Me       | Me       |
| 34-171           | Ph       | H      | Н      | Ph       | Me      | Н       | Н       | Н       | Н       | Н      | Me       | Me       |
| 34-172           | Ph       | Н      | Н      | Ph       | Н       | Me      | Н       | Н       | Н       | Н      | Me       | Me       |
| 34-172           | Ph       | H      | Н      | Ph       | Н       | H       | Me      | Н       | Н       | Н      |          |          |
|                  | Ph<br>Ph | Н      | Н      | Pn<br>Ph |         | Н       | Н       | н<br>Ме | Н       | Н      | Me       | Me<br>Me |
| 34-174           |          |        |        |          | H       |         |         |         |         |        | Me       | Me       |
| 34-175           | Ph       | H      | H      | Ph       | H       | H       | Н       | H       | Me      | Н      | Me       | Me       |
| 34-176           | Ph       | H      | H      | Ph       | H       | H       | Н       | H       | H       | Me     | Me       | Me       |
| 34-177           | Ph       | H      | H      | Ph       | Ph      | H       | H       | H       | H       | H      | Me       | Me       |
| 34-178           | Ph       | H      | Н      | Ph       | Н       | Ph      | H       | Н       | Н       | Н      | Me       | Me       |
| 34-179           | Ph       | Η      | Η      | Ph       | Η       | Η       | Ph      | Н       | Η       | Η      | Me       | Me       |
| 34-180           | Ph       | Η      | Η      | Ph       | Η       | Η       | Η       | Ph      | Н       | Η      | Me       | Me       |
| 34-181           | Ph       | Η      | H      | Ph       | Η       | Η       | Η       | H       | Ph      | H      | Me       | Me       |
| 34-182           | Ph       | Η      | Η      | Ph       | Η       | Η       | Η       | H       | H       | Ph     | Me       | Me       |

TABLE 35

| Cpd No. | Ra1 | Ra2 | Ra3 | Ra4 | Ra5 | Rb1 | Rb2 | Rb3 | Rb4 | Rb5 | Rb6 | Rb7 | Rb8 |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 35-1    | Me  | Н   | Н   | Н   | Н   | Н   | Н   | Н   | Н   | Н   | Н   | Me  | Me  |
| 35-2    | Me  | Η   | Η   | H   | Η   | Me  | Η   | Η   | Н   | Н   | Η   | Me  | Me  |
| 35-3    | Me  | H   | H   | H   | H   | H   | Me  | H   | H   | H   | H   | Me  | Me  |
| 35-4    | Me  | H   | H   | Η   | H   | Η   | Η   | Me  | Η   | Η   | H   | Me  | Me  |
| 35-5    | Me  | H   | H   | H   | H   | Η   | Η   | H   | Me  | Η   | H   | Me  | Me  |
| 35-6    | Me  | H   | H   | H   | H   | H   | H   | Η   | Η   | Me  | H   | Me  | Me  |
| 35-7    | Me  | Η   | H   | Η   | H   | Η   | Η   | Η   | Η   | Η   | Me  | Me  | Me  |
| 35-8    | Me  | H   | H   | H   | H   | Ph  | Η   | H   | Η   | Η   | H   | Me  | Me  |
| 35-9    | Me  | H   | H   | H   | H   | H   | Ph  | H   | H   | H   | H   | Me  | Me  |
| 35-10   | Me  | H   | H   | Η   | H   | Η   | Η   | Ph  | Η   | Η   | H   | Me  | Me  |
| 35-11   | Me  | H   | H   | H   | H   | H   | Η   | H   | Ph  | Η   | H   | Me  | Me  |
| 35-12   | Me  | H   | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Ph  | Η   | Me  | Me  |
| 35-13   | Me  | Η   | Η   | Η   | H   | Η   | Η   | Η   | Η   | Η   | Ph  | Me  | Me  |
| 35-14   | Ph  | H   | H   | H   | H   | H   | H   | H   | H   | H   | H   | Me  | Me  |
| 35-15   | Ph  | H   | Η   | Η   | Η   | Me  | Η   | Η   | Η   | Η   | Η   | Me  | Me  |
| 35-16   | Ph  | H   | H   | Η   | H   | Η   | Me  | H   | H   | Η   | H   | Me  | Me  |
| 35-17   | Ph  | H   | H   | H   | H   | H   | H   | Me  | H   | H   | H   | Me  | Me  |
| 35-18   | Ph  | Η   | H   | H   | H   | H   | H   | Н   | Me  | Н   | Н   | Me  | Me  |
| 35-19   | Ph  | H   | H   | Η   | H   | H   | Η   | H   | H   | Me  | Η   | Me  | Me  |

185

TABLE 35-continued

| Section   Sect   |         |     |     |     |     | IABL | Æ 33- | contin | iuea |     |     |     |     |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|-----|-----|-----|------|-------|--------|------|-----|-----|-----|-----|-----|
| 35-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cpd No. | Ra1 | Ra2 | Ra3 | Ra4 | Ra5  | Rb1   | Rb2    | Rb3  | Rb4 | Rb5 | Rb6 | Rb7 | Rb8 |
| 35-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35-20   | Ph  | н   | Н   | н   | н    | н     | н      | Н    | н   | н   | Me  | Me  | Me  |
| 35-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-31 Me Me H H H H H H H Me H H Me Me Me M5-35-32 Me Me Me H H H H H H H ME H H ME ME M6 M5-35-32 Me Me Me H H H H H H H H H H H H ME ME M6 M6-35-34 Me Me H H H H H H H H H H H H ME M6 M6-35-36 Me Me H H H H H H H H H H H H M ME M6 M6-35-36 Me Me M6 H H H H H H H H H H H H M M6 M6-35-36 Me M6 M6 H H H H H H H H H H H H M M6 M6-35-37 Me M6 M6 H H H H H H H H H H H H H M M6 M6-35-37 Me M6 M6 H H H H H H H H H H H H H M M6 M6-35-37 Me M6 M6 H H H H H H H H H H H H H M M6 M6-35-36 Me M6 M6 H H H H H H H H H H H H H M M6 M6-35-36 Me M6 M6 H H H H H H H H H H H H H M M6 M6-35-36 M6 M6 M6 H H H H H H H H H H H H H M M6 M6-35-36 M6 M6 M6 H H H H H H H H H H H H M M6 M6-35-36 M6 M6 M6 H H H H H H H H H H H H M M6 M6-35-36 M6 M6 M6 H H H H H H H H H H H H M M6 M6-35-36 M6 M6 M6 H H H H H H H H H H H H M M6 M6-35-36 M6 M6 M6 H H H H H H H H H H H M M6 M6-35-36 M6 M6 M6 H H H H H H H H H H H M M6 M6-35-36 M6 M6 M6 M6 H H H H H H H H H H M M6 M6-35-36 M6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-31 Me Me Me H H H H H H H H Me H Me Me Me Mo Me Mo Me Mo Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-32 Me Me Me H H H H H H H H H ME ME ME 35-34 Me Me Me H H H H H H H H H H M ME ME 35-35 Me Me Me H H H H H H H H H H H M ME ME 35-36 Me Me Me H H H H H H H H H H H H M ME ME 35-37 Me Me Me H H H H H H H H H H H M ME ME 35-38 Me Me Me H H H H H H H H H H H H M ME ME 35-39 Me Me Me H H H H H H H H H H H H M ME ME 35-39 Me Me ME H H H H H H H H H H H H M ME ME 35-30 Me Me ME H H H H H H H H H H H H M ME ME 35-34 Me Me ME H H H H H H H H H H H H H M ME ME 35-34 Me ME ME H H H H H H H H H H H H M ME ME 35-35 Me ME ME H H H H H H H H H H H H M ME ME 35-34 Ph ME H H H H H H H H H H H H M ME ME 35-34 Ph ME H H H H H H H H M ME H H H M ME ME 35-35 Me ME ME H H H H H H H M ME H H H M ME ME 35-36 Me ME H H H H H H H M ME H H H M ME ME 35-37 ME M ME M M M M M M M M M M M M M M M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-34 Me Me H H H H H H H H H H Me Me Me 35-35 Me Me Me H H H H H H H H H H H Me Me 35-35 Me Me Me H H H H H H H H H H H H H H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35-33   | Me  | Me  | H   | Η   | Η    | Η     | Η      | H    | H   | H   | Me  | Me  | Me  |
| 35-36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35-39   | Me  | Me  | Η   |     |      |       |        |      |     |     |     | Me  | Me  |
| 35-42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |     | Me  |     |     |      |       |        |      | Η   | Me  | Η   | Me  | Me  |
| 35-48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-50 Ph Me H H H H H H H Ph H H Me Me 35-51 Ph Me H H H H H H H H Ph H H Me Me 35-52 Ph Me H H H H H H H H H H Ph H Me Me 35-52 Ph Me H H H H H H H H H H H H H ME ME 35-53 Me H Me H H H H H H H H H H H H ME ME 35-55 Me H Me H H H H H H H H H H H ME ME 35-57 Me H Me H H H H H H H H H H ME ME 35-58 Me H Me H H H H H H H H H ME ME 35-59 Me H Me H H H H H H H H ME ME 35-59 Me H Me H H H H H H H H ME ME 35-60 Me H Me H H H H H H H H H ME ME 35-60 Me H Me H H H H H H H H H ME ME 35-60 Me H Me H H H H H H H H H ME ME 35-60 Me H ME H H H H H H H H H ME ME 35-60 Me H ME H H H H H H H H H ME ME 35-60 Me H ME H H H H H H H H H ME ME 35-60 Me H ME H H H H H H H H H ME ME 35-60 Me H ME H H H H H H H H H ME ME 35-60 Me H ME H H H H H H H H H ME ME 35-60 Me H ME H H H H H H H H H ME ME 35-60 Me H ME H H H H H H H H H ME ME 35-60 Me H ME H H H H H H H H H ME ME 35-60 Me H ME H H H H H H H H H ME ME 35-60 Me H ME H H H H H H H H H H ME ME 35-60 Me H ME H H H H H H H H H ME ME 35-60 Me H ME H H H H H H H H H H ME ME 35-60 Me H ME H H H H H H H H H H ME ME 35-60 Me H ME H H H H H H H H H H ME ME 35-60 ME H ME H H H H H H H H H H ME ME 35-60 ME H ME H H H H H H H H H H ME ME 35-60 ME H ME H H H H H H H H H H H ME ME 35-60 ME H ME H H H H H H H H H H H ME ME 35-60 ME H ME H H H H H H H H H H ME ME 35-60 ME H ME H H H H H H H H H H ME ME 35-60 ME H ME H H H H H H H H H H ME ME 35-60 ME H ME H H H H H H H H H H ME ME 35-60 Ph H ME H H H H H H H H H H ME ME 35-71 Ph H ME H H H H H H H H H H ME ME 35-72 Ph H ME H H H H H H H H H H H ME ME 35-73 Ph H ME H H H H H H H H H H ME ME 35-74 Ph H ME H H H H H H H H H H ME ME 35-75 Ph H ME H H H H H H H H H H ME ME 35-77 Ph H ME H H H H H H H H H H ME ME 35-78 ME H H ME H H H H H H H H H ME ME 35-79 ME H H ME H H H H H H H H H H ME ME 35-80 ME H H ME H H H H H H H H H H ME ME 35-80 ME H H ME H H H H H H H H H ME ME 35-80 ME H H M ME H H H H H H H H H ME ME 35-80 ME H H M ME H H H H H H H H H ME ME 35-80 ME H H M ME H H H H H H H H H ME ME 35-90 ME H H M ME H H H H H H H H H ME ME 35-90 ME H H  |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-52 Ph Me H H H H H H H H H Ph Me Me 35-53 Me H Me H H H H H H H H H H H Me Me 35-55 Me H Me H H H H H H H H H H ME Me 35-55 Me H Me H H H H H H H H H ME Me 35-57 Me H Me H H H H H H H H ME Me 35-56 Me H Me H H H H H H H ME ME 35-57 Me H Me H H H H H H H ME ME 35-56 Me H Me H H H H H H H ME ME 35-57 Me H Me H H H H H H H ME ME 35-60 Me H Me H H H H H H H H H ME ME 35-61 Me H Me H H H H H H H H H ME ME 35-62 Me H ME H H H H H H H H H ME ME 35-63 Me H ME H H H H H H H H H ME ME 35-64 Me H ME H H H H H H H H H ME ME 35-65 Me H ME H H H H H H H H H ME ME 35-65 Me H ME H H H H H H H H H ME ME 35-66 Me H ME H H H H H H H H H ME ME 35-67 Me H ME H H H H H H H H H ME ME 35-68 Me H ME H H H H H H H H H H ME ME 35-69 Me H ME H H H H H H H H H H ME ME 35-69 Me H ME H H H H H H H H H H ME ME 35-69 Me H ME H H H H H H H H H H ME ME 35-69 Me H ME H H H H H H H H H H ME ME 35-69 Me H ME H H H H H H H H H H ME ME 35-69 Me H ME H H H H H H H H H H ME ME 35-69 Me H ME H H H H H H H H H H ME ME 35-69 Me H ME H H H H H H H H H H ME ME 35-69 Me H ME H H H H H H H H H H ME ME 35-69 Me H ME H H H H H H H H H H ME ME 35-69 Me H ME H H H H H H H H H H ME ME 35-69 Me H ME H H H H H H H H H H ME ME 35-70 M H ME H H H H H H H H H M ME ME 35-71 M H ME H H H H H H H H M ME ME 35-72 M H ME H H H H H H H H H M ME ME 35-73 M M M ME H H H H H H H H H M ME ME 35-74 M M ME M M ME H H H H H H H M ME ME 35-75 M M M M M M M M M M M M M M M M M M M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35-51   |     |     |     |     |      |       |        |      |     |     |     | Me  |     |
| 35-54 Me H Me H H H H H H H H H Me H H H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-60         Me         H         Me         H         H         Ph         H         H         H         H         Me         Me         Me         H         Me         H         Me         H         Me         H         Me         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         Me         Me         Me         Me         H         H         H         H         H         H         H         H         H         H         Me         Me         Me         Me         H         H         H         H         H         H         Me         Me         H         H         H         H         H         Me         Me         H         H         H         H         H         Me         Me         H         H         H         H         Me         Me         H         H <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-61 Me H Me H H H H H H H H H Me Me 35-62 Me H Me H H H H H H H H H H H Me Me 35-63 Me H Me H H H H H H H H H H H H Me Me 35-64 Me H Me H H H H H H H H H H H H Me Me 35-65 Me H Me H Me H H H H H H H H H H H H Me Me 35-65 Me H Me H Me H H H H H H H H H H H Me Me 35-66 Ph H Me H H H H H H H H H H H H Me Me 35-66 Ph H Me H H H H H H H H H H H Me Me 35-69 Ph H Me H H H H H H H H H H Me Me 35-69 Ph H Me H H H H H H H H H Me Me 35-71 Ph H Me H H H H H H H Me Me Me 35-72 Ph H Me H H H H H H H H H Me Me Me 35-73 Ph H Me H H H H H H H H H H Me Me 35-74 Ph H Me H H H H H H H H H M Me Me 35-75 Ph H Me H H H H H H H H H H M Me Me 35-76 Ph H Me H H H H H H H H H H M Me Me 35-77 Ph H Me H H H H H H H H H H M Me Me 35-77 Ph H Me H H H H H H H H H H M Me Me 35-78 Ph H Me H H H H H H H H H H M Me Me 35-79 Ph H Me H H H H H H H H H H H M Me Me 35-79 Ph H Me H H H H H H H H H H H M Me Me 35-79 Me H H Me H H H H H H H H H H H M Me Me 35-79 Me H H M Me H H H H H H H H H H H M Me Me 35-85 Me H H H M Me H H H H H H H H H H H M Me Me 35-85 Me H H H M Me H H H H H H H H H H H M Me Me 35-85 Me H H H M Me H H H H H H H H H H H M Me Me 35-85 Me H H H M ME H H H H H H H H H H M ME Me 35-85 Me H H H M ME H H H H H H H H H H M ME ME 35-80 Me H H H M ME H H H H H H H H H H M ME ME 35-80 Me H H H M ME H H H H H H H H H H M ME ME 35-80 Me H H H M ME H H H H H H H H H H M ME ME 35-80 Me H H H M ME H H H H H H H H H H M ME ME 35-80 ME H H H M ME H H H H H H H H H H M ME ME 35-80 ME H H H M ME H H H H H H H H H H M ME ME 35-80 ME H H H M ME H H H H H H H H H H M ME ME 35-80 ME H H H M ME H H H H H H H H H H H M ME ME 35-80 ME H H H ME H H H H H H H H H H H M ME ME 35-80 ME H H H ME H H H H H H H H H H H M ME ME 35-80 ME H H H M ME H H H H H H H H H H H M ME ME 35-80 ME H H H M ME H H H H H H H H H H H H M ME ME 35-80 ME H H H M ME H H H H H H H H H H H H M ME ME 35-90 ME H H H M ME H H H H H H H H H H H H M ME ME 35-90 ME H H H M ME H H H H H H H H H H H M ME ME 35-90 Ph H H H M ME H H H H H H H H H H H M ME ME 35-90 Ph H H H M ME H H H H H H H  |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-62 Me H Me H H H H H H H H H H Me Me Me 35-63 Me H Me H H H H H H H H H H H H Me Me Me 35-64 Me H Me H H H H H H H H H H H H H Me Me Me 35-65 Me H Me H H H H H H H H H H H H H Me Me Me 35-66 Ph H Me H H H H H H H H H H H H H Me Me 35-67 Ph H Me H H H H H H H H H H H H Me Me 35-69 Ph H Me H H H H H H H H H H H H Me Me 35-69 Ph H Me H H H H H H H H H H Me Me 35-70 Ph H Me H H H H H H H H H Me Me Me 35-72 Ph H Me H H H H H H H H H H Me Me Me 35-73 Ph H Me H H H H H H H H H H H Me Me Me 35-73 Ph H Me H H H H H H H H H H H Me Me Me 35-74 Ph H Me H H H H H H H H H H H Me Me Me 35-75 Ph H Me H H H H H H H H H H H H Me Me Me 35-75 Ph H Me H H H H H H H H H H H H Me Me 35-75 Ph H Me H H H H H H H H H H H H Me Me 35-76 Ph H Me H H H H H H H H H H H H M Me Me 35-76 Ph H Me H H H H H H H H H H H H M Me Me 35-77 Ph H Me H H H H H H H H H H H H M Me Me 35-76 Ph H Me H H H H H H H H H H H H M Me Me 35-76 Ph H Me H H H H H H H H H H H H M Me Me 35-76 Ph H Me H H H H H H H H H H H H M Me Me 35-76 Ph H Me H H H H H H H H H H H H M Me Me 35-76 Ph H Me H H H H H H H H H H H H M Me Me 35-79 Me H H M Me H H H H H H H H H H H H M Me Me 35-85 Me H H M Me H H H H H H H H H H H H M Me Me 35-85 Me H H H M ME H H H H H H H H H H H M Me Me 35-85 Me H H H M ME H H H H H H H H H H M Me Me 35-85 Me H H H M ME H H H H H H H H H H M Me Me 35-86 Me H H H M ME H H H H H H H H H M ME ME 35-89 Me H H M ME H H H H H H H H H M ME ME 35-89 Me H H M ME H H H H H H H H H H M ME ME 35-89 Me H H H M ME H H H H H H H H H M ME ME 35-90 Me H H H M ME H H H H H H H H H H M ME ME 35-90 Me H H H M ME H H H H H H H H H H H M ME ME 35-90 Me H H H M ME H H H H H H H H H H H M ME ME 35-90 ME H H H M ME H H H H H H H H H H H M ME ME 35-90 ME H H H M ME H H H H H H H H H H H M ME ME 35-90 Ph H H H M ME H H H H H H H H H H M ME ME 35-90 Ph H H H M ME H H H H H H H H H H M ME ME 35-90 Ph H H H M ME H H H H H H H H H H M ME ME 35-90 Ph H H H M ME H H H H H H H H H M ME ME 35-90 Ph H H H M ME H H H H H H H H M ME ME 35-90 Ph H H H M ME H H H H H H H H M ME ME 35-90 Ph |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-64 Me H Me H H H H H H H H H H Me Me 35-65 Me H Me H H H H H H H H H H H Me Me 35-66 Ph H Me H H H H H H H H H H H Me Me 35-67 Ph H Me H H H H H H H H H H Me Me 35-68 Ph H Me H H H H H H H H H H Me Me 35-69 Ph H Me H H H H H H H H H Me Me 35-70 Ph H Me H H H H H H Me H H H Me Me 35-71 Ph H Me H H H H H H Me H H Me Me 35-72 Ph H Me H H H H H H H H Me Me 35-73 Ph H Me H H H H H H H H H Me Me 35-74 Ph H Me H H H H H H H H H H Me Me 35-75 Ph H Me H H H H H H H H H H Me Me 35-75 Ph H Me H H H H H H H H H H H Me Me 35-75 Ph H Me H H H H H H H H H H H Me Me 35-76 Ph H Me H H H H H H H H H H M Me Me 35-77 Ph H Me H H H H H H H H H H H M Me Me 35-78 Ph H Me H H H H H H H H H H M Me Me 35-79 Me H H M Me H H H H H H H H H H M Me Me 35-80 Me H H M Me H H H H H H H H H H M Me Me 35-81 Me H H M Me H H H H H H H H H H H M Me 35-82 Me H H H M Me H H H H H H H H H M Me 35-83 Me H H H M Me H H H H H H H H M Me 35-84 Me H H M ME H H H H H H H H H M ME 35-85 Me H H H M ME H H H H H H H H H M ME 35-86 Me H H M ME H H H H H H H H H M ME 35-87 Me H H H M ME H H H H H H H H H M ME 35-89 Me H H M ME H H H H H H H H H H M ME 35-89 Me H H H M ME H H H H H H H H H M ME 35-90 Me H H H M ME H H H H H H H H H M ME 35-90 ME H H M ME H H H H H H H H H H M ME 35-90 ME H H M ME H H H H H H H H H H M ME 35-90 ME H H H M ME H H H H H H H H H M ME 35-90 ME H H H M ME H H H H H H H H H M ME 35-90 Ph H H M ME H H H H H H H H H M ME 35-90 Ph H H M ME H H H H H H H H H H M ME 35-90 Ph H H M ME H H H H H H H H H H M ME 35-90 Ph H H H M ME H H H H H H H H H M ME 35-90 Ph H H H M ME H H H H H H H H H H M ME 35-90 Ph H H M ME H H H H H H H H H H M ME 35-90 Ph H H H M ME H H H H H H H H H H M ME 35-90 Ph H H H M ME H H H H H H H H H H M ME 35-90 Ph H H H M ME H H H H H H H H H H M ME 35-90 Ph H H H M ME H H H H H H H H H M ME 35-90 Ph H H H M ME H H H H H H H H H M ME 35-90 Ph H H H M ME H H H H H H H H H H M ME 35-90 Ph H H H M M ME H H H H H H H H H M ME 35-90 Ph H H H M ME H H H H H H H H H H M ME 35-90 Ph H H H M ME H H H H H H H H H M ME 35-90 Ph H  |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-65         Me         H         Me         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         M         M         H </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-66         Ph         H         Me         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-67         Ph         H         Me         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-68         Ph         H         Me         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-70         Ph         H         Me         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-71         Ph         H         Me         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-72         Ph         H         Me         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-73         Ph         H         Me         H         H         Ph         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-75         Ph         H         Me         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-76         Ph         H         Me         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H </td <td></td> <td></td> <td></td> <td></td> <td>Η</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |     |     |     | Η   |      |       |        |      |     |     |     |     |     |
| 35-77         Ph         H         Me         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-78         Ph         H         Me         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-79         Me         H         H         Me         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-81         Me         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-82         Me         H         H         Me         H         H         H         H         Me         H         H         Me         Me         H         H         Me         H         H         H         H         H         H         H         H         H         Me         Me         Me         Me         Me         Me         Me         H         H         Me         H         H         Me         H         H         Me         H         H         Me         Me         Me         Me         Me         Me         Me         H         H         Me         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-83         Me         H         H         Me         H         H         H         H         H         H         H         Me         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-84         Me         H         H         Me         H         H         H         H         H         H         H         H         H         H         H         Me         H         Me         Me         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-85         Me         H         H         Me         H         H         H         H         H         H         H         H         H         H         H         Me         Me         Me         Me         Me         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-87         Me         H         H         Me         H         H         H         H         H         H         H         H         H         Me         Me         Me         Me         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>H</td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |     |     |     |     |      |       |        |      | H   |     |     |     |     |
| 35-88         Me         H         H         Me         H         H         H         Ph         H         H         H         Me         Me         Me         Me         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-89         Me         H         H         Me         H         H         H         H         Ph         H         H         Me         Me         Me         Me         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-90 Me H H Me H H H H H H H H Me Me 35-91 Me H H Me H H H H H H H H Me Me 35-92 Ph H H Me H H H H H H H H H Me Me 35-93 Ph H H Me H Me H H H H H H H Me Me 35-94 Ph H H Me H H H H H H H Me Me 35-95 Ph H H Me H H H Me H H H H Me Me 35-96 Ph H H M Me H H H H ME H ME ME 35-96 Ph H H M ME H H H ME H ME ME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-91 Me H H Me H H H H H H H H Me Me 35-92 Ph H H Me H H H H H H H H Me Me 35-93 Ph H H Me H Me H H H H H H H Me Me 35-93 Ph H H Me H Me H H H H H Me Me 35-95 Ph H H Me H H H H H H Me Me 35-95 Ph H H Me H H H H H Me Me 35-96 Ph H H Me H H H ME H H ME ME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-92 Ph H H Me H H H H H H H Me Me 35-93 Ph H H Me H Me H H H H H H Me Me 35-94 Ph H H Me H H Me H H H H H Me Me 35-95 Ph H H Me H H H Me H H H Me Me 35-96 Ph H H Me H H H Me H H M ME Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-94 Ph H H Me H H Me H H H Me Me Me 35-95 Ph H H Me H H H Me H H H Me Me 35-96 Ph H H Me H H H Me H H Me Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |     |     |     |     |      |       |        |      |     |     |     | Me  | Me  |
| 35-95 Ph H H Me H H Me H H Me Me Me 35-96 Ph H H Me H H H Me H H Me Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
| 35-96 Ph H H Me H H H Me H H Me Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |     |     |     |     |      |       |        |      |     |     |     |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |     |     |     |     |      |       |        |      |     |     |     |     |     |

187

TABLE 35-continued

|                  |          |          |          | -        | LI IDL.  |         | OIIIII  | aca     |         |         |         |          |          |
|------------------|----------|----------|----------|----------|----------|---------|---------|---------|---------|---------|---------|----------|----------|
| Cpd No.          | Ra1      | Ra2      | Ra3      | Ra4      | Ra5      | Rb1     | Rb2     | Rb3     | Rb4     | Rb5     | Rb6     | Rb7      | Rb8      |
| 35-98            | Ph       | Н        | Н        | Me       | Н        | Н       | Н       | Н       | Н       | Н       | Me      | Me       | Me       |
| 35-99            | Ph       | H        | Н        | Me       | H        | Ph      | Н       | Н       | H       | Н       | Н       | Me       | Me       |
| 35-100           | Ph       | H        | Н        | Me       | H        | H       | Ph      | H       | Η       | Η       | H       | Me       | Me       |
| 35-101<br>35-102 | Ph<br>Ph | H<br>H   | H<br>H   | Me<br>Me | H<br>H   | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | Me<br>Me | Me<br>Me |
| 35-102           | Ph       | Н        | Н        | Me       | Н        | Н       | Н       | Н       | Н       | п<br>Ph | Н       | Me       | Me       |
| 35-104           | Ph       | Н        | Н        | Me       | Н        | Н       | Н       | Н       | Н       | Н       | Ph      | Me       | Me       |
| 35-105           | Me       | Η        | Н        | Н        | Me       | Н       | Н       | Н       | Н       | Н       | Н       | Me       | Me       |
| 35-106           | Me       | H        | H        | H        | Me       | Me      | H       | H       | H       | H       | H       | Me       | Me       |
| 35-107<br>35-108 | Me<br>Me | H<br>H   | H<br>H   | H<br>H   | Me<br>Me | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  | Me<br>Me | Me<br>Me |
| 35-108           | Me       | H        | H        | Н        | Me       | H       | Н       | H       | Me      | H       | H       | Me       | Me       |
| 35-110           | Me       | Н        | Н        | Н        | Me       | Н       | Н       | Н       | Н       | Me      | Н       | Me       | Me       |
| 35-111           | Me       | Η        | Η        | Η        | Me       | Η       | Η       | Η       | Η       | Н       | Me      | Me       | Me       |
| 35-112           | Me       | H        | H        | H        | Me       | Ph      | H       | H       | H       | H       | H       | Me       | Me       |
| 35-113<br>35-114 | Me<br>Me | H<br>H   | H<br>H   | H<br>H   | Me<br>Me | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | Me<br>Me | Me<br>Me |
| 35-115           | Me       | H        | Н        | Н        | Me       | Н       | Н       | Н       | Ph      | H       | Н       | Me       | Me       |
| 35-116           | Me       | Η        | Н        | Н        | Me       | Н       | Н       | Н       | Н       | Ph      | Н       | Me       | Me       |
| 35-117           | Me       | Η        | Η        | Η        | Me       | Η       | Η       | Η       | Η       | Η       | Ph      | Me       | Me       |
| 35-118           | Ph       | H        | H        | H        | Me       | H       | H       | H       | H       | H       | H       | Me       | Me       |
| 35-119<br>35-120 | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H   | Me<br>Me | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>Me | Me<br>Me |
| 35-120           | Ph       | H        | H        | H        | Me       | H       | H       | Me      | H       | H       | H       | Me       | Me       |
| 35-122           | Ph       | Н        | Н        | Н        | Me       | Н       | Н       | Н       | Me      | Н       | Н       | Me       | Me       |
| 35-123           | Ph       | H        | H        | H        | Me       | H       | H       | H       | H       | Me      | H       | Me       | Me       |
| 35-124           | Ph       | H        | H        | H        | Me       | H       | H       | H       | H       | H       | Me      | Me       | Me       |
| 35-125<br>35-126 | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H   | Me<br>Me | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>Me | Me<br>Me |
| 35-127           | Ph       | H        | Н        | Н        | Me       | Н       | Н       | Ph      | Н       | H       | Н       | Me       | Me       |
| 35-128           | Ph       | Н        | H        | Н        | Me       | H       | Н       | Н       | Ph      | H       | Н       | Me       | Me       |
| 35-129           | Ph       | H        | H        | H        | Me       | H       | H       | H       | H       | Ph      | H       | Me       | Me       |
| 35-130           | Ph       | H        | H        | H        | Me       | H       | H       | H       | H       | H       | Ph      | Me       | Me       |
| 35-131<br>35-132 | Me<br>Me | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H   | H<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>Me | Me<br>Me |
| 35-132           | Me       | Ph       | Н        | Н        | Н        | Н       | Me      | Н       | Н       | Н       | Н       | Me       | Me       |
| 35-134           | Me       | Ph       | Н        | Н        | Н        | Н       | Н       | Me      | Н       | Н       | Н       | Me       | Me       |
| 35-135           | Me       | Ph       | Н        | H        | Η        | H       | H       | H       | Me      | H       | Η       | Me       | Me       |
| 35-136           | Me<br>M- | Ph       | H        | H        | H        | H       | H       | H       | H       | Me      | H<br>M- | Me<br>M- | Me       |
| 35-137<br>35-138 | Me<br>Me | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H   | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H | Me<br>Me | Me<br>Me |
| 35-139           | Me       | Ph       | Н        | Н        | Н        | Н       | Ph      | Н       | Н       | Н       | Н       | Me       | Me       |
| 35-140           | Me       | Ph       | H        | H        | H        | H       | H       | Ph      | H       | H       | H       | Me       | Me       |
| 35-141           | Me       | Ph       | H        | H        | H        | H       | H       | H       | Ph      | H       | H       | Me       | Me       |
| 35-142<br>35-143 | Me<br>Me | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H   | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | Me<br>Me | Me<br>Me |
| 35-144           | Ph       | Ph       | H        | Н        | Н        | Н       | H       | H       | H       | H       | H       | Me       | Me       |
| 35-145           | Ph       | Ph       | H        | Н        | Н        | Me      | H       | H       | H       | H       | H       | Me       | Me       |
| 35-146           | Ph       | Ph       | Η        | H        | H        | H       | Me      | H       | H       | H       | Η       | Me       | Me       |
| 35-147           | Ph       | Ph       | H        | H        | H        | H       | H       | Me      | H<br>M- | H       | H       | Me<br>M- | Me       |
| 35-148<br>35-149 | Ph<br>Ph | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H   | H<br>H  | H<br>H  | H<br>H  | Me<br>H | H<br>Me | H<br>H  | Me<br>Me | Me<br>Me |
| 35-150           | Ph       | Ph       | H        | Н        | Н        | Н       | Н       | H       | H       | Н       | Me      | Me       | Me       |
| 35-151           | Ph       | Ph       | Н        | Н        | Н        | Ph      | H       | Н       | Н       | Н       | Н       | Me       | Me       |
| 35-152           | Ph       | Ph       | H        | H        | H        | H       | Ph      | H       | H       | H       | H       | Me       | Me       |
| 35-153<br>35-154 | Ph<br>Ph | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H   | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | Me<br>Me | Me<br>Me |
| 35-154           | Ph       | Ph       | Н        | Н        | Н        | Н       | Н       | Н       | Н       | Ph      | Н       | Me       | Me       |
| 35-156           | Ph       | Ph       | H        | H        | H        | H       | H       | H       | H       | Н       | Ph      | Me       | Me       |
| 35-157           | Me       | Η        | Ph       | H        | H        | H       | H       | Η       | H       | H       | Η       | Me       | Me       |
| 35-158           | Me       | H        | Ph       | H        | H        | Me      | H       | H       | H       | H       | H       | Me       | Me       |
| 35-159<br>35-160 | Me<br>Me | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  | Me<br>Me | Me<br>Me |
| 35-161           | Me       | H        | Ph       | Н        | Н        | Н       | Н       | Н       | Me      | H       | Н       | Me       | Me       |
| 35-162           | Me       | Н        | Ph       | Н        | Н        | Н       | Н       | Н       | Н       | Me      | Н       | Me       | Me       |
| 35-163           | Me       | Η        | Ph       | H        | H        | H       | H       | Η       | H       | H       | Me      | Me       | Me       |
| 35-164           | Me       | H        | Ph       | H        | H        | Ph      | H       | H       | H       | H       | H       | Me       | Me       |
| 35-165<br>35-166 | Me<br>Me | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | Me<br>Me | Me<br>Me |
| 35-166<br>35-167 | Me       | Н        | Ph<br>Ph | Н        | Н        | Н       | Н       | Pn<br>H | н<br>Ph | Н       | Н       | Me<br>Me | Me       |
| 35-168           | Me       | H        | Ph       | Н        | Н        | Н       | Н       | Н       | Н       | Ph      | Н       | Me       | Me       |
| 35-169           | Me       | Η        | Ph       | Η        | Н        | Н       | Η       | Η       | Η       | Н       | Ph      | Me       | Me       |
| 35-170           | Ph       | H        | Ph       | H        | H        | Н       | H       | H       | H       | H       | H       | Me       | Me       |
| 35-171           | Ph<br>Ph | H<br>H   | Ph<br>Ph | H<br>H   | Н        | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  | Н       | Me<br>Me | Me<br>Me |
| 35-172<br>35-173 | Ph<br>Ph | H<br>H   | Ph<br>Ph | Н        | H<br>H   | Н       | Me<br>H | н<br>Ме | H<br>H  | Н       | H<br>H  | Me<br>Me | Me<br>Me |
| 35-174           | Ph       | Н        | Ph       | Н        | Н        | Н       | Н       | Н       | Me      | Н       | Н       | Me       | Me       |
| 35-175           | Ph       | Н        | Ph       | Н        | Н        | Н       | Н       | Н       | Н       | Me      | Н       | Me       | Me       |

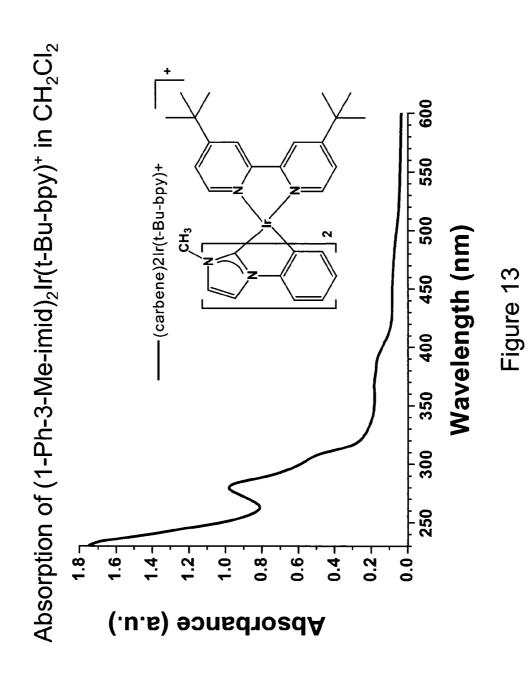



TABLE 35-continued

| Cpd No.                  | Ra1      | Ra2    | Ra3    | Ra4      | Ra5      | Rb1     | Rb2    | Rb3    | Rb4    | Rb5     | Rb6     | Rb7      | Rb8      |
|--------------------------|----------|--------|--------|----------|----------|---------|--------|--------|--------|---------|---------|----------|----------|
| 35-176                   | Ph       | Н      | Ph     | Н        | Н        | Н       | Н      | Н      | Н      | Н       | Me      | Me       | Me       |
| 35-177                   | Ph       | Η      | Ph     | Η        | Η        | Ph      | Η      | Η      | Η      | Η       | Η       | Me       | Me       |
| 35-178                   | Ph       | Η      | Ph     | Η        | Η        | Η       | Ph     | Η      | Η      | Η       | Η       | Me       | Me       |
| 35-179                   | Ph       | Η      | Ph     | Η        | Η        | Η       | Η      | Ph     | Η      | Η       | Η       | Me       | Me       |
| 35-180                   | Ph       | Η      | Ph     | Η        | Η        | Η       | Η      | Η      | Ph     | Η       | Η       | Me       | Me       |
| 35-181                   | Ph       | Η      | Ph     | Η        | Η        | Η       | Η      | Η      | Η      | Ph      | Η       | Me       | Me       |
| 35-182                   | Ph       | Η      | Ph     | Η        | Η        | Η       | Η      | Η      | Η      | Η       | Ph      | Me       | Me       |
| 35-183                   | Me       | Η      | Η      | Ph       | Η        | Η       | Η      | Η      | Η      | Η       | Η       | Me       | Me       |
| 35-184                   | Me       | Η      | H      | Ph       | Η        | Me      | Η      | H      | Η      | H       | Η       | Me       | Me       |
| 35-185                   | Me       | Η      | H      | Ph       | Η        | Η       | Me     | H      | H      | H       | Η       | Me       | Me       |
| 35-186                   | Me       | Η      | H      | Ph       | Η        | Η       | Η      | Me     | Η      | H       | Η       | Me       | Me       |
| 35-187                   | Me       | Η      | H      | Ph       | Η        | Η       | Η      | H      | Me     | Η       | Η       | Me       | Me       |
| 35-188                   | Me       | Η      | H      | Ph       | Η        | Η       | Η      | H      | Η      | Me      | Η       | Me       | Me       |
| 35-189                   | Me       | Η      | H      | Ph       | Η        | Η       | Η      | H      | Η      | Η       | Me      | Me       | Me       |
| 35-190                   | Me       | Η      | H      | Ph       | Η        | Ph      | Η      | Η      | Η      | Η       | Η       | Me       | Me       |
| 35-191                   | Me       | H      | H      | Ph       | H        | H       | Ph     | H      | H      | H       | H       | Me       | Me       |
| 35-192                   | Me       | H      | Η      | Ph       | H        | H       | H      | Ph     | H      | Н       | H       | Me       | Me       |
| 35-193                   | Me       | H      | Н      | Ph       | H        | Н       | Н      | Н      | Ph     | Н       | H       | Me       | Me       |
| 35-194                   | Me       | H      | H      | Ph       | H        | H       | H      | H      | H      | Ph      | H       | Me       | Me       |
| 35-195                   | Me       | H      | Η      | Ph       | H        | H       | H      | H      | H      | Н       | Ph      | Me       | Me       |
| 35-196                   | Ph       | Н      | Н      | Ph       | Н        | Н       | Н      | Н      | Н      | Н       | Н       | Me       | Me       |
| 35-197                   | Ph       | Η      | Η      | Ph       | Η        | Me      | Н      | Η      | Η      | Η       | Η       | Me       | Me       |
| 35-198                   | Ph       | Η      | Η      | Ph       | H        | H       | Me     | Н      | H      | Н       | H       | Me       | Me       |
| 35-199                   | Ph       | Н      | Н      | Ph       | Н        | Н       | Н      | Me     | Н      | Н       | Н       | Me       | Me       |
| 35-200                   | Ph       | H      | H      | Ph       | H        | H       | H      | H      | Me     | Н       | H       | Me       | Me       |
| 35-201                   | Ph       | H      | H      | Ph       | H        | H       | H      | H      | H      | Me      | Н       | Me       | Me       |
| 35-202                   | Ph       | H      | H      | Ph       | H        | H       | Н      | H      | H      | Н       | Me      | Me       | Me       |
| 35-203                   | Ph       | H      | H      | Ph       | H        | Ph      | H      | H      | H      | H       | H       | Me       | Me       |
| 35-204                   | Ph       | H      | H      | Ph       | H        | H       | Ph     | H      | H      | H       | H       | Me       | Me       |
| 35-205                   | Ph       | H      | H      | Ph       | H        | H       | H      | Ph     | H      | Н       | H       | Me       | Me       |
| 35-206                   | Ph       | H      | H<br>H | Ph       | H        | H<br>H  | H<br>H | H      | Ph     | H<br>Ph | H<br>H  | Me       | Me       |
| 35-207<br>35-208         | Ph<br>Ph | H<br>H | Н      | Ph<br>Ph | H<br>H   | Н       | Н      | H<br>H | H      | Pn<br>H | н<br>Ph | Me       | Me       |
| 35-208                   | Me       | Н      | Н      | Н        | п<br>Ph  | Н       | Н      | Н      | H      | Н       | Н       | Me<br>Me | Me       |
| 35-209                   | Me       | Н      | Н      | Н        | Ph       | Me      | Н      | Н      | H<br>H | Н       | Н       | Me       | Me<br>Me |
| 35-210                   | Me       | H      | H      | H        | Ph       | H       | Me     | H      | H      | H       | H       | Me       | Me       |
| 35-211                   | Me       | H      | H      | Н        | Ph       | H       | Н      | Me     | H      | Н       | Н       | Me       | Me       |
| 35-212                   | Me       | Н      | Н      | Н        | Ph       | Н       | Н      | Н      | Me     | Н       | Н       | Me       | Me       |
| 35-214                   | Me       | H      | Н      | Н        | Ph       | Н       | Н      | Н      | Н      | Me      | Н       | Me       | Me       |
| 35-215                   | Me       | H      | Н      | H        | Ph       | Н       | Н      | H      | H      | Н       | Me      | Me       | Me       |
| 35-216                   | Me       | H      | H      | Н        | Ph       | Ph      | Н      | H      | H      | H       | Н       | Me       | Me       |
| 35-217                   | Me       | H      | Н      | Н        | Ph       | Н       | Ph     | Н      | Н      | Н       | Н       | Me       | Me       |
| 35-218                   | Me       | H      | H      | Н        | Ph       | Н       | Н      | Ph     | H      | H       | H       | Me       | Me       |
| 35-219                   | Me       | H      | H      | H        | Ph       | H       | H      | Н      | Ph     | H       | H       | Me       | Me       |
| 35-220                   | Me       | H      | H      | Н        | Ph       | H       | H      | H      | Н      | Ph      | H       | Me       | Me       |
| 35-221                   | Me       | Н      | Н      | Н        | Ph       | Н       | H      | Н      | H      | Н       | Ph      | Me       | Me       |
| 35-222                   | Ph       | Н      | Н      | Н        | Ph       | Н       | Н      | Н      | Н      | Н       | Н       | Me       | Me       |
| 35-223                   | Ph       | H      | Н      | Н        | Ph       | Me      | Н      | Н      | Н      | Н       | Н       | Me       | Me       |
| 35-224                   | Ph       | H      | H      | Н        | Ph       | Н       | Me     | H      | H      | H       | Н       | Me       | Me       |
| 35-225                   | Ph       | Н      | Н      | Н        | Ph       | Н       | Н      | Me     | Н      | Н       | Н       | Me       | Me       |
| 35-226                   | Ph       | Н      | Н      | Н        | Ph       | Н       | Н      | Н      | Me     | Н       | Н       | Me       | Me       |
| 35-227                   | Ph       | H      | H      | Н        | Ph       | Н       | H      | H      | Н      | Me      | Н       | Me       | Me       |
| 35-22 <i>1</i><br>35-228 | Ph<br>Ph | н<br>Н | Н      | Н        |          | Н       | Н      | Н      |        |         |         |          |          |
|                          | Ph<br>Ph | H<br>H | H<br>H | Н        | Ph<br>Ph | н<br>Ph | H<br>H | H<br>H | H<br>H | H<br>H  | Me<br>H | Me<br>M- | Me<br>M- |
| 35-229                   |          |        |        |          |          |         |        |        |        |         |         | Me       | Me       |
| 35-230                   | Ph       | H      | H      | H        | Ph       | H       | Ph     | H      | H      | H       | H       | Me       | Me       |
| 35-231                   | Ph       | H      | Н      | Н        | Ph       | Н       | Н      | Ph     | H      | Н       | Н       | Me       | Me       |
| 35-232                   | Ph       | Η      | H      | Η        | Ph       | Η       | Η      | H      | Ph     | Н       | Η       | Me       | Me       |
| 35-233                   | Ph       | Η      | Η      | Η        | Ph       | Η       | Η      | Η      | H      | Ph      | Η       | Me       | Me       |
| 35-234                   | Ph       | Η      | Η      | Η        | Ph       | Η       | Η      | Η      | Η      | Η       | Ph      | Me       | Me       |
|                          |          |        |        |          |          |         |        |        |        |         |         |          |          |

TABLE 36

| Cpd No. | Ra1      | Ra2 | Ra3 | Ra4 | Ra5    | Ra6    | Ra7    | Rb1     | Rb2    | Rb3    | Rb4 | Rb5 | Rb6 | Rb7      | Rb8 |
|---------|----------|-----|-----|-----|--------|--------|--------|---------|--------|--------|-----|-----|-----|----------|-----|
| 36-1    | N.C-     | Н   | Н   | Н   | 11     | TT     | 7.7    | Н       | TT     | TT     | Н   | Н   | Н   | N f -    | Me  |
| 36-2    | Me<br>Me | Н   | Н   | Н   | H<br>H | H<br>H | H<br>H | н<br>Ме | H<br>H | H<br>H | Н   | Н   | Н   | Me<br>Me | Me  |
| 36-3    | Me       | H   | H   | H   | H      | Н      | H      | Н       | Me     | H      | H   | Н   | Н   | Me       | Me  |
| 36-4    | Me       | H   | H   | H   | H      | H      | H      | H       | Н      | Me     | H   | H   | H   | Me       | Me  |
| 36-5    | Me       | H   | H   | H   | H      | Η      | Η      | H       | H      | H      | Me  | Н   | H   | Me       | Me  |
| 36-6    | Me       | H   | H   | H   | H      | H      | H      | H       | H      | H      | H   | Me  | H   | Me       | Me  |
| 36-7    | Me       | Η   | Η   | Η   | Η      | Η      | Η      | Η       | Η      | Η      | Η   | Η   | Me  | Me       | Me  |
| 36-8    | Me       | H   | H   | Η   | Η      | Η      | Η      | Ph      | Η      | H      | Η   | Η   | Η   | Me       | Me  |
| 36-9    | Me       | H   | H   | H   | H      | H      | H      | H       | Ph     | H      | H   | H   | H   | Me       | Me  |
| 36-10   | Me       | Η   | H   | Η   | H      | Η      | Η      | H       | Η      | Ph     | Η   | Η   | Η   | Me       | Me  |
| 36-11   | Me       | H   | H   | H   | H      | H      | H      | H       | H      | H      | Ph  | H   | H   | Me       | Me  |

TABLE 36-continued

| Cpd No.        | Ra1      | Ra2      | Ra3       | Ra4      | Ra5    | Ra6    | Ra7    | Rb1       | Rb2     | Rb3     | Rb4     | Rb5    | Rb6     | Rb7      | Rb8      |
|----------------|----------|----------|-----------|----------|--------|--------|--------|-----------|---------|---------|---------|--------|---------|----------|----------|
| 36-12          | Me       | Н        | Н         | Н        | Н      | Н      | Н      | Н         | Н       | Н       | Н       | Ph     | Н       | Me       | Me       |
| 36-13          | Me       | H        | H         | Н        | Н      | Н      | Н      | H         | Н       | Н       | Н       | Н      | Ph      | Me       | Me       |
| 36-14          | Ph       | H        | H         | H        | Н      | Н      | Н      | H         | H       | Н       | Н       | Н      | Н       | Me       | Me       |
| 36-15          | Ph       | Н        | Н         | Н        | Н      | Н      | Н      | Me        | Н       | Н       | Н       | Н      | Н       | Me       | Me       |
| 36-16          | Ph       | Н        | Н         | Н        | Н      | Н      | Н      | Н         | Me      | Н       | Н       | Н      | Н       | Me       | Me       |
| 36-17          | Ph       | H        | H         | H        | H      | H      | H      | H         | Н       | Me      | Н       | H      | H       | Me       | Me       |
| 36-18          | Ph       | Н        | Н         | Н        | Н      | Н      | Н      | Н         | Н       | Н       | Me      | Н      | Н       | Me       | Me       |
| 36-19          | Ph       | H        | Н         | Н        | Н      | Н      | Н      | Н         | H       | Н       | Н       | Me     | Н       | Me       | Me       |
| 36-20          | Ph       | H        | H         | H        | H      | H      | H      | H         | H       | H       | H       | Н      | Me      | Me       | Me       |
| 36-21          | Ph       | Н        | H         | H        | Н      | H      | Н      | Ph        | Н       | Н       | Н       | Н      | Н       | Me       | Me       |
| 36-22          | Ph       | Н        | Н         | H        | Н      | H      | Н      | H         | Ph      | H       | Н       | H      | H       | Me       | Me       |
| 36-23          | Ph       | Н        | Н         | H        | Н      | Н      | Н      | H         | Н       | Ph      | Н       | Н      | Н       | Me       | Me       |
| 36-24          | Ph       | H        | H         | H        | H      | H      | H      | H         | H       | H       | Ph      | H      | H       | Me       | Me       |
| 36-25          | Ph       | Η        | H         | H        | Н      | Н      | Η      | Н         | H       | H       | Η       | Ph     | Η       | Me       | Me       |
| 36-26          | Ph       | Η        | Η         | Η        | Η      | Η      | Η      | H         | Η       | H       | Η       | Η      | Ph      | Me       | Me       |
| 36-27          | Me       | Me       | Η         | H        | H      | Η      | Η      | H         | Η       | H       | Η       | Η      | Η       | Me       | Me       |
| 36-28          | Me       | Me       | Η         | Η        | H      | Η      | Η      | Me        | Η       | H       | Η       | Η      | Η       | Me       | Me       |
| 36-29          | Me       | Me       | H         | H        | H      | H      | H      | H         | Me      | H       | H       | H      | H       | Me       | Me       |
| 36-30          | Me       | Me       | H         | H        | H      | H      | H      | H         | H       | Me      | H       | H      | H       | Me       | Me       |
| 36-31          | Me       | Me       | Η         | Η        | Η      | Η      | Η      | Η         | Η       | Η       | Me      | Η      | Η       | Me       | Me       |
| 36-32          | Me       | Me       | Η         | Η        | Η      | Η      | Η      | Η         | Η       | H       | Η       | Me     | Η       | Me       | Me       |
| 36-33          | Me       | Me       | Η         | Η        | H      | Η      | Η      | Η         | Η       | H       | Η       | Η      | Me      | Me       | Me       |
| 36-34          | Me       | Me       | Η         | Η        | Η      | Η      | Η      | Ph        | Η       | Η       | Η       | Η      | Η       | Me       | Me       |
| 36-35          | Me       | Me       | Η         | Η        | Η      | Η      | Η      | Η         | Ph      | Η       | Η       | Η      | Η       | Me       | Me       |
| 36-36          | Me       | Me       | Η         | Η        | Η      | Η      | Η      | Η         | Η       | Ph      | Η       | Η      | Η       | Me       | Me       |
| 36-37          | Me       | Me       | Н         | H        | Η      | H      | H      | H         | H       | Η       | Ph      | Η      | H       | Me       | Me       |
| 36-38          | Me       | Me       | Н         | Η        | Η      | H      | Н      | Η         | H       | Η       | H       | Ph     | H       | Me       | Me       |
| 36-39          | Me       | Me       | H         | H        | H      | H      | H      | H         | H       | H       | H       | H      | Ph      | Me       | Me       |
| 36-40          | Ph       | Me       | H         | H        | H      | H      | H      | Н         | H       | H       | H       | Н      | H       | Me       | Me       |
| 36-41          | Ph       | Me       | H         | Н        | H      | H      | H      | Me        | Н       | H       | Н       | H      | H       | Me       | Me       |
| 36-42          | Ph       | Me       | H         | H        | H      | H      | H      | H         | Me      | H<br>M- | H       | H      | H       | Me       | Me       |
| 36-43<br>36-44 | Ph<br>Ph | Me<br>Me | H<br>H    | H<br>H   | H<br>H | H<br>H | H<br>H | $_{ m H}$ | H<br>H  | Me<br>H | H<br>Me | H<br>H | H<br>H  | Me       | Me<br>Me |
| 36-45          | Ph       | Me       | Н         | Н        | Н      | Н      | Н      | Н         | Н       | Н       | H       | Me     | Н       | Me<br>Me | Me       |
| 36-46          | Ph       | Me       | H         | Н        | H      | H      | Н      | H         | H       | H       | Н       | Н      | Me      | Me       | Me       |
| 36-47          | Ph       | Me       | H         | Н        | Н      | Н      | Н      | Ph        | H       | H       | Н       | Н      | Н       | Me       | Me       |
| 36-48          | Ph       | Me       | H         | Н        | Н      | Н      | Н      | Н         | Ph      | H       | Н       | Н      | Н       | Me       | Me       |
| 36-49          | Ph       | Me       | Н         | Н        | Н      | Н      | Н      | Н         | Н       | Ph      | Н       | Н      | Н       | Me       | Me       |
| 36-50          | Ph       | Me       | H         | H        | Н      | H      | Н      | H         | H       | Н       | Ph      | Н      | Н       | Me       | Me       |
| 36-51          | Ph       | Me       | Н         | H        | Н      | H      | Н      | H         | Н       | H       | Н       | Ph     | H       | Me       | Me       |
| 36-52          | Ph       | Me       | Η         | H        | Н      | Н      | Н      | H         | Η       | H       | Η       | Н      | Ph      | Me       | Me       |
| 36-53          | Me       | Η        | Me        | Η        | Η      | Η      | Η      | Η         | Η       | H       | Η       | Η      | Η       | Me       | Me       |
| 36-54          | Me       | H        | Me        | H        | H      | Η      | H      | Me        | H       | H       | H       | H      | H       | Me       | Me       |
| 36-55          | Me       | Η        | Me        | Η        | Η      | Η      | Η      | Η         | Me      | H       | Η       | Η      | Η       | Me       | Me       |
| 36-56          | Me       | Η        | Me        | Η        | Η      | Η      | Η      | Η         | Η       | Me      | Η       | Η      | Η       | Me       | Me       |
| 36-57          | Me       | Η        | Me        | Η        | Η      | Η      | Η      | H         | Η       | Η       | Me      | Η      | Η       | Me       | Me       |
| 36-58          | Me       | Η        | Me        | Η        | Η      | Η      | Η      | Η         | Η       | Η       | Η       | Me     | Η       | Me       | Me       |
| 36-59          | Me       | Н        | Me        | Η        | H      | Η      | Н      | H         | Η       | H       | Η       | H      | Me      | Me       | Me       |
| 36-60          | Me       | Η        | Me        | Η        | Н      | Н      | Н      | Ph        | H       | H       | Η       | Η      | Η       | Me       | Me       |
| 36-61          | Me       | H        | Me        | H        | Н      | H      | H      | Н         | Ph      | H       | H       | Н      | H       | Me       | Me       |
| 36-62          | Me       | H        | Me        | H        | Н      | Н      | H      | H         | H       | Ph      | H       | Н      | H       | Me       | Me       |
| 36-63          | Me       | H        | Me        | Н        | H      | H      | Н      | H         | Н       | Н       | Ph      | H      | Н       | Me       | Me       |
| 36-64          | Me       | H        | Me        | H        | H      | H      | H      | H         | H       | H       | H       | Ph     | H       | Me       | Me       |
| 36-65<br>36-66 | Me<br>Ph | H<br>H   | Me<br>Me  | H<br>H   | H<br>H | H<br>H | H<br>H | H<br>H    | H<br>H  | H<br>H  | H<br>H  | H<br>H | Ph<br>H | Me<br>Me | Me<br>Me |
| 36-67          | Ph       | H        | Me        | Н        | H      | H      | Н      | Me        | H       | H       | Н       | H      | Н       | Me       | Me       |
| 36-68          | Ph       | Н        | Me        | Н        | Н      | Н      | Н      | Н         | Me      | Н       | Н       | Н      | Н       | Me       | Me       |
| 36-69          | Ph       | Н        | Me        | Н        | Н      | Н      | Н      | H         | Н       | Me      | Н       | Н      | Н       | Me       | Me       |
| 36-70          | Ph       | H        | Me        | Н        | Н      | Н      | Н      | H         | Н       | Н       | Me      | H      | Н       | Me       | Me       |
| 36-71          | Ph       | H        | Me        | H        | Н      | H      | H      | Н         | H       | H       | Н       | Me     | Н       | Me       | Me       |
| 36-72          | Ph       | H        | Me        | H        | H      | H      | H      | H         | H       | H       | Η       | H      | Me      | Me       | Me       |
| 36-73          | Ph       | Н        | Me        | Н        | Н      | Н      | Н      | Ph        | Н       | H       | Н       | Н      | Н       | Me       | Me       |
| 36-74          | Ph       | H        | Me        | H        | H      | H      | H      | H         | Ph      | H       | H       | H      | H       | Me       | Me       |
| 36-75          | Ph       | Η        | Me        | Η        | Η      | Η      | Η      | H         | Η       | Ph      | Η       | Η      | Η       | Me       | Me       |
| 36-76          | Ph       | Η        | Me        | Η        | Η      | Η      | Η      | H         | Η       | H       | Ph      | Η      | Η       | Me       | Me       |
| 36-77          | Ph       | H        | Me        | H        | H      | H      | H      | H         | H       | H       | H       | Ph     | Η       | Me       | Me       |
| 36-78          | Ph       | H        | Me        | Η        | H      | Η      | Η      | H         | Η       | H       | Η       | Η      | Ph      | Me       | Me       |
| 36-79          | Me       | Η        | Η         | Me       | Η      | Η      | H      | Η         | Η       | H       | Η       | Η      | Η       | Me       | Me       |
| 36-80          | Me       | Η        | Η         | Me       | Η      | Η      | Η      | Me        | Η       | H       | Η       | Η      | Η       | Me       | Me       |
| 36-81          | Me       | H        | Η         | Me       | Η      | H      | H      | Η         | Me      | Η       | Η       | Η      | H       | Me       | Me       |
| 36-82          | Me       | H        | Н         | Me       | Н      | Н      | H      | Н         | H       | Me      | Н       | Н      | H       | Me       | Me       |
| 36-83          | Me       | H        | H         | Me       | H      | H      | H      | H         | H       | H       | Me      | Н      | H       | Me       | Me       |
| 36-84          | Me       | H        | H         | Me       | H      | H      | H      | H         | H       | H       | H       | Me     | H       | Me       | Me       |
| 36-85          | Me       | Н        | Н         | Me       | Н      | Н      | Н      | H         | Н       | Н       | Н       | Н      | Me      | Me       | Me       |
| 36-86<br>36-87 | Me<br>Me | H<br>H   | $_{ m H}$ | Me<br>Me | H<br>H | H<br>H | H<br>H | Ph<br>H   | H<br>Ph | H<br>H  | H<br>H  | H<br>H | H<br>H  | Me<br>Me | Me<br>Me |
| 36-88          |          | Н        | Н         |          | Н      | Н      | Н      |           | Pn<br>H | н<br>Ph | Н       |        | Н       |          |          |
| 36-88<br>36-89 | Me<br>Me |          | Н         | Me       | Н      |        | Н      | Н         |         |         | н<br>Ph | Н      |         | Me<br>Me | Me<br>Mo |
| JU-07          | Me       | Η        | 17        | Me       | 11     | Η      | 11     | Η         | H       | Η       | T. 11   | Η      | Η       | Me       | Me       |

TABLE 36-continued

| Cpd No.          | Ra1      | Ra2    | Ra3    | Ra4      | Ra5      | Ra6      | Ra7      | Rb1             | Rb2     | Rb3     | Rb4     | Rb5     | Rb6     | Rb7      | Rb8      |
|------------------|----------|--------|--------|----------|----------|----------|----------|-----------------|---------|---------|---------|---------|---------|----------|----------|
| 36-90            | Me       | H      | H      | Me       | Н        | Н        | Н        | $_{\mathrm{H}}$ | Η       | Н       | Н       | Ph      | Н       | Me       | Me       |
| 36-91            | Me       | H      | H      | Me       | Η        | Η        | Η        | Η               | Η       | Н       | Η       | Η       | Ph      | Me       | Me       |
| 36-92            | Ph       | H      | H      | Me       | Н        | H        | H        | Н               | H       | Н       | Н       | Н       | H       | Me       | Me       |
| 36-93<br>36-94   | Ph       | H      | H      | Me       | H        | H<br>H   | H<br>H   | Me<br>H         | H       | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me       | Me       |
| 36-94            | Ph<br>Ph | H<br>H | H<br>H | Me<br>Me | H<br>H   | Н        | Н        | Н               | Me<br>H | п<br>Ме | Н       | Н       | Н       | Me<br>Me | Me<br>Me |
| 36-96            | Ph       | Н      | Н      | Me       | Н        | Н        | Н        | Н               | Н       | Н       | Me      | Н       | Н       | Me       | Me       |
| 36-97            | Ph       | H      | H      | Me       | H        | Η        | H        | Η               | H       | H       | H       | Me      | H       | Me       | Me       |
| 36-98            | Ph       | Η      | H      | Me       | Н        | Η        | Η        | Η               | Η       | Н       | Η       | Η       | Me      | Me       | Me       |
| 36-99            | Ph       | H      | H      | Me       | H        | Н        | H        | Ph              | H       | H       | Н       | Н       | H       | Me       | Me       |
| 36-100<br>36-101 | Ph<br>Ph | H<br>H | H<br>H | Me<br>Me | H<br>H   | H<br>H   | H<br>H   | H<br>H          | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | Me<br>Me | Me<br>Me |
| 36-102           | Ph       | H      | H      | Me       | Н        | Н        | H        | H               | H       | Н       | Ph      | H       | H       | Me       | Me       |
| 36-103           | Ph       | Н      | Η      | Me       | Н        | Н        | Н        | Η               | Н       | Н       | Н       | Ph      | H       | Me       | Me       |
| 36-104           | Ph       | H      | Η      | Me       | Η        | Η        | Η        | Η               | Η       | Η       | Η       | Η       | Ph      | Me       | Me       |
| 36-105           | Me       | H      | H      | Н        | Me       | Н        | Н        | Н               | H       | H       | Н       | Н       | H       | Me       | Me       |
| 36-106<br>36-107 | Me       | H<br>H | H<br>H | H<br>H   | Me<br>Me | H<br>H   | H<br>H   | Me<br>H         | H<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>Me | Me<br>Me |
| 36-107           | Me<br>Me | H      | H      | Н        | Me       | H        | H        | H               | H       | Me      | H       | H       | H       | Me       | Me       |
| 36-109           | Me       | H      | H      | H        | Me       | H        | H        | H               | H       | Н       | Me      | H       | H       | Me       | Me       |
| 36-110           | Me       | H      | H      | Η        | Me       | Η        | H        | H               | H       | H       | H       | Me      | H       | Me       | Me       |
| 36-111           | Me       | Η      | Η      | Η        | Me       | Η        | Η        | H               | H       | Η       | Н       | Η       | Me      | Me       | Me       |
| 36-112           | Me<br>M- | H      | H      | H        | Me       | H        | H        | Ph              | H       | H       | H       | H       | H       | Me       | Me       |
| 36-113<br>36-114 | Me<br>Me | H<br>H | H<br>H | H<br>H   | Me<br>Me | H<br>H   | H<br>H   | H<br>H          | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | Me<br>Me | Me<br>Me |
| 36-115           | Me       | H      | H      | Н        | Me       | Н        | Н        | H               | H       | Н       | Ph      | Н       | Н       | Me       | Me       |
| 36-116           | Me       | H      | H      | Н        | Me       | Η        | Η        | H               | H       | Н       | Η       | Ph      | H       | Me       | Me       |
| 36-117           | Me       | Η      | Η      | Η        | Me       | Η        | Η        | Η               | Η       | Η       | Η       | Η       | Ph      | Me       | Me       |
| 36-118           | Ph       | H      | H      | H        | Me       | H        | H        | H               | H       | H       | H       | H       | H       | Me       | Me       |
| 36-119<br>36-120 | Ph<br>Ph | H<br>H | H<br>H | H<br>H   | Me<br>Me | H<br>H   | H<br>H   | Me<br>H         | H<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>Me | Me<br>Me |
| 36-121           | Ph       | H      | H      | Н        | Me       | H        | Н        | H               | Н       | Me      | Н       | Н       | Н       | Me       | Me       |
| 36-122           | Ph       | Н      | Η      | Н        | Me       | Н        | Н        | Η               | Н       | Н       | Me      | Н       | H       | Me       | Me       |
| 36-123           | Ph       | Η      | Η      | Η        | Me       | Η        | Η        | Η               | Η       | Η       | Η       | Me      | Η       | Me       | Me       |
| 36-124           | Ph       | H      | H      | Н        | Me       | Н        | Н        | H               | H       | Н       | Н       | Н       | Me      | Me       | Me       |
| 36-125<br>36-126 | Ph<br>Ph | H<br>H | H<br>H | H<br>H   | Me<br>Me | H<br>H   | H<br>H   | Ph<br>H         | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>Me | Me<br>Me |
| 36-127           | Ph       | H      | Н      | Н        | Me       | Н        | Н        | H               | Н       | Ph      | Н       | Н       | Н       | Me       | Me       |
| 36-128           | Ph       | H      | H      | Н        | Me       | Н        | Н        | Η               | H       | Н       | Ph      | Н       | H       | Me       | Me       |
| 36-129           | Ph       | Η      | H      | H        | Me       | Η        | Η        | H               | Η       | Η       | Η       | Ph      | Η       | Me       | Me       |
| 36-130           | Ph       | H      | H      | Н        | Me       | Н        | H        | H               | Н       | H       | H       | H       | Ph      | Me       | Me       |
| 36-131<br>36-132 | Me<br>Me | H<br>H | H<br>H | H<br>H   | H<br>H   | Me<br>Me | H<br>H   | H<br>Me         | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>Me | Me<br>Me |
| 36-133           | Me       | H      | Н      | Н        | Н        | Me       | Н        | Н               | Me      | Н       | Н       | Н       | Н       | Me       | Me       |
| 36-134           | Me       | Η      | Η      | Η        | Η        | Me       | Η        | Η               | H       | Me      | Η       | Η       | H       | Me       | Me       |
| 36-135           | Me       | H      | H      | Н        | Н        | Me       | H        | Η               | H       | Н       | Me      | Н       | H       | Me       | Me       |
| 36-136<br>36-137 | Me<br>Me | H<br>H | H<br>H | H<br>H   | H<br>H   | Me<br>Me | H<br>H   | H<br>H          | H<br>H  | H<br>H  | H<br>H  | Me<br>H | H<br>Me | Me<br>Me | Me<br>Me |
| 36-138           | Me       | H      | H      | Н        | Н        | Me       | H        | Ph              | H       | Н       | Н       | H       | Н       | Me       | Me       |
| 36-139           | Me       | Н      | Η      | Н        | Н        | Me       | H        | Η               | Ph      | Н       | Н       | Η       | H       | Me       | Me       |
| 36-140           | Me       | Η      | Η      | Н        | Η        | Me       | Η        | Η               | Η       | Ph      | Η       | Η       | Η       | Me       | Me       |
| 36-141           | Me       | H      | H      | Н        | Н        | Me       | H        | H               | H       | H       | Ph      | H       | H       | Me       | Me       |
| 36-142<br>36-143 | Me<br>Me | H<br>H | H<br>H | H<br>H   | H<br>H   | Me<br>Me | H<br>H   | H<br>H          | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | Me<br>Me | Me<br>Me |
| 36-144           | Ph       | Н      | Н      | Н        | Н        | Me       | Н        | Н               | H       | Н       | Н       | Н       | Н       | Me       | Me       |
| 36-145           | Ph       | Η      | H      | Η        | Н        | Me       | Η        | Me              | H       | Н       | Н       | Η       | H       | Me       | Me       |
| 36-146           | Ph       | H      | Η      | Н        | Н        | Me       | H        | Η               | Me      | Н       | H       | Н       | H       | Me       | Me       |
| 36-147<br>36-148 | Ph<br>Ph | H<br>H | H<br>H | H<br>H   | Н        | Me<br>Me | Н        | Н               | H<br>H  | Me<br>H | H<br>Me | H<br>H  | Н       | Me<br>Me | Me       |
| 36-149           | Ph       | Н      | Н      | Н        | H<br>H   | Me       | H<br>H   | H<br>H          | Н       | Н       | H       | Me      | H<br>H  | Me       | Me<br>Me |
| 36-150           | Ph       | H      | H      | Н        | Н        | Me       | Н        | H               | H       | Н       | Н       | Н       | Me      | Me       | Me       |
| 36-151           | Ph       | Η      | Η      | Η        | Η        | Me       | Η        | Ph              | Η       | Η       | Η       | Η       | H       | Me       | Me       |
| 36-152           | Ph       | H      | Н      | Н        | Н        | Me       | Н        | Н               | Ph      | H       | Н       | Н       | H       | Me       | Me       |
| 36-153<br>36-154 | Ph<br>Ph | H<br>H | H<br>H | H<br>H   | H<br>H   | Me<br>Me | H        | H               | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | Me<br>Me | Me       |
| 36-155           | Ph       | Н      | Н      | Н        | Н        | Me       | H<br>H   | H<br>H          | Н       | Н       | Н       | Ph      | Н       | Me       | Me<br>Me |
| 36-156           | Ph       | H      | H      | H        | H        | Me       | H        | H               | H       | H       | H       | H       | Ph      | Me       | Me       |
| 36-157           | Me       | H      | H      | Η        | Η        | Η        | Me       | Η               | H       | Н       | Η       | Η       | Η       | Me       | Me       |
| 36-158           | Me       | H      | H      | Н        | Н        | Н        | Me       | Me              | Н       | Н       | Н       | Н       | H       | Me       | Me       |
| 36-159           | Me       | H      | H      | H        | H        | H        | Me       | H               | Me      | H       | H       | H       | H       | Me       | Me       |
| 36-160<br>36-161 | Me<br>Me | H<br>H | H<br>H | H<br>H   | H<br>H   | H<br>H   | Me<br>Me | H<br>H          | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  | Me<br>Me | Me<br>Me |
| 36-162           | Me       | H      | H      | Н        | Н        | Н        | Me       | H               | Н       | Н       | Н       | Me      | H       | Me       | Me       |
| 36-163           | Me       | H      | H      | Η        | Η        | Η        | Me       | Η               | H       | Н       | Η       | Н       | Me      | Me       | Me       |
| 36-164           | Me       | H      | H      | Н        | Н        | Η        | Me       | Ph              | H       | Н       | Η       | Η       | Н       | Me       | Me       |
| 36-165           | Me       | H      | H      | H        | Н        | H        | Me       | H               | Ph      | H       | H       | H       | H       | Me       | Me       |
| 36-166<br>36-167 | Me<br>Me | H<br>H | H<br>H | H<br>H   | H<br>H   | H<br>H   | Me<br>Me | H<br>H          | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | Me<br>Me | Me<br>Me |
| /                |          |        |        |          |          |          |          |                 | ~~      |         |         |         |         |          |          |

TABLE 36-continued

| Cpd No.          | Ra1      | Ra2      | Ra3      | Ra4      | Ra5    | Ra6    | Ra7      | Rb1     | Rb2     | Rb3     | Rb4     | Rb5     | Rb6     | Rb7      | Rb8      |
|------------------|----------|----------|----------|----------|--------|--------|----------|---------|---------|---------|---------|---------|---------|----------|----------|
| 36-168           | Me       | Н        | Н        | Н        | Н      | Н      | Me       | Н       | Н       | Н       | Н       | Ph      | Н       | Me       | Me       |
| 36-169           | Me       | Н        | H        | Н        | Н      | Н      | Me       | H       | Н       | Н       | Н       | Н       | Ph      | Me       | Me       |
| 36-170           | Ph       | H        | Н        | Н        | Н      | Н      | Me       | Н       | H       | Н       | Н       | Н       | Н       | Me       | Me       |
| 36-171           | Ph       | H        | Η        | Η        | Η      | Η      | Me       | Me      | Η       | Η       | H       | Η       | H       | Me       | Me       |
| 36-172           | Ph       | Η        | Η        | H        | Η      | Η      | Me       | Η       | Me      | Η       | Η       | Η       | H       | Me       | Me       |
| 36-173           | Ph       | H        | H        | H        | H      | H      | Me       | H       | H       | Me      | Н       | Н       | Н       | Me       | Me       |
| 36-174           | Ph       | H        | H        | H        | H      | H      | Me       | H       | H       | H       | Me      | H       | H<br>H  | Me       | Me       |
| 36-175<br>36-176 | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H   | H<br>H | H<br>H | Me<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H | н<br>Ме | Me<br>Me | Me<br>Me |
| 36-177           | Ph       | Н        | H        | Н        | Н      | Н      | Me       | Ph      | Н       | Н       | Н       | Н       | Н       | Me       | Me       |
| 36-178           | Ph       | H        | Н        | H        | Н      | Н      | Me       | H       | Ph      | H       | Н       | Н       | Н       | Me       | Me       |
| 36-179           | Ph       | Η        | Н        | H        | Η      | Η      | Me       | Η       | H       | Ph      | H       | H       | Η       | Me       | Me       |
| 36-180           | Ph       | Η        | H        | H        | Η      | Η      | Me       | Η       | H       | Η       | Ph      | H       | H       | Me       | Me       |
| 36-181           | Ph       | H        | H        | H        | Н      | Н      | Me       | H       | H       | Н       | H       | Ph      | H       | Me       | Me       |
| 36-182<br>36-183 | Ph<br>Me | H<br>Ph  | H<br>H   | H<br>H   | H<br>H | H<br>H | Me<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | Me<br>Me | Me<br>Me |
| 36-184           | Me       | Ph       | H        | Н        | Н      | Н      | H        | Me      | H       | H       | Н       | Н       | H       | Me       | Me       |
| 36-185           | Me       | Ph       | H        | Н        | Н      | Н      | Н        | Н       | Me      | Н       | Н       | Н       | Н       | Me       | Me       |
| 36-186           | Me       | Ph       | H        | H        | Η      | H      | H        | Η       | H       | Me      | H       | H       | H       | Me       | Me       |
| 36-187           | Me       | Ph       | Η        | Η        | Η      | Η      | Η        | Η       | Η       | Η       | Me      | Η       | Η       | Me       | Me       |
| 36-188           | Me       | Ph       | Н        | H        | Η      | Н      | H        | Н       | Η       | Η       | H       | Me      | Н       | Me       | Me       |
| 36-189           | Me       | Ph       | H        | Н        | Н      | H      | H        | H       | H       | H       | H       | H       | Me      | Me       | Me       |
| 36-190<br>36-191 | Me<br>Me | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H | H<br>H | H<br>H   | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>Me | Me<br>Me |
| 36-191           | Me       | Ph       | H        | Н        | H      | Н      | H        | H       | Н       | Ph      | Н       | Н       | H       | Me       | Me       |
| 36-193           | Me       | Ph       | Н        | Н        | Н      | Н      | Н        | Н       | H       | H       | Ph      | Н       | H       | Me       | Me       |
| 36-194           | Me       | Ph       | H        | H        | H      | Η      | H        | Η       | H       | H       | H       | Ph      | H       | Me       | Me       |
| 36-195           | Me       | Ph       | Η        | H        | Η      | Η      | Η        | Η       | Η       | Η       | Η       | Η       | Ph      | Me       | Me       |
| 36-196           | Ph       | Ph       | H        | H        | Н      | H      | H        | Н       | Н       | Н       | H       | H       | H       | Me       | Me       |
| 36-197           | Ph       | Ph<br>Ph | H        | H<br>H   | H<br>H | H<br>H | H<br>H   | Me<br>H | H       | H<br>H  | H<br>H  | H<br>H  | H       | Me       | Me       |
| 36-198<br>36-199 | Ph<br>Ph | Ph       | H<br>H   | Н        | Н      | Н      | Н        | Н       | Me<br>H | п<br>Ме | Н       | Н       | H<br>H  | Me<br>Me | Me<br>Me |
| 36-200           | Ph       | Ph       | Н        | Н        | Н      | Н      | Н        | H       | Н       | Н       | Me      | Н       | Н       | Me       | Me       |
| 36-201           | Ph       | Ph       | H        | H        | Η      | Η      | Н        | Η       | Н       | Η       | H       | Me      | Η       | Me       | Me       |
| 36-202           | Ph       | Ph       | Η        | Η        | Η      | Η      | Η        | Η       | H       | Η       | H       | Η       | Me      | Me       | Me       |
| 36-203           | Ph       | Ph       | H        | H        | H      | H      | H        | Ph      | H       | Н       | H       | H       | H       | Me       | Me       |
| 36-204           | Ph       | Ph       | H        | H        | H      | H      | H        | H       | Ph      | H       | H       | H       | H       | Me<br>M- | Me<br>M- |
| 36-205<br>36-206 | Ph<br>Ph | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H | H<br>H | H<br>H   | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | Me<br>Me | Me<br>Me |
| 36-207           | Ph       | Ph       | H        | Н        | Н      | Н      | Н        | H       | Н       | Н       | Н       | Ph      | Н       | Me       | Me       |
| 36-208           | Ph       | Ph       | Н        | Н        | Н      | Н      | Н        | Н       | Н       | Н       | Н       | Н       | Ph      | Me       | Me       |
| 36-209           | Me       | Η        | Ph       | Η        | Η      | Η      | Η        | Η       | Η       | Η       | Η       | Η       | Η       | Me       | Me       |
| 36-210           | Me       | H        | Ph       | H        | Н      | H      | H        | Me      | Н       | H       | H       | H       | H       | Me       | Me       |
| 36-211<br>36-212 | Me<br>Me | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H | H<br>H | H<br>H   | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  | Me<br>Me | Me<br>Me |
| 36-212           | Me       | Н        | Ph       | Н        | Н      | Н      | Н        | Н       | Н       | Н       | П<br>Ме | Н       | Н       | Me       | Me       |
| 36-214           | Me       | Н        | Ph       | Н        | Н      | Н      | Н        | H       | Н       | Н       | Н       | Me      | Н       | Me       | Me       |
| 36-215           | Me       | H        | Ph       | Η        | Η      | Η      | Η        | H       | Η       | Η       | Η       | H       | Me      | Me       | Me       |
| 36-216           | Me       | Η        | Ph       | H        | Η      | Η      | Η        | Ph      | Η       | Η       | Η       | Η       | Η       | Me       | Me       |
| 36-217           | Me       | H        | Ph       | Н        | Н      | Н      | H        | H       | Ph      | H       | Н       | Н       | H       | Me       | Me       |
| 36-218<br>36-219 | Me<br>Me | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H | H<br>H | H<br>H   | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | Me<br>Me | Me<br>Me |
| 36-220           | Me       | H        | Ph       | Н        | Н      | Н      | H        | H       | Н       | H       | Н       | Ph      | H       | Me       | Me       |
| 36-221           | Me       | Н        | Ph       | Н        | Н      | Н      | Н        | Н       | Н       | Н       | Н       | Н       | Ph      | Me       | Me       |
| 36-222           | Ph       | Η        | Ph       | H        | Η      | Η      | H        | Η       | H       | Η       | H       | H       | H       | Me       | Me       |
| 36-223           | Ph       | Η        | Ph       | Η        | Η      | Η      | Η        | Me      | Η       | Η       | Η       | Η       | Η       | Me       | Me       |
| 36-224           | Ph       | H        | Ph       | Н        | Н      | H      | H        | H       | Me      | Н       | Н       | Н       | Н       | Me       | Me       |
| 36-225<br>36-226 | Ph<br>Ph | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H | H<br>H | H<br>H   | H<br>H  | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  | Me<br>Me | Me<br>Me |
| 36-227           | Ph       | Н        | Ph       | Н        | Н      | Н      | Н        | Н       | Н       | Н       | H       | Mе      | Н       | Me       | Me       |
| 36-228           | Ph       | H        | Ph       | H        | Н      | H      | Н        | H       | H       | Н       | Н       | Н       | Me      | Me       | Me       |
| 36-229           | Ph       | Η        | Ph       | H        | Η      | Н      | Н        | Ph      | H       | Η       | H       | H       | Н       | Me       | Me       |
| 36-230           | Ph       | Η        | Ph       | Η        | Η      | Η      | Η        | Η       | Ph      | Η       | H       | H       | Η       | Me       | Me       |
| 36-231           | Ph       | Η        | Ph       | H        | Η      | H      | H        | H       | H       | Ph      | H       | H       | H       | Me       | Me       |
| 36-232           | Ph       | H        | Ph       | Н        | H      | Н      | H        | H       | H       | H       | Ph      | H       | H       | Me       | Me       |
| 36-233<br>36-234 | Ph<br>Ph | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H | H<br>H | H<br>H   | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | Me<br>Me | Me<br>Me |
| 36-235           | Me       | H        | Н        | Ph       | H      | Н      | H        | H       | Н       | H       | Н       | Н       | Н       | Me       | Me       |
| 36-236           | Me       | H        | H        | Ph       | H      | H      | Н        | Me      | Н       | H       | Н       | Н       | H       | Me       | Me       |
| 36-237           | Me       | Η        | Η        | Ph       | Η      | Η      | Η        | Η       | Me      | Η       | Η       | Η       | Η       | Me       | Me       |
| 36-238           | Me       | H        | H        | Ph       | Н      | Н      | Η        | H       | Н       | Me      | Н       | Н       | Н       | Me       | Me       |
| 36-239           | Me       | H        | H        | Ph       | H      | H      | H        | H       | H       | H       | Me      | H       | H       | Me<br>M- | Me<br>M- |
| 36-240<br>36-241 | Me<br>Me | H<br>H   | H<br>H   | Ph<br>Ph | H<br>H | H<br>H | H<br>H   | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H | H<br>Me | Me<br>Me | Me<br>Me |
| 36-241           | Me       | Н        | Н        | Ph       | Н      | Н      | Н        | п<br>Ph | Н       | Н       | Н       | Н       | Н       | Me       | Me       |
| 36-243           | Me       | H        | H        | Ph       | Н      | Н      | H        | Н       | Ph      | H       | Н       | H       | H       | Me       | Me       |
| 36-244           | Me       | Н        | Н        | Ph       | Н      | Н      | Н        | Н       | Н       | Ph      | Н       | Н       | Н       | Me       | Me       |
| 36-245           | Me       | Н        | H        | Ph       | Н      | H      | H        | H       | Н       | Н       | Ph      | Η       | H       | Me       | Me       |

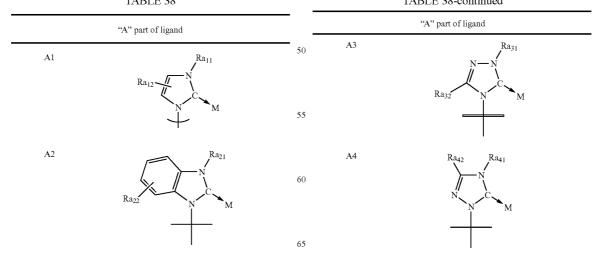
TABLE 36-continued

| Cpd No.          | Ra1      | Ra2    | Ra3    | Ra4     | Ra5      | Ra6      | Ra7    | Rb1     | Rb2     | Rb3     | Rb4     | Rb5     | Rb6     | Rb7      | Rb8      |
|------------------|----------|--------|--------|---------|----------|----------|--------|---------|---------|---------|---------|---------|---------|----------|----------|
| 36-246           | Me       | Н      | Н      | Ph      | Н        | Н        | Н      | Н       | Н       | Н       | Н       | Ph      | Н       | Me       | Me       |
| 36-247           | Me       | Н      | Н      | Ph      | Н        | Н        | Н      | Н       | H       | Н       | Н       | Н       | Ph      | Me       | Me       |
| 36-248           | Ph       | H      | H      | Ph      | H        | H        | H      | H       | H       | H       | H       | H       | Н       | Me       | Me       |
| 36-249           | Ph       | Н      | Н      | Ph      | Н        | Н        | Н      | Me      | Н       | Н       | Н       | Н       | Н       | Me       | Me       |
| 36-250           | Ph       | H      | Η      | Ph      | Η        | Η        | Η      | Η       | Me      | H       | Η       | Η       | Η       | Me       | Me       |
| 36-251           | Ph       | Η      | H      | Ph      | H        | Η        | Η      | H       | Η       | Me      | Η       | H       | H       | Me       | Me       |
| 36-252           | Ph       | Η      | Η      | Ph      | H        | H        | Η      | Η       | Η       | H       | Me      | H       | H       | Me       | Me       |
| 36-253           | Ph       | Η      | Η      | Ph      | Η        | Η        | Η      | Η       | Η       | Η       | Η       | Me      | Η       | Me       | Me       |
| 36-254           | Ph       | Η      | Η      | Ph      | Η        | Η        | Η      | Η       | Η       | H       | Η       | Η       | Me      | Me       | Me       |
| 36-255           | Ph       | Η      | Η      | Ph      | Η        | Η        | Η      | Ph      | Η       | H       | Η       | Η       | Η       | Me       | Me       |
| 36-256           | Ph       | H      | H      | Ph      | H        | H        | H      | H       | Ph      | H       | H       | Η       | H       | Me       | Me       |
| 36-257           | Ph       | H      | H      | Ph      | H        | H        | H      | H       | H       | Ph      | H       | H       | H       | Me       | Me       |
| 36-258           | Ph       | H      | H      | Ph      | H        | H        | H      | H       | Н       | H       | Ph      | H       | Н       | Me       | Me       |
| 36-259           | Ph       | H      | H      | Ph      | H        | H        | H      | H       | H       | H       | H       | Ph      | H       | Me       | Me       |
| 36-260<br>36-261 | Ph<br>Me | H<br>H | H<br>H | Ph<br>H | H<br>Ph  | H<br>H   | H<br>H | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | Me<br>Me | Me<br>Me |
| 36-262           | Me       | H      | H      | H       | Ph       | H        | H      | Me      | H       | H       | H       | H       | H       | Me       | Me       |
| 36-263           | Me       | Н      | H      | Н       | Ph       | Н        | Н      | Н       | Me      | H       | Н       | Н       | Н       | Me       | Me       |
| 36-264           | Me       | H      | H      | H       | Ph       | H        | H      | H       | Н       | Me      | Н       | Н       | H       | Me       | Me       |
| 36-265           | Me       | H      | H      | H       | Ph       | H        | H      | H       | H       | Н       | Me      | H       | H       | Me       | Me       |
| 36-266           | Me       | H      | H      | H       | Ph       | H        | H      | H       | H       | H       | H       | Me      | H       | Me       | Me       |
| 36-267           | Me       | Η      | Η      | Η       | Ph       | Η        | Η      | Η       | Η       | H       | Η       | Η       | Me      | Me       | Me       |
| 36-268           | Me       | Η      | Η      | Η       | Ph       | Η        | Η      | Ph      | H       | H       | Η       | H       | H       | Me       | Me       |
| 36-269           | Me       | H      | H      | H       | Ph       | H        | H      | H       | Ph      | H       | H       | H       | H       | Me       | Me       |
| 36-270           | Me       | Η      | Η      | Η       | Ph       | Η        | Η      | Η       | Η       | Ph      | Η       | Η       | H       | Me       | Me       |
| 36-271           | Me       | Η      | H      | Η       | Ph       | Η        | Η      | Η       | Η       | H       | Ph      | Η       | Η       | Me       | Me       |
| 36-272           | Me       | Η      | Η      | Η       | Ph       | Η        | Η      | H       | Η       | H       | Η       | Ph      | H       | Me       | Me       |
| 36-273           | Me       | H      | H      | H       | Ph       | H        | H      | H       | H       | H       | H       | H       | Ph      | Me       | Me       |
| 36-274           | Ph       | Н      | Н      | H       | Ph       | Н        | H      | Н       | H       | Н       | H       | H       | H       | Me       | Me       |
| 36-275           | Ph       | Н      | H      | Н       | Ph       | Н        | H      | Me      | Н       | Н       | Н       | Н       | H       | Me       | Me       |
| 36-276<br>36-277 | Ph       | H      | H      | H<br>H  | Ph       | H        | H      | H       | Me      | H<br>Mo | H       | H       | H       | Me       | Me       |
| 36-277           | Ph<br>Ph | H<br>H | H<br>H | Н       | Ph<br>Ph | H<br>H   | H<br>H | H<br>H  | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  | Me<br>Me | Me<br>Me |
| 36-279           | Ph       | Н      | H      | Н       | Ph       | Н        | Н      | H       | Н       | Н       | Н       | Me      | Н       | Me       | Me       |
| 36-280           | Ph       | Н      | H      | Н       | Ph       | Н        | Н      | H       | Н       | H       | Н       | Н       | Me      | Me       | Me       |
| 36-281           | Ph       | H      | H      | H       | Ph       | H        | H      | Ph      | H       | H       | H       | Н       | Н       | Me       | Me       |
| 36-282           | Ph       | H      | Н      | Н       | Ph       | Н        | Н      | H       | Ph      | H       | H       | Н       | Н       | Me       | Me       |
| 36-283           | Ph       | H      | H      | H       | Ph       | H        | H      | H       | H       | Ph      | H       | H       | H       | Me       | Me       |
| 36-284           | Ph       | Η      | Η      | Η       | Ph       | Η        | Η      | Η       | Η       | H       | Ph      | H       | H       | Me       | Me       |
| 36-285           | Ph       | H      | H      | Η       | Ph       | Η        | Η      | H       | Η       | H       | Η       | Ph      | Η       | Me       | Me       |
| 36-286           | Ph       | Η      | Η      | Η       | Ph       | Η        | Η      | Η       | Η       | H       | Η       | Η       | Ph      | Me       | Me       |
| 36-287           | Me       | Η      | Η      | Η       | Η        | Ph       | Η      | Η       | Η       | H       | Η       | Η       | Η       | Me       | Me       |
| 36-288           | Me       | Н      | Н      | Η       | H        | Ph       | Н      | Me      | H       | H       | Н       | Η       | Н       | Me       | Me       |
| 36-289           | Me       | H      | H      | H       | Н        | Ph       | H      | H       | Me      | Н       | H       | H       | H       | Me       | Me       |
| 36-290           | Me       | H      | H      | Н       | H        | Ph       | H      | H       | H       | Me      | Н       | H       | H       | Me       | Me       |
| 36-291<br>36-292 | Me       | H      | H      | H       | H        | Ph       | H      | H       | H       | H       | Me      | H       | H       | Me       | Me       |
| 36-292           | Me<br>Me | H<br>H | H<br>H | H<br>H  | H<br>H   | Ph<br>Ph | H<br>H | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H | H<br>Me | Me<br>Me | Me<br>Me |
| 36-294           | Me       | H      | H      | H       | H        | Ph       | H      | Ph      | H       | H       | H       | H       | H       | Me       | Me       |
| 36-295           | Me       | Н      | H      | Н       | H        | Ph       | Н      | Н       | Ph      | Н       | Н       | Н       | H       | Me       | Me       |
| 36-296           | Me       | H      | Н      | Н       | Н        | Ph       | H      | H       | Н       | Ph      | H       | Н       | H       | Me       | Me       |
| 36-297           | Me       | Н      | H      | H       | H        | Ph       | H      | H       | H       | H       | Ph      | H       | Η       | Me       | Me       |
| 36-298           | Me       | Н      | Η      | Η       | H        | Ph       | Η      | Η       | H       | H       | Η       | Ph      | H       | Me       | Me       |
| 36-299           | Me       | Η      | H      | Η       | Η        | Ph       | Η      | Η       | Η       | H       | Η       | Η       | Ph      | Me       | Me       |
| 36-300           | Ph       | Η      | Η      | Η       | H        | Ph       | H      | Η       | Η       | H       | H       | Η       | Η       | Me       | Me       |
| 36-301           | Ph       | Η      | Η      | Η       | Η        | Ph       | Η      | Me      | Η       | Η       | Η       | Η       | Η       | Me       | Me       |
| 36-302           | Ph       | Η      | Η      | Η       | Η        | Ph       | Η      | H       | Me      | H       | Η       | Η       | Η       | Me       | Me       |
| 36-303           | Ph       | H      | Н      | H       | Н        | Ph       | H      | H       | H       | Me      | Н       | H       | H       | Me       | Me       |
| 36-304           | Ph       | Н      | H      | H       | H        | Ph       | H      | H       | H       | H       | Me      | Н       | H       | Me       | Me       |
| 36-305           | Ph       | H      | H      | H       | H        | Ph       | Н      | H       | Н       | Н       | Н       | Me      | Н       | Me       | Me       |
| 36-306           | Ph       | H      | H      | H       | H        | Ph       | H      | H       | H       | H       | H       | H       | Me      | Me<br>M- | Me       |
| 36-307<br>36-308 | Ph<br>Ph | H<br>H | H<br>H | H<br>H  | H<br>H   | Ph<br>Ph | H<br>H | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>Me | Me<br>Me |
| 36-309           | Ph       | H      | H      | Н       | H        | Ph       | H      | H       | Н       | Ph      | H       | Н       | Н       | Me       | Me       |
| 36-310           | Ph       | Н      | Н      | Н       | Н        | Ph       | Н      | Н       | Н       | Н       | Ph      | Н       | Н       | Me       | Me       |
| 36-311           | Ph       | Н      | Н      | Н       | Н        | Ph       | Н      | Н       | Н       | Н       | Н       | Ph      | Н       | Me       | Me       |
| 36-312           | Ph       | H      | H      | H       | H        | Ph       | H      | H       | H       | H       | H       | Н       | Ph      | Me       | Me       |
| 36-313           | Me       | Н      | Н      | Н       | Н        | Н        | Ph     | Н       | H       | Н       | Н       | Н       | Н       | Me       | Me       |
| 36-314           | Me       | H      | Η      | H       | Η        | H        | Ph     | Me      | H       | Η       | H       | Η       | H       | Me       | Me       |
| 36-315           | Me       | Н      | Η      | Η       | Η        | Η        | Ph     | Η       | Me      | Η       | Η       | Η       | H       | Me       | Me       |
| 36-316           | Me       | Η      | Η      | Η       | Η        | Η        | Ph     | Η       | H       | Me      | Η       | Η       | H       | Me       | Me       |
| 36-317           | Me       | Η      | Η      | Η       | Η        | Η        | Ph     | Η       | Η       | Η       | Me      | Η       | H       | Me       | Me       |
| 36-318           | Me       | Η      | Η      | Η       | Η        | Η        | Ph     | Η       | Η       | Η       | Η       | Me      | H       | Me       | Me       |
| 36-319           | Me       | Η      | Η      | Η       | Η        | Η        | Ph     | H       | H       | Η       | Η       | Η       | Me      | Me       | Me       |
| 36-320           | Me       | H      | H      | H       | H        | H        | Ph     | Ph      | H       | H       | H       | H       | H       | Me       | Me       |
| 36-321           | Me       | Н      | H      | Н       | Н        | Н        | Ph     | H       | Ph      | H       | Н       | Н       | Н       | Me       | Me       |
| 36-322           | Me       | Н      | H      | H       | Н        | Н        | Ph     | Н       | H       | Ph      | H       | H       | H       | Me       | Me       |
| 36-323           | Me       | Η      | Η      | Η       | Η        | Η        | Ph     | Η       | Η       | Η       | Ph      | Η       | Η       | Me       | Me       |

199 200

TABLE 36-continued

| Cpd No. | Ra1 | Ra2 | Ra3 | Ra4 | Ra5 | Ra6 | Ra7 | Rb1 | Rb2 | Rb3 | Rb4 | Rb5 | Rb6 | Rb7 | Rb8 |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 36-324  | Me  | Н   | Н   | Н   | Н   | Н   | Ph  | Н   | Н   | Н   | Н   | Ph  | Н   | Me  | Me  |
| 36-325  | Me  | H   | H   | H   | H   | H   | Ph  | H   | H   | H   | H   | Н   | Ph  | Me  | Me  |
| 36-326  | Ph  | H   | Η   | H   | H   | Η   | Ph  | H   | H   | H   | Η   | Н   | Η   | Me  | Me  |
| 36-327  | Ph  | H   | H   | H   | H   | H   | Ph  | Me  | H   | H   | H   | Н   | Н   | Me  | Me  |
| 36-328  | Ph  | H   | H   | H   | H   | H   | Ph  | H   | Me  | H   | Η   | Н   | H   | Me  | Me  |
| 36-329  | Ph  | H   | H   | Н   | Η   | Η   | Ph  | H   | H   | Me  | Η   | Η   | Η   | Me  | Me  |
| 36-330  | Ph  | H   | H   | Η   | H   | Η   | Ph  | H   | H   | H   | Me  | Η   | Η   | Me  | Me  |
| 36-331  | Ph  | H   | Η   | H   | H   | Η   | Ph  | H   | H   | H   | Η   | Me  | H   | Me  | Me  |
| 36-332  | Ph  | H   | H   | Η   | H   | Η   | Ph  | H   | H   | H   | Η   | Η   | Me  | Me  | Me  |
| 36-333  | Ph  | H   | H   | H   | H   | Η   | Ph  | Ph  | H   | H   | Η   | Н   | H   | Me  | Me  |
| 36-334  | Ph  | Η   | Η   | Η   | Η   | Η   | Ph  | Η   | Ph  | Η   | Η   | Η   | Η   | Me  | Me  |
| 36-335  | Ph  | H   | H   | Н   | H   | H   | Ph  | H   | H   | Ph  | H   | H   | H   | Me  | Me  |
| 36-336  | Ph  | H   | H   | Н   | Н   | Η   | Ph  | H   | H   | Н   | Ph  | Η   | Η   | Me  | Me  |
| 36-337  | Ph  | H   | H   | H   | H   | Η   | Ph  | H   | H   | H   | Η   | Ph  | H   | Me  | Me  |
| 36-338  | Ph  | Н   | Н   | Н   | Н   | Н   | Ph  | Н   | Н   | Н   | Н   | Н   | Ph  | Me  | Me  |


TABLE 37

|                            |          |          |     |         | 17 1171 |        |     |         |         |          |          |
|----------------------------|----------|----------|-----|---------|---------|--------|-----|---------|---------|----------|----------|
| Cpd No.                    | Ra1      | Ra2      | Ra3 | Rb1     | Rb2     | Rb3    | Rb4 | Rb5     | Rb6     | Rb7      | Rb8      |
| 37-1                       | Me       | Me       | Me  | Н       | Н       | Н      | Н   | Н       | Н       | Me       | Me       |
| 37-2                       | Me       | Me       | Me  | Me      | H       | H      | H   | H       | H       | Me       | Me       |
| 37-3                       | Me       | Me       | Me  | H       | Me      | H      | H   | H       | H       | Me       | Me       |
| 37-4                       | Me       | Me       | Me  | Η       | H       | Me     | Η   | H       | H       | Me       | Me       |
| 37-5                       | Me       | Me       | Me  | H       | H       | Η      | Me  | H       | H       | Me       | Me       |
| 37-6                       | Me       | Me       | Me  | Η       | Η       | Η      | Η   | Me      | H       | Me       | Me       |
| 37-7                       | Me       | Me       | Me  | Η       | Η       | Η      | Η   | Η       | Me      | Me       | Me       |
| 37-8                       | Me       | Me       | Me  | Ph      | H       | Η      | Η   | H       | H       | Me       | Me       |
| 37-9                       | Me       | Me       | Me  | Η       | Ph      | Η      | Η   | Η       | Η       | Me       | Me       |
| 37-10                      | Me       | Me       | Me  | H       | H       | Ph     | Η   | H       | H       | Me       | Me       |
| 37-11                      | Me       | Me       | Me  | Η       | Η       | Η      | Ph  | H       | H       | Me       | Me       |
| 37-12                      | Me       | Me       | Me  | Η       | Η       | Η      | Η   | Ph      | Η       | Me       | Me       |
| 37-13                      | Me       | Me       | Me  | Η       | Η       | Η      | Η   | H       | Ph      | Me       | Me       |
| 37-14                      | Ph       | Me       | Me  | Η       | Н       | Η      | Η   | H       | H       | Me       | Me       |
| 37-15                      | Ph       | Me       | Me  | Me      | Н       | H      | Н   | Н       | Н       | Me       | Me       |
| 37-16                      | Ph       | Me       | Me  | Н       | Me      | H      | Η   | Н       | Н       | Me       | Me       |
| 37-17                      | Ph       | Me       | Me  | H       | Н       | Me     | Н   | Н       | Н       | Me       | Me       |
| 37-18                      | Ph       | Me       | Me  | Н       | Н       | Н      | Me  | Н       | H       | Me       | Me       |
| 37-19                      | Ph       | Me       | Me  | H       | Н       | Н      | Н   | Me      | Н       | Me       | Me       |
| 37-20                      | Ph       | Me       | Me  | Н       | Н       | Н      | H   | Н       | Me      | Me       | Me       |
| 37-21                      | Ph       | Me       | Me  | Ph      | Н       | Н      | Н   | Н       | Н       | Me       | Me       |
| 37-22                      | Ph       | Me       | Me  | Н       | Ph      | Н      | Н   | H       | H       | Me       | Me       |
| 37-23                      | Ph       | Me       | Me  | Н       | Н       | Ph     | Н   | H       | H       | Me       | Me       |
| 37-24                      | Ph       | Me       | Me  | Н       | H       | Н      | Ph  | H       | H       | Me       | Me       |
| 37-25                      | Ph       | Me       | Me  | Н       | Н       | Н      | Н   | Ph      | H       | Me       | Me       |
| 37-26                      | Ph       | Me       | Me  | Н       | H       | H      | Н   | Н       | Ph      | Me       | Me       |
| 37-27                      | Me       | Ph       | Me  | Н       | Н       | Н      | Н   | Н       | Н       | Me       | Me       |
| 37-28                      | Me       | Ph       | Me  | Me      | Н       | Н      | Н   | Н       | Н       | Me       | Me       |
| 37-29                      | Me       | Ph       | Me  | Н       | Me      | Н      | Н   | Н       | Н       | Me       | Me       |
| 37-30                      | Me       | Ph       | Me  | Н       | Н       | Me     | Н   | Н       | Н       | Me       | Me       |
| 37-31                      | Me       | Ph       | Me  | Н       | Н       | Н      | Me  | Н       | Н       | Me       | Me       |
| 37-32                      | Me       | Ph       | Me  | Н       | Н       | H      | Н   | Me      | H       | Me       | Me       |
| 37-33                      | Me       | Ph       | Me  | Н       | H       | Н      | Н   | Н       | Me      | Me       | Me       |
| 37-34                      | Me       | Ph       | Me  | Ph      | Н       | Н      | Н   | Н       | Н       | Me       | Me       |
| 37-35                      | Me       | Ph       | Me  | Н       | Ph      | Н      | Н   | H       | H       | Me       | Me       |
| 37-36                      | Me       | Ph       | Me  | Н       | Н       | Ph     | Н   | Н       | Н       | Me       | Me       |
| 37-37                      | Me       | Ph       | Me  | Н       | Н       | Н      | Ph  | H       | H       | Me       | Me       |
| 37-38                      | Me       | Ph       | Me  | Н       | Н       | Н      | Н   | Ph      | Н       | Me       | Me       |
| 37-39                      | Me       | Ph       | Me  | Н       | Н       | Н      | Н   | Н       | Ph      | Me       | Me       |
| 37-40                      | Ph       | Ph       | Me  | Н       | Н       | Н      | H   | H       | Н       | Me       | Me       |
| 37-40                      | Ph       | Ph       | Me  | Me      | Н       | Н      | Н   | Н       | Н       | Me       | Me       |
| 37-42                      | Ph       | Ph       | Me  | Н       | Me      | Н      | H   | H       | H       | Me       | Me       |
| 37-42                      | Ph       | Ph       | Me  | H       | Н       | Me     | H   | H       | H       | Me       | Me       |
| 37-43<br>37-44             | Ph       | Ph       | Me  | Н       | Н       | H      | Мe  | Н       | Н       | Me       |          |
| 37- <del>44</del><br>37-45 | Ph       | Ph       | Me  | Н       | Н       | Н      | H   | П<br>Ме | Н       | Me       | Me<br>Me |
| 37-43<br>37-46             | Ph       | Ph       | Me  | Н       | Н       | Н      | Н   | H       | п<br>Ме | Me       | Me       |
| 37-40<br>37-47             | Ph       | Ph       |     | н<br>Ph | Н       | Н      | Н   | Н       | Н       | Me       |          |
| 37-47<br>37-48             | Pn<br>Ph | Ph<br>Ph | Me  | Pn<br>H | н<br>Ph | H<br>H | Н   | H<br>H  | Н       | Me<br>Me | Me       |
|                            |          |          | Me  |         |         |        |     |         |         |          | Me<br>M- |
| 37-49                      | Ph       | Ph       | Me  | H       | H       | Ph     | H   | H       | H       | Me       | Me       |
| 37-50                      | Ph       | Ph       | Me  | Н       | Н       | Н      | Ph  | H       | H       | Me       | Me       |
| 37-51                      | Ph       | Ph       | Me  | H       | H       | H      | H   | Ph      | H       | Me       | Me       |
| 37-52                      | Ph       | Ph       | Me  | H       | H       | H      | H   | H       | Ph      | Me       | Me       |
| 37-53                      | Me       | Me       | Ph  | Н       | Н       | H      | Н   | Н       | Н       | Me       | Me       |
| 37-54                      | Me       | Me       | Ph  | Me      | Н       | H      | H   | H       | H       | Me       | Me       |
| 37-55                      | Me       | Me       | Ph  | Η       | Me      | Η      | Η   | Η       | Η       | Me       | Me       |

**201**TABLE 37-continued

| Cpd No. | Ra1 | Ra2 | Ra3              | Rb1 | Rb2 | Rb3 | Rb4 | Rb5 | Rb6 | Rb7 | Rb8 |
|---------|-----|-----|------------------|-----|-----|-----|-----|-----|-----|-----|-----|
| 37-56   | Me  | Me  | Ph               | Η   | Н   | Me  | Н   | Н   | Н   | Me  | Me  |
| 37-57   | Me  | Me  | Ph               | Η   | Η   | Η   | Me  | H   | Η   | Me  | Me  |
| 37-58   | Me  | Me  | Ph               | Η   | Η   | Η   | Η   | Me  | Η   | Me  | Me  |
| 37-59   | Me  | Me  | Ph               | Η   | Η   | Η   | Η   | Η   | Me  | Me  | Me  |
| 37-60   | Me  | Me  | Ph               | Ph  | Η   | Η   | H   | H   | Η   | Me  | Me  |
| 37-61   | Me  | Me  | Ph               | Η   | Ph  | Η   | Η   | H   | Η   | Me  | Me  |
| 37-62   | Me  | Me  | Ph               | Η   | Η   | Ph  | Η   | Η   | Η   | Me  | Me  |
| 37-63   | Me  | Me  | Ph               | Η   | Η   | Η   | Ph  | Η   | Η   | Me  | Me  |
| 37-64   | Me  | Me  | Ph               | Η   | Η   | Η   | Η   | Ph  | Η   | Me  | Me  |
| 37-65   | Me  | Me  | Ph               | Η   | H   | Η   | H   | H   | Ph  | Me  | Me  |
| 37-66   | Ph  | Me  | Ph               | Η   | Η   | Η   | Η   | Η   | Η   | Me  | Me  |
| 37-67   | Ph  | Me  | Ph               | Me  | Η   | Η   | Η   | H   | Η   | Me  | Me  |
| 37-68   | Ph  | Me  | Ph               | Η   | Me  | Η   | Η   | Η   | Η   | Me  | Me  |
| 37-69   | Ph  | Me  | Ph               | Η   | Η   | Me  | Η   | H   | Η   | Me  | Me  |
| 37-70   | Ph  | Me  | Ph               | Η   | Η   | Η   | Me  | Η   | Η   | Me  | Me  |
| 37-71   | Ph  | Me  | Ph               | Η   | Η   | Η   | Η   | Me  | Η   | Me  | Me  |
| 37-72   | Ph  | Me  | Ph               | Η   | Η   | Η   | Η   | Η   | Me  | Me  | Me  |
| 37-73   | Ph  | Me  | Ph               | Ph  | Η   | Η   | Η   | Η   | Η   | Me  | Me  |
| 37-74   | Ph  | Me  | Ph               | Η   | Ph  | Η   | Η   | H   | Η   | Me  | Me  |
| 37-75   | Ph  | Me  | Ph               | Η   | Η   | Ph  | Η   | Η   | Η   | Me  | Me  |
| 37-76   | Ph  | Me  | $_{\mathrm{Ph}}$ | Η   | Η   | Η   | Ph  | H   | Η   | Me  | Me  |
| 37-77   | Ph  | Me  | Ph               | Η   | Η   | Η   | Η   | Ph  | Η   | Me  | Me  |
| 37-78   | Ph  | Me  | Ph               | Η   | Η   | Η   | Η   | Η   | Ph  | Me  | Me  |
| 37-79   | Me  | Ph  | $_{\mathrm{Ph}}$ | Η   | Η   | Η   | Η   | H   | Η   | Me  | Me  |
| 37-80   | Me  | Ph  | Ph               | Me  | Η   | Η   | Η   | Η   | Η   | Me  | Me  |
| 37-81   | Me  | Ph  | Ph               | Η   | Me  | Η   | Η   | Η   | Η   | Me  | Me  |
| 37-82   | Me  | Ph  | $_{\mathrm{Ph}}$ | Η   | Η   | Me  | Η   | H   | Η   | Me  | Me  |
| 37-83   | Me  | Ph  | Ph               | Η   | Η   | Η   | Me  | Η   | Η   | Me  | Me  |
| 37-84   | Me  | Ph  | Ph               | Η   | Η   | Η   | Η   | Me  | Η   | Me  | Me  |
| 37-85   | Me  | Ph  | Ph               | Η   | Η   | Η   | Η   | Η   | Me  | Me  | Me  |
| 37-86   | Me  | Ph  | Ph               | Ph  | Η   | Η   | Η   | Η   | Η   | Me  | Me  |
| 37-87   | Me  | Ph  | Ph               | Η   | Ph  | Η   | Η   | Η   | Η   | Me  | Me  |
| 37-88   | Me  | Ph  | Ph               | Η   | Η   | Ph  | Η   | Η   | Η   | Me  | Me  |
| 37-89   | Me  | Ph  | Ph               | Η   | Η   | Η   | Ph  | Η   | Η   | Me  | Me  |
| 37-90   | Me  | Ph  | Ph               | Η   | Η   | Η   | Η   | Ph  | Η   | Me  | Me  |
| 37-91   | Me  | Ph  | Ph               | Η   | Η   | Η   | Η   | Η   | Ph  | Me  | Me  |
| 37-92   | Ph  | Ph  | Ph               | Η   | Η   | Η   | Η   | Η   | Η   | Me  | Me  |
| 37-93   | Ph  | Ph  | Ph               | Me  | Η   | Η   | Η   | Η   | Η   | Me  | Me  |
| 37-94   | Ph  | Ph  | Ph               | Η   | Me  | Η   | Η   | Η   | Η   | Me  | Me  |
| 37-95   | Ph  | Ph  | Ph               | Η   | Η   | Me  | Η   | Η   | Η   | Me  | Me  |
| 37-96   | Ph  | Ph  | Ph               | Η   | Η   | Η   | Me  | Η   | Η   | Me  | Me  |
| 37-97   | Ph  | Ph  | Ph               | Η   | Η   | Η   | Η   | Me  | Η   | Me  | Me  |
| 37-98   | Ph  | Ph  | Ph               | Η   | Η   | Η   | Η   | H   | Me  | Me  | Me  |
| 37-99   | Ph  | Ph  | Ph               | Ph  | Η   | Η   | Η   | Η   | Η   | Me  | Me  |
| 37-100  | Ph  | Ph  | Ph               | Η   | Ph  | Η   | Η   | H   | Η   | Me  | Me  |
| 37-101  | Ph  | Ph  | Ph               | Η   | Η   | Ph  | Η   | H   | Η   | Me  | Me  |
| 37-102  | Ph  | Ph  | Ph               | Η   | Η   | Η   | Ph  | H   | Η   | Me  | Me  |
| 37-103  | Ph  | Ph  | Ph               | Η   | Η   | Η   | Η   | Ph  | Η   | Me  | Me  |
| 37-104  | Ph  | Ph  | Ph               | Η   | Η   | Η   | Η   | Η   | Ph  | Me  | Me  |

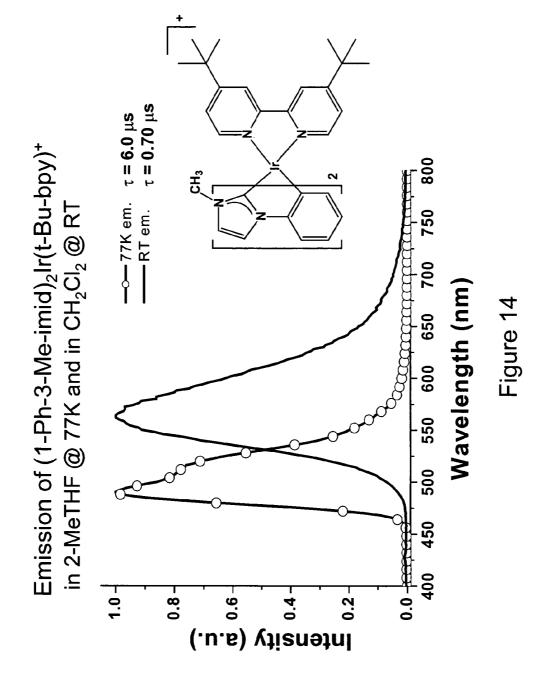
TABLE 38 TABLE 38-continued



| TADIE | 38-continued |
|-------|--------------|
| LADLE | 50-continued |

## TABLE 38-continued

|     | "A" part of ligand     |    |      | "A" part of ligand                            |
|-----|------------------------|----|------|-----------------------------------------------|
| A5  | Ra <sub>51</sub>       |    | A12  | Ra <sub>122</sub>                             |
|     | $Ra_{52}$ $N$          |    |      | ∑ B∖                                          |
|     | N C M                  |    |      | Ra <sub>123</sub> B C M                       |
|     |                        | 10 |      |                                               |
|     | l                      |    | A13  | $Ra_{132}$ $\bigwedge$ $\bigwedge$ $Ra_{131}$ |
| A6  | Ra <sub>62</sub>       | 15 |      | I<br>B                                        |
|     | Ra <sub>61</sub>       |    |      | Ra <sub>133</sub> B C M                       |
|     |                        |    |      | +                                             |
|     | $Ra_{63}$ $N$ $C$ $M$  | 20 | A14  | Ra <sub>141</sub>                             |
|     |                        |    |      | Ra <sub>142</sub> B                           |
| A7  | Ra <sub>71</sub>       | 25 |      | BC                                            |
|     | $Ra_{42}$              |    |      | <del>- -</del>                                |
|     | Ra <sub>73</sub> N C M |    | A15  | , Ra <sub>151</sub>                           |
|     |                        | 30 | 1113 | (Z) $B$                                       |
|     | I                      |    |      | BCM                                           |
| A8  | (z)                    | 35 |      |                                               |
|     | N C M                  |    |      |                                               |
|     |                        | 40 | A16  | $Ra_{163} \xrightarrow{Ra_{162}} Ra_{161}$    |
|     | I                      | 40 |      |                                               |
| A9  | $(Z)_{0}$              |    |      | Ra <sub>164</sub> P M                         |
|     | N $C$ $M$              | 45 |      |                                               |
|     |                        |    | A17  | Ra <sub>171</sub>                             |
|     | I                      | 50 |      |                                               |
| A10 | $Ra_{101}$ $S$         |    |      |                                               |
|     | $Ra_{102}$ $N$ $C$ $M$ |    |      | Ra <sub>172</sub> N C M                       |
|     |                        | 55 |      | - M                                           |
|     |                        |    | A18  | <b>\</b><br>Ra <sub>181</sub>                 |
| A11 | Ra <sub>111</sub> O    | 60 | 7110 | Ma181                                         |
|     | Ra <sub>112</sub> N C  |    |      | $\bigvee_{N}$                                 |
|     |                        |    |      |                                               |
|     | I                      | 65 |      |                                               |
|     |                        |    |      |                                               |


TABLE 38-continued

|     | TABLE 36-continued                    |          |     | TABLE 36-continued                                                      |
|-----|---------------------------------------|----------|-----|-------------------------------------------------------------------------|
|     | "A" part of ligand                    |          |     | "A" part of ligand                                                      |
| A19 | Ra <sub>192</sub> N M                 | 10       | A25 | Ra <sub>252</sub> Ra <sub>251</sub> N  Ra <sub>251</sub>                |
| A20 | Ra <sub>201</sub> Ra <sub>202</sub>   | 20       | A26 | Ra <sub>262</sub> Ra <sub>263</sub> Ra <sub>261</sub> Ra <sub>261</sub> |
| A21 | Ra <sub>212</sub> Ra <sub>211</sub>   | 25       | A27 | O Ra <sub>271</sub>                                                     |
| A22 | Ra <sub>222</sub> Ra <sub>221</sub> M | 35<br>40 | A28 | $R_{281}$ $O$                                                           |
| A23 | Ra <sub>232</sub>                     | 45       | A29 | Ra <sub>292</sub> Ra <sub>291</sub>                                     |
| A24 | Ra <sub>241</sub>                     | 55       | A30 | CN Ra <sub>301</sub>                                                    |
|     | Ra <sub>243</sub> M                   | 65       |     | M                                                                       |

TABLE 38-continued

## TABLE 38-continued

|     | "A" part of ligand                                                  | _        | "A" part of                | ligand                                   |
|-----|---------------------------------------------------------------------|----------|----------------------------|------------------------------------------|
| A31 | Ra <sub>312</sub> Ra <sub>313</sub> Ra <sub>313</sub>               | 5        | A37 Z                      | S<br>N C<br>M                            |
| A32 | Ra <sub>314</sub> M                                                 | 15       | A38 Z                      | 0                                        |
|     | NC Ra <sub>322</sub> M                                              | 20       | _                          | M                                        |
| A33 | Ra <sub>332</sub> Ra <sub>331</sub>                                 | 25       | A39<br>Ra <sub>392</sub> ~ | Ra <sub>391</sub> B  C  M                |
|     | N C M                                                               | 30       | A40 Z                      | D.                                       |
| A34 | R <sub>342</sub>                                                    | 35       | <u>_</u>                   | Ra <sub>401</sub> B  Ra <sub>401</sub> M |
|     | R <sub>343</sub> // N C M                                           | 40<br>45 | A41                        | Ra412                                    |
| A35 | R <sub>353</sub> R <sub>352</sub> R <sub>351</sub> R <sub>351</sub> | 50       | Ra413                      | N C M                                    |
|     | N M                                                                 | 55       | Ra414                      |                                          |
| A36 | R <sub>363</sub> Ra <sub>361</sub>                                  | 60       | Ra <sub>423</sub>          | Ra <sub>422</sub> N  Ra <sub>421</sub>   |
|     | Ra <sub>362</sub> N C M                                             | 65       |                            | N C M                                    |



210 TABLE 39

|     | "A" part of ligand                      |      | "B" part of ligand                            |
|-----|-----------------------------------------|------|-----------------------------------------------|
| A43 | Ra <sub>433</sub>                       | 5    | B1                                            |
|     | Ra <sub>432</sub>                       | 10   | Rb <sub>11</sub> M                            |
|     | Ra <sub>434</sub>                       | 15   | B2 M                                          |
| A44 | Ra <sub>442</sub>                       | 20   | $Rb_{21}$ $Rb_{22}$                           |
|     | Ra443 N Ra441                           | 25   | В3                                            |
|     | Ra444 C M                               | 30   | $Rb_{31}                                    $ |
| A45 | Ra <sub>451</sub>                       | 35   | B4                                            |
|     | Ra <sub>452</sub> N—C                   | 40   | $Rb_{42}$ $Rb_{41}$                           |
| A46 | Ra <sub>462</sub>                       | 45   | B5 M                                          |
|     | Ra <sub>463</sub> N C Ra <sub>461</sub> | 50   | $Rb_{51} = \frac{1}{ I }$ $Rb_{52} = Rb_{53}$ |
| A47 | Ra <sub>471</sub>                       | 55   | B6                                            |
|     | Ra <sub>473</sub> N—C                   | 60   | $Rb_{61}$ $Rb_{62}$                           |
|     | Ra <sub>474</sub> M                     | _ 65 | Rb <sub>63</sub>                              |

212
TABLE 39-continued

|     | "B" part of ligand                  | _  |             | "B" part of ligand                  |
|-----|-------------------------------------|----|-------------|-------------------------------------|
| B7  |                                     | 5  | B12         |                                     |
|     | $Rb_{71}$ $H$ $Rb_{72}$             | 10 |             | Rb <sub>123</sub> Rb <sub>121</sub> |
|     | Rb <sub>73</sub> —                  | 15 | B13         |                                     |
| В8  | Rb <sub>81</sub> M                  | 20 |             | Rb <sub>133</sub> Rb <sub>131</sub> |
|     | $Rb_{82}$                           | 25 | B14         | $Rb_{143}$ $Rb_{142}$ $Rb_{141}$    |
| В9  |                                     | 30 | B15         | K0142                               |
|     | Rb <sub>91</sub>                    | 35 | <b>D</b> 13 | $Rb_{151}$ $Rb_{154}$               |
|     | Rb <sub>93</sub>                    | 40 | B16         | Rb <sub>152</sub> Rb <sub>153</sub> |
| B10 | M                                   | 45 |             | Rb <sub>161</sub>                   |
|     | Rb <sub>101</sub>                   | 50 |             | Rb <sub>162</sub> Rb <sub>164</sub> |
| B11 | Rb <sub>103</sub>                   | 55 | B17         | M                                   |
|     | Rb <sub>113</sub> Rb <sub>111</sub> | 60 |             | Rb <sub>171</sub> Rb <sub>173</sub> |
|     |                                     | 65 |             | " Rb <sub>174</sub>                 |

**214** TABLE 39-continued

|     | "B" part of ligand                                    | _  |     | "B" part of ligand                          |
|-----|-------------------------------------------------------|----|-----|---------------------------------------------|
| B18 | M                                                     | 5  | B22 | M                                           |
|     | Rb <sub>181</sub> Rb <sub>182</sub> Rb <sub>183</sub> | 10 |     | $Rb_{221}$ $Rb_{122}$                       |
|     | Rb <sub>184</sub>                                     | 15 |     | Rb <sub>223</sub>                           |
| B19 | +                                                     | 20 | B23 | ı                                           |
|     | Rb <sub>191</sub> M                                   | 25 |     | Rb <sub>231</sub> M                         |
|     | Rb <sub>193</sub> Rb <sub>194</sub>                   | 30 |     | Rb <sub>233</sub>                           |
| B20 | M                                                     | 35 |     | Rb <sub>234</sub>                           |
|     | Rb <sub>201</sub> Rb <sub>202</sub>                   | 40 | B24 | M                                           |
|     | $\frac{1}{ I } Rb_{203}$ $\frac{1}{ I } Rb_{204}$     | 45 |     | Rb <sub>241</sub>                           |
| B21 | ı                                                     | 50 |     | Rb <sub>244</sub> Rb <sub>243</sub>         |
|     | $Rb_{211}$ $\square$ $M$                              | 55 | B25 | M                                           |
|     | Rb <sub>212</sub> Rb <sub>213</sub>                   | 60 |     | $Rb_{251} = Rb_{252}$ $Rb_{253} = Rb_{252}$ |
|     | Rb <sub>214</sub>                                     | 65 |     | Rb <sub>254</sub>                           |

216
TABLE 39-continued

|     | "B" part of ligand                             |    |     | "B" part of ligand                     |
|-----|------------------------------------------------|----|-----|----------------------------------------|
| B26 |                                                | 5  | B30 | <u> </u>                               |
|     | $Rb_{261}                                    $ | 10 |     | Rb <sub>301</sub> M                    |
|     | Rb <sub>263</sub> Rb <sub>264</sub>            | 15 |     | Rb <sub>303</sub>                      |
| B27 |                                                | 20 | B31 |                                        |
|     | $Rb_{271}$ $Rb_{272}$                          | 25 | B31 | Rb <sub>311</sub> M                    |
|     | Rb <sub>273</sub>                              | 30 |     | Rb <sub>312</sub>                      |
|     |                                                | 35 |     | Rb <sub>314</sub> —                    |
| B28 | $Rb_{281}$                                     | 40 | B32 | M                                      |
|     | Rb <sub>282</sub>                              | 45 |     | Rb <sub>321</sub> II Rb <sub>322</sub> |
|     | Rb <sub>284</sub> Rb <sub>283</sub>            | 50 |     | Rb <sub>324</sub> Rb <sub>323</sub>    |
| B29 | M                                              | 55 | B33 | M                                      |
|     | Rb <sub>291</sub> Rb <sub>292</sub>            | 60 |     | Rb <sub>333</sub> Rb <sub>332</sub>    |
|     | $\frac{1}{\parallel} \operatorname{Rb}_{293}$  | 65 |     | Rb <sub>334</sub>                      |

| TABLE 39-continued                                                                                    | TABLE 39-continued                                                         |
|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| "B" part of ligand                                                                                    | "B" part of ligand                                                         |
| Rb <sub>341</sub> Rb <sub>342</sub> Rb <sub>343</sub>                                                 | B39  Rb <sub>393</sub> Rb <sub>394</sub> Rb <sub>392</sub> 15              |
| Rb <sub>353</sub> Rb <sub>352</sub> Rb <sub>352</sub>                                                 | 20 Rb <sub>404</sub> Rb <sub>403</sub> Rb <sub>401</sub> Rb <sub>402</sub> |
| $Rb_{362} \xrightarrow{\qquad \qquad \qquad M} Rb_{361} \xrightarrow{\qquad \qquad \qquad } Rb_{364}$ | 30 B41 $Rb_{414} = 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4$                  |
| Rb <sub>372</sub> Rb <sub>371</sub> Rb <sub>373</sub> Rb <sub>374</sub>                               | B42  Rb <sub>422</sub> Rb <sub>423</sub> Rb <sub>423</sub>                 |
| $Rb_{382}$ $Rb_{381}$ $Rb_{384}$                                                                      | 60 Rb <sub>432</sub> Rb <sub>431</sub> Rb <sub>431</sub> Rb <sub>434</sub> |

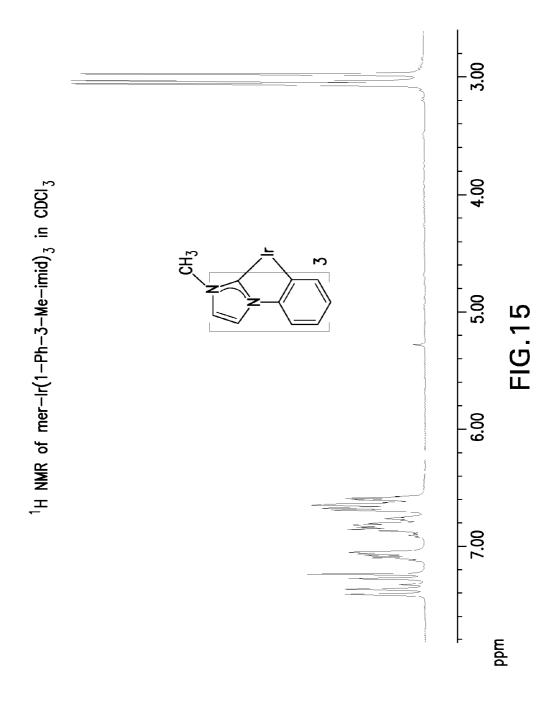
TABLE 39-continued

|     | "B" part of ligand                                                      | ٠. | SD2                                                        |  |
|-----|-------------------------------------------------------------------------|----|------------------------------------------------------------|--|
| B44 | D part of rigand                                                        | ٠. | "B" part of ligand                                         |  |
| B44 | M                                                                       | 5  | Rb <sub>504</sub> M                                        |  |
|     | Rb <sub>442</sub> Rb <sub>443</sub>                                     | 10 | Rb <sub>503</sub> Rb <sub>502</sub>                        |  |
| B45 | Rb <sub>444</sub>                                                       | 15 | Rb <sub>514</sub>                                          |  |
| B43 | Rb <sub>452</sub> Rb <sub>451</sub>                                     | 20 | Rb <sub>513</sub> Rb <sub>511</sub>                        |  |
| B46 | Rb <sub>454</sub> Rb <sub>453</sub>                                     | 25 | B52 Rb <sub>523</sub>                                      |  |
| 2.0 | Rb <sub>463</sub> M Rb <sub>461</sub>                                   | 30 | Rb <sub>524</sub> M<br>Rb <sub>522</sub> Rb <sub>521</sub> |  |
| B47 | Rb <sub>464</sub>                                                       | 35 | Rb <sub>534</sub>                                          |  |
|     | Rb <sub>473</sub> M Rb <sub>471</sub>                                   | 40 | Rb <sub>532</sub> M Rb <sub>531</sub>                      |  |
|     | Rb <sub>472</sub>                                                       | 45 | B54 Rb <sub>544</sub>                                      |  |
| B48 | Rb <sub>483</sub> Rb <sub>482</sub> M Rb <sub>481</sub>                 | 50 | Rb <sub>543</sub> M<br>Rb <sub>542</sub> Rb <sub>541</sub> |  |
|     | Rb <sub>484</sub>                                                       | 55 | B55                                                        |  |
| B49 | M                                                                       | 60 |                                                            |  |
|     | Rb <sub>494</sub> Rb <sub>493</sub> Rb <sub>492</sub> Rb <sub>491</sub> | 65 | Rb <sub>554</sub>                                          |  |

**222** TABLE 39-continued

|     | "B" part of ligand                                    |    | "B" part of ligand                    |
|-----|-------------------------------------------------------|----|---------------------------------------|
| B56 | M                                                     | 5  | B61  Rb <sub>612</sub>                |
|     | Rb <sub>563</sub> Rb <sub>561</sub>                   | 10 | $Rb_{611}$                            |
|     | Rb <sub>564</sub>                                     | 15 | Rb <sub>613</sub>                     |
| B57 | M                                                     | 20 | $M$ $Rb_{621}$                        |
|     | Rb <sub>572</sub>                                     | 25 | Rb <sub>622</sub> N Rb <sub>623</sub> |
| DEG | Rb <sub>574</sub>                                     | 30 | B63                                   |
| B58 | Rb <sub>581</sub> M Rb <sub>582</sub>                 | 35 | Rb <sub>631</sub>                     |
|     | Rb <sub>583</sub>                                     | 40 | Rb <sub>632</sub> Rb <sub>633</sub>   |
| B59 |                                                       | 45 | M                                     |
|     | Rb <sub>591</sub> M                                   | 50 | Rb <sub>643</sub> Rb <sub>642</sub>   |
|     | Rb <sub>592</sub> Rb <sub>593</sub>                   | 55 | B65                                   |
| B60 | Rb <sub>604</sub> M                                   | 60 | M<br>Rb <sub>651</sub>                |
|     | Rb <sub>603</sub> Rb <sub>602</sub> Rb <sub>601</sub> | 65 | Rb <sub>652</sub>                     |

| TADIE     | 39-continued    |
|-----------|-----------------|
| 1/3/12/12 | .) > - COHUHUCU |


## TABLE 39-continued

|     | "B" part of ligand                     |    |     | "B" part of ligand                    |
|-----|----------------------------------------|----|-----|---------------------------------------|
| B66 | Rb <sub>663</sub> M                    | 5  | B75 | M<br>Rb <sub>751</sub>                |
|     | Rb <sub>662</sub> Rb <sub>661</sub>    | 10 | B76 | M                                     |
| В67 | Rb <sub>672</sub> —N Rb <sub>671</sub> | 15 |     | Rb <sub>761</sub> N Rb <sub>762</sub> |
| B68 | M<br>Rb <sub>681</sub>                 | 20 | В77 | Rb <sub>771</sub> O                   |
| В69 | $Rb_{691}$                             | 25 | B78 | $Rb_{781}$ $S$                        |
| В70 | Rb <sub>701</sub> —N                   | 30 | B79 | M N                                   |
| B71 | Rb <sub>702</sub>                      | 35 |     | Rb <sub>791</sub> Rb <sub>792</sub>   |
|     | Rb <sub>711</sub>                      | 40 | B80 | M                                     |
| B72 | M                                      | 45 |     | Rb <sub>801</sub>                     |
|     | $Rb_{721}$                             | 50 | B81 | M S                                   |
| B73 | $M$ $Rb_{731}$                         | 55 |     | Rb <sub>811</sub>                     |
| B74 | Rb <sub>732</sub>                      | 60 | B82 | Rb <sub>821</sub> N                   |
|     | $Rb_{741}$                             | 65 |     | Rb <sub>822</sub>                     |

226
TABLE 40-continued

|     | "B" part of ligand                                                                                    | _             | "C" Ligands                                                                                                                                                                           |
|-----|-------------------------------------------------------------------------------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| В83 | $Rb_{832}$ $M$ $Rb_{831}$                                                                             | 10            | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                 |
| B84 | Rb <sub>842</sub>                                                                                     | 20            | $Ra_3$ $Ra_2$ $Ra_1$ $Rb_5$ $Rb_4$ $Rb_4$ $Ra_2$ $Ra_1$ $Rb_5$ $Rb_4$                                                                                                                 |
| B85 | O S Rb <sub>851</sub>                                                                                 | 30<br>35      | TABLE 41  Preferred compounds                                                                                                                                                         |
| B86 | TABLE 40                                                                                              | 45            | $\begin{array}{c c} A1 \\ B1 \end{array}$ $\begin{array}{c c} Ra_2 \\ Ra_3 \\ Rb_4 \\ Rb_2 \end{array}$ $\begin{array}{c c} M(X-Y)_n \\ Mb_1 \\ Rb_2 \\ \end{array}$                  |
| CI  | Ra <sub>2</sub> Ra <sub>1</sub> N(X-Y) <sub>n</sub> Rb <sub>3</sub> Rb <sub>2</sub> Rb <sub>1</sub> m | -<br>55<br>60 | $\begin{array}{c} A1 \\ B4 \end{array}$ $\begin{array}{c} Ra_2 \\ Ra_3 \\ Rb_6 \\ Rb_4 \\ Rb_3 \\ Rb_2 \\ \end{array}$ $\begin{array}{c} Ra_1 \\ M(X-Y)_n \\ M(X-Y)_n \\ \end{array}$ |

| TABLE 41-continued                                                                                                                                                                                           | TABLE 41-continued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|
| Preferred compounds                                                                                                                                                                                          | Preferred compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                        | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | On.            |  |
| $\begin{array}{c} A1 \\ B12 \end{array}$ $\begin{array}{c} Ra_2 \\ Ra_3 \\ Rb_4 \end{array}$ $\begin{array}{c} Ra_1 \\ Rb_1 \\ Rb_2 \\ Rb_4 \end{array}$ $\begin{array}{c} Rb_1 \\ Rb_2 \\ Rb_4 \end{array}$ | 20 A1 $Ra_2$ $Ra_1$ $Ra_2$ $Ra_1$ $Ra_2$ $Ra_3$ $Rb_7$ $Rb_6$ $Rb_6$ $Rb_6$ $Rb_6$ $Rb_7$ $Rb_8$ $Rb_9$ $Rb_9$ $Rb_9$ $Ra_9$ $R$ | $Y)_n$         |  |
| $\begin{array}{c} A1 \\ B55 \end{array}$ $\begin{array}{c} Ra_2 \\ Ra_3 \\ Rb_4 \end{array}$ $\begin{array}{c} Ra_1 \\ Rb_2 \\ Rb_1 \\ Rb_2 \end{array}$ $\begin{array}{c} Rb_1 \\ Rb_2 \\ Rb_4 \end{array}$ | 35 B62 $Ra_{3}$ $Rb_{6}$ $Rb_{7}$ $Rb_{1}$ $Rb_{2}$ $Rb_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |  |
| $\begin{array}{c} A1 \\ B56 \end{array}$ $\begin{array}{c} Ra_2 \\ Ra_3 \\ Rb_6 \\ Rb_8 \\ Rb_7 \\ Rb_2 \\ Rb_2 \\ Rb_3 \\ Rb_3 \\ Rb_4 \end{array}$                                                         | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | O <sub>n</sub> |  |



230
TABLE 41-continued

| Preferred compounds |                                                                                                                           |                                                       | Preferred compounds |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|---------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| A1<br>B66           | $\begin{array}{c} Ra_2 \\ Rb_3 \\ Rb_7 \\ Rb_2 \\ \end{array}$ $\begin{array}{c} Ra_1 \\ M(X-Y)_n \\ Rb_1 \\ \end{array}$ | <ul><li>5</li><li>10</li><li>15</li></ul>             | A1<br>B72           | $\begin{bmatrix} Ra_2 & Ra_1 \\ N & \\ Rb_4 & \\ Rb_2 & \\ Rb_3 & \\ Rb_2 & \\ Rb_2 & \\ Rb_3 & \\ Rb_4 & \\ Rb_2 & \\ Rb_3 & \\ Rb_4 & \\ Rb_5 & \\ Rb_5 & \\ Rb_5 & \\ Rb_7 & \\ Rb_8 &$ |  |
| A1<br>B69           | $\begin{bmatrix} Ra_2 & Ra_1 \\ N & \\ Rb_2 & \\ Rb_1 & \\ \end{bmatrix}_m$                                               | 25                                                    | A2<br>B1            | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| A1<br>B70           | $\begin{array}{c c} Ra_2 & Ra_1 \\ \hline Ra_3 & N \\ \hline Rb_4 & Rb_1 \\ \hline Rb_4 & Rb_2 \\ \hline \end{array}$     | 35<br>40<br>45                                        | A2<br>B4            | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| A1<br>B71           | $\begin{bmatrix} Ra_2 & Ra_1 \\ Ra_3 & N \\ Rb_4 & Rb_2 \end{bmatrix}_m$                                                  | <ul><li>50</li><li>55</li><li>60</li><li>65</li></ul> | A2<br>B10           | $\begin{array}{c} Ra_{3} \\ Ra_{4} \\ Ra_{5} \\ Rb_{7} \\ Rb_{7} \\ Rb_{1} \\ Rb_{2} \\ Rb_{2} \\ Rb_{4} \\ Rb_{3} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

Rb<sub>4</sub>

232
TABLE 41-continued

Rb3

Rb<sub>4</sub>

Preferred compounds Preferred compounds A2 B12 A2 B59 Ra<sub>3</sub> 10 Rb<sub>8</sub>  $M(X-Y)_n$  $M(X-Y)_n$  $Ra_5'$  $Rb_7$ Rb<sub>6</sub> 15 Rb<sub>1</sub> Rb5 20 Rb<sub>4</sub> 25 A2 B55 A2 B61 Ra<sub>3</sub> 30 M(X-Y)<sub>n</sub> M(X-Y)<sub>n</sub> Ra<sub>5</sub> Rb<sub>7</sub> Rb<sub>7</sub> 35 Кb<sub>2</sub> Rb<sub>2</sub> Rb3 40 45 A2 B56 A2 B62 50  $M(X-Y)_n$ Ra<sub>5</sub>  $M(X-Y)_n$ Ra<sub>5</sub> Rb<sub>6</sub> Rb<sub>6</sub> 55 Rb<sub>7</sub> Rb<sub>2</sub> Rb<sub>5</sub> 60 Rb<sub>5</sub>

TABLE 41-continued

## TABLE 41-continued

| Preferred compounds |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                          | Preferred compounds |                                                                                         |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------|-----------------------------------------------------------------------------------------|
| A2<br>B65           | $\begin{array}{c} Ra_{3} \\ Ra_{4} \\ Ra_{5} \\ Rb_{6} \\ Rb_{5} \\ Rb_{7} \\ Rb_{1} \\ Rb_{2} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5<br>10<br>15                              | A2<br>B71           | $\begin{array}{c} Ra_3 \\ Ra_4 \\ Ra_5 \\ Rb_4 \\ Rb_3 \end{array}$                     |
| A2<br>B66           | $\begin{array}{c} Ra_{3} \\ Ra_{4} \\ Rb_{5} \\ Rb_{6} \\ Rb_{7} \\ Rb_{2} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25<br>30<br>35                             | A2<br>B72           | $Ra_3$ $Ra_2$ $Ra_1$ $Ra_4$ $Ra_5$ $Ra_5$ $Rb_1$ $Rb_2$                                 |
| A2<br>B69           | $\begin{bmatrix} Ra_3 & Ra_2 & \\ Ra_4 & \\ Ra_5 & \\ Rb_2 & \\ Rb_1 & \\ Ra_2 & \\ Ra_3 & \\ Ra_4 & \\ Ra_5 & \\ R$ | 40<br>45                                   | A5<br>B1            | $Rb_3$ $Ra_2$ $Ra_3$ $Ra_4$ $Rb_4$ $Rb_4$ $Rb_2$ $Rb_1$                                 |
| A2<br>B70           | $Ra_3$ $Ra_4$ $Ra_5$ $Rb_5$ $Rb_1$ $Rb_4$ $Rb_2$ $Rb_3$ $Rb_4$ $Rb_2$ $Rb_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul><li>55</li><li>60</li><li>65</li></ul> | A5<br>B4            | $\begin{bmatrix} Ra_2 & Ra_1 \\ Ra_3 & N \\ Rb_4 & Rb_1 \\ Rb_3 & Rb_2 \end{bmatrix}_m$ |

TABLE 41-continued

| TABLE | 41-cc | ontinue | d |
|-------|-------|---------|---|
|       |       |         |   |

|           | Preferred compounds                                                                                            |                |           | Preferred compounds                                                                                                                          |
|-----------|----------------------------------------------------------------------------------------------------------------|----------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------|
| A5<br>B10 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                          | 5 10 15        | A5<br>B59 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                        |
| A5<br>B12 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                          | 25             | A5<br>B61 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                        |
| A5<br>B55 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                          | 35<br>40<br>45 | A5<br>B62 | $\begin{array}{c c} Ra_2 & Ra_1 \\ \hline Ra_3 & N \\ \hline Rb_6 & M(X-Y)_n \\ \hline Rb_7 & N \\ \hline Rb_2 & Rb_2 \\ \hline \end{array}$ |
| A5<br>B56 | $\begin{array}{c} Ra_{2} \\ Ra_{3} \\ Rb_{8} \\ Rb_{7} \\ Rb_{1} \\ Rb_{2} \\ Rb_{3} \\ Rb_{3} \\ \end{array}$ | 50<br>55<br>60 | A5<br>B65 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                        |

A6 B1

50

A6 B4

| Preferred compounds |                                                                  |    |  |  |  |
|---------------------|------------------------------------------------------------------|----|--|--|--|
| A5<br>B66           | $Ra_2$ $Ra_1$ $Ra_3$ $N$                                         | 5  |  |  |  |
|                     | $Rb_5$ $Rb_6$ $N$ $M(X-Y)_n$                                     | 10 |  |  |  |
|                     | $\begin{bmatrix} Rb_3 & N & Rb_1 \\ Rb_7 & Rb_2 \end{bmatrix}_m$ | 15 |  |  |  |

$$\begin{array}{c} A5 \\ B69 \end{array}$$
 
$$\begin{array}{c} Ra_2 \\ Ra_3 \\ N \\ Rb_1 \end{array}$$
 
$$\begin{array}{c} Ra_1 \\ M(X-Y)_n \end{array}$$
 
$$\begin{array}{c} 25 \\ Rb_2 \\ \end{array}$$

$$\begin{array}{c} A5 \\ B70 \end{array}$$
 
$$\begin{array}{c} Ra_2 \\ Ra_3 \end{array}$$
 
$$\begin{array}{c} Ra_1 \\ N \end{array}$$
 
$$\begin{array}{c} M(X-Y)_n \\ A5 \end{array}$$
 
$$\begin{array}{c} A5 \\ Rb_5 \end{array}$$
 
$$\begin{array}{c} Rb_1 \\ Rb_2 \\ \end{array}$$
 
$$\begin{array}{c} A5 \\ Rb_2 \\ \end{array}$$

$$\begin{array}{c} Ra_{3} \\ Ra_{4} \\ Ra_{5} \\ Ra_{6} \\ Ra_{6} \\ Rb_{6} \\ Ra_{7} \\ Rb_{1} \\ Rb_{1} \\ Rb_{1} \\ Rb_{2} \\ \end{array}$$

Preferred compounds Preferred compounds A6 B56 A6 B10 Ra<sub>2</sub> Ra<sub>5</sub> 10  $M(X-Y)_n$  $M(X-Y)_n$ 15 Rb<sub>7</sub> 20 Rb3  $Rb_4$ 25 A6 B12 A6 B59 , Ra<sub>2</sub> 30 Ra5 35  $M(X-Y)_n$  $M(X-Y)_n$ Rb<sub>6</sub> Rb<sub>7</sub> 40 -Rb<sub>7</sub> Rb<sub>2</sub> Rb5 Rb<sub>4</sub> 45 A6 B55 A6 B61 50 Ra<sub>2</sub> 55  $M(X-Y)_n$  $M(X-Y)_n$ Ra<sub>7</sub> Rb<sub>7</sub> 60  $Rb_2$ 

65

Rb<sub>4</sub>

242
TABLE 41-continued

| Preferred compounds                                                                       | Preferred compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A6<br>B62<br>Ra <sub>4</sub><br>Ra <sub>2</sub>                                           | 5 A6 Ra <sub>3</sub> Ra <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $Ra_{5}$ $Ra_{6}$ $Ra_{7}$ $Ra_{1}$ $Ra_{6}$ $Ra_{7}$ $Ra_{1}$ $Ra_{1}$ $Ra_{2}$ $Ra_{3}$ | Ra <sub>7</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Rb <sub>7</sub> N                                                                         | $\begin{bmatrix} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $ |
| $Rb_{5}$ $Rb_{4}$ $Rb_{3}$ $Rb_{4}$                                                       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                           | 25 A6<br>B70 Ra <sub>3</sub> Ra <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| A6<br>B65<br>Ra <sub>4</sub><br>Ra <sub>2</sub><br>Ra <sub>5</sub><br>Ra <sub>1</sub>     | Ra <sub>5</sub> Ra <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| N. C.                                                                                     | $Ra_{7}$ $Rb_{5}$ $Rb_{1}$ $Rb_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Rb <sub>5</sub> Rb <sub>1</sub>                                                           | $\begin{array}{c c} Rb_4 & \\ \hline Rb_3 & \\ \hline \end{array}_m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $Rb_3$ $Rb_2$ $m$                                                                         | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| A6<br>B66<br>Ra <sub>4</sub> Ra <sub>2</sub>                                              | A6<br>B71<br>S0 Ra <sub>4</sub> Ra <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Ra <sub>5</sub> Ra <sub>6</sub> Ra <sub>6</sub> Ra <sub>7</sub> Ra <sub>1</sub>           | $Ra_5$ $Ra_7$ $Ra_1$ $Ra_1$ $Ra_1$ $Ra_2$ $M(X-Y)_n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Rb <sub>4</sub> Rb <sub>6</sub> Rb <sub>1</sub>                                           | $(X-Y)_n$ $Rb_1$ $Rb_4$ $Rb_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{bmatrix} Rb_7' & I \\ Rb_2 & \end{bmatrix}$                                       | $Rb_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

TABLE 41-continued

| Preferred compounds |                                                                                                              | _              |           | Preferred compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------|--------------------------------------------------------------------------------------------------------------|----------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A6<br>B72           | $Ra_2$ $Ra_1$ $Ra_2$ $Ra_1$ $Ra_2$ $Ra_1$ $Ra_2$ $Ra_1$ $Ra_2$ $Ra_3$ $Rb_4$ $Rb_4$ $Rb_4$ $Rb_2$ $Rb_3$     | 5<br>10<br>15  | A7<br>B12 | $\begin{array}{c c} & & & & \\ & & & & \\ Ra_2 & N & & \\ Ra_3 & N & & \\ Rb_7 & & & \\ Rb_6 & & & \\ Rb_7 & & & \\ Rb_8 & & & \\ Rb_8 & & & \\ Rb_9 & & \\ Rb_9 & & \\ Rb_9 & & \\ Rb_9 & & \\ Rb_9 & & \\ Rb_9 & & \\ Rb_9 & & \\ Rb_9 & & \\ Rb_9 & & \\ Rb_9 & & & \\ Rb_9 & & \\ R$ |
| A7<br>B1            | $\begin{array}{c} Ra_2 \\ Ra_3 \\ Rb_4 \\ Rb_3 \\ \end{array}$                                               | 25             | A7<br>B55 | $\begin{array}{c} Ra_{2} \\ Ra_{3} \\ Rb_{6} \\ Rb_{7} \\ Rb_{8} \\ Rb_{1} \\ Rb_{2} \\ Rb_{1} \\ Rb_{2} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                     | L Rb₂ J <sub>m</sub>                                                                                         |                | 47        | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A7<br>B4            | $\begin{array}{c} Ra_{2} \\ Ra_{3} \\ Rb_{5} \\ Rb_{4} \\ \end{array}$                                       | 35<br>40<br>45 | A7<br>B56 | $\begin{array}{c} Ra_{2} \\ Ra_{3} \\ Rb_{6} \\ Rb_{7} \\ Rb_{1} \\ Rb_{2} \\ Rb_{2} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     | $\begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \end{bmatrix}_m$                                           |                |           | $Rb_5$ $Rb_4$ $Rb_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| A7<br>B10           | $\begin{array}{c} Ra_{1} \\ Ra_{3} \\ Rb_{8} \\ Rb_{7} \\ Rb_{1} \\ Rb_{5} \\ \end{array}$                   | 50<br>55       | A7<br>B59 | $\begin{array}{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                     | $\stackrel{\cdot}{\mathbb{R}}_{b_4}$ $\stackrel{\cdot}{\mathbb{R}}_{b_3}$ $\stackrel{\cdot}{\mathbb{L}}_{m}$ | 65             |           | $\square$ $\stackrel{Rb_2}{\square}$ $\stackrel{m}{\square}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

TABLE 41-continued

| TADE |   | 11 | 4. 1       |
|------|---|----|------------|
| IABL | Æ | 41 | -continued |

|           | Preferred compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                          | Preferred compounds                                                                                                                                         |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A7<br>B61 | $\begin{array}{c} Ra_1 \\ Ra_2 - N \\ Ra_3 \\ Rb_4 \\ Rb_3 \\ Rb_2 \\ Rb_1 \\ Rb_1 \\ Rb_1 \\ Rb_1 \\ Rb_2 \\ Rb_3 \\ Rb_1 \\ Rb_3 \\ Rb_1 \\ Rb_3 \\ Rb_1 \\ Rb_3 \\ Rb_1 \\ Rb_3 \\ Rb_3 \\ Rb_4 \\ Rb_3 \\ Rb_4 \\ Rb_3 \\ Rb_4 \\ Rb_5 \\ Rb_5 \\ Rb_6 \\ Rb_7 \\ Rb_8 \\ Rb_8 \\ Rb_9 $ | 10                                         | $A7$ $B69$ $Ra_2$ $Ra_1$ $Ra_3$ $Rb_1$ $Rb_1$ $Rb_2$                                                                                                        |
| A7<br>B62 | $Ra_{2}$ $Ra_{1}$ $Ra_{2}$ $Ra_{3}$ $Rb_{6}$ $Rb_{7}$ $Rb_{1}$ $Rb_{2}$ $Rb_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20<br>25<br>30                             | A7 B70 $Ra_{2} \longrightarrow N$ $Ra_{3} \longrightarrow N$ $Rb_{5} \longrightarrow N$ $Rb_{4} \longrightarrow Rb_{1}$ $Rb_{2} \longrightarrow M(X-Y)_{n}$ |
| A7<br>B65 | $Rb_4$ $Rb_4$ $Ra_2$ $Ra_1$ $Ra_3$ $Rb_6$ $Rb_5$ $Rb_7$ $Rb_7$ $Rb_7$ $Rb_7$ $Rb_7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35<br>40<br>45<br>50                       | A7 B71 $Ra_{2} \qquad Ra_{1}$ $Ra_{3} \qquad Rb_{1}$ $Rb_{4} \qquad Rb_{2}$ $Rb_{3} \qquad Ra_{2}$ $Rb_{2} \qquad Ra_{1}$ $Ra_{2} \qquad Ra_{1}$            |
| A7<br>B66 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul><li>55</li><li>60</li><li>65</li></ul> | $Ra_2$ $Ra_3$ $Rb_4$ $Rb_4$ $Rb_2$ $Rb_2$ $Rb_3$                                                                                                            |

|                     | TABLE 41-continued                                                                                                                                             |                |            | TABLE 41-continued                                                                                                       |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------|--------------------------------------------------------------------------------------------------------------------------|
| Preferred compounds |                                                                                                                                                                |                |            | Preferred compounds                                                                                                      |
| A18<br>B1           | $\begin{bmatrix} Ra_{2} & & & \\ Ra_{3} & & & \\ Ra_{4} & & & \\ Rb_{4} & & & \\ Rb_{5} & & & \\ Rb_{1} & & & \\ Rb_{2} & & & \\ \end{bmatrix}_{m} M(X-Y)_{n}$ | 10             | A18<br>B55 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                    |
| A18<br>B4           | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                          | 20<br>25<br>30 | A18<br>B56 | $Ra_2$ $Ra_4$ $Rb_6$ $Ra_2$ $Ra_1$ $Ra_1$ $Ra_4$ $Rb_6$                                                                  |
| A18<br>B10          | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                          | 35<br>40<br>45 |            | $Rb_{3}$ $Rb_{4}$ $Rb_{1}$ $Rb_{2}$ $Rb_{3}$ $Rb_{4}$                                                                    |
| A18<br>B12          | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                          | 50<br>55<br>60 | A18<br>B59 | $\begin{array}{c} Ra_{2} \\ Ra_{3} \\ Ra_{4} \\ Rb_{6} \\ Rb_{6} \\ Rb_{7} \\ Rb_{8} \\ Rb_{8} \\ Rb_{2} \\ \end{array}$ |

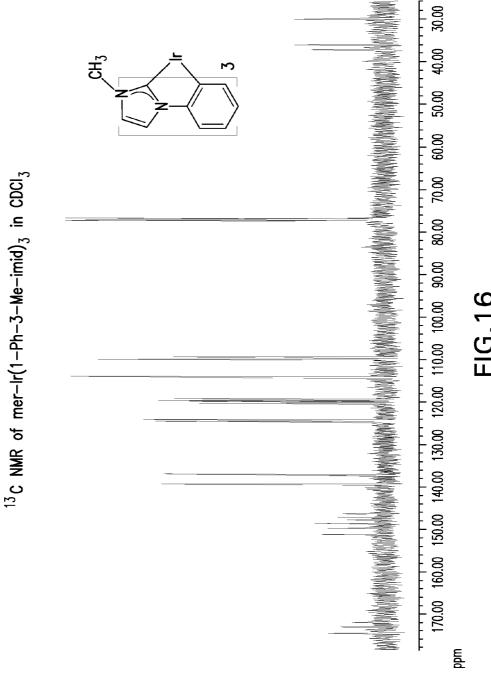



TABLE 41-continued

| T 4 T T | _  | 4 4 |            |
|---------|----|-----|------------|
| LARL    | ж. | 4 I | -continued |
|         |    |     |            |

|            | Preferred compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                            |            | Preferred compounds                                                                                                    |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------|------------------------------------------------------------------------------------------------------------------------|
| A18<br>B61 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5<br>10<br>15                              | A18<br>B69 | $\begin{bmatrix} Ra_2 \\ Ra_4 \\ Rb_1 \\ Rb_2 \end{bmatrix}_m$                                                         |
| A18<br>B62 | $\begin{array}{c c} Ra_2 \\ Ra_4 \\ Rb_6 \\ Rb_7 \\ Rb_1 \\ Rb_5 \\ Rb_4 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20<br>25<br>30                             | A18<br>B70 | $Ra_{2}$ $Ra_{3}$ $Ra_{4}$ $Ra_{4}$ $Ra_{5}$ $Ra_{1}$ $Rb_{5}$ $Rb_{1}$ $Rb_{2}$ $Ra_{2}$                              |
| A18<br>B65 | $\begin{array}{c c} Ra_{2} \\ Ra_{3} \\ Ra_{4} \\ Rb_{6} \\ Rb_{5} \\ Rb_{7} \\ Rb_{8} \\ Rb_{9} \\ Rb_{1} \\ Rb_{1} \\ Rb_{2} \\ Rb_{3} \\ Rb_{2} \\ Rb_{3} \\ Rb_{5} \\ Rb_{7} \\ Rb_{8} \\ Rb_{8} \\ Rb_{9} \\ Rb_{1} \\ Rb_{1} \\ Rb_{2} \\ Rb_{3} \\ Rb_{5} \\ Rb_{5} \\ Rb_{7} \\ Rb_{8} \\ Rb_{8} \\ Rb_{9} \\ Rb_{1} \\ Rb_{2} \\ Rb_{3} \\ Rb_{4} \\ Rb_{5} \\ Rb_{5} \\ Rb_{7} \\ Rb_{8} \\ Rb_{8} \\ Rb_{9} \\ Rb_$ | 40 45 50                                   | A18<br>B72 | $Ra_3$ $Ra_4$ $Ra_4$ $Ra_4$ $Ra_4$ $Ra_4$ $Rb_1$ $Rb_2$ $Ra_2$ $Ra_3$ $Ra_2$ $Ra_3$ $Ra_4$ $Ra_4$ $Ra_4$ $Ra_5$ $Ra_5$ |
| A18<br>B66 | $\begin{array}{c} Ra_{2} \\ Ra_{3} \\ Rb_{5} \\ Rb_{6} \\ Ra_{4} \\ Rb_{7} \\ Rb_{2} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul><li>55</li><li>60</li><li>65</li></ul> |            | $Ra_4$ $N$ $C$ $Rb_1$ $Rb_2$ $Rb_3$ $M(X-Y)_n$                                                                         |

252
TABLE 41-continued

|            | Preferred compounds                                                                                  |                | Preferred compounds                                                                                                                                                                                                                                                                       |
|------------|------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A19<br>B1  | $\begin{bmatrix} Ra_1 & Ra_3 & \\ Ra_2 & \\ Rb_4 & \\ Rb_2 & \\ \end{bmatrix}_m$                     | 5<br>10<br>15  | $\begin{array}{c} A19 \\ B55 \end{array}$ $\begin{array}{c} Ra_1 \\ Ra_2 \\ Rb_7 \\ Rb_8 \end{array}$ $\begin{array}{c} Ra_4 \\ Ra_3 \\ Rb_7 \\ Rb_8 \end{array}$ $\begin{array}{c} Ra_4 \\ Ra_3 \\ Rb_7 \\ Rb_8 \end{array}$ $\begin{array}{c} Ra_4 \\ Ra_3 \\ Rb_7 \\ Rb_8 \end{array}$ |
| A19<br>B4  | $\begin{array}{c} Ra_{2} \\ Ra_{3} \\ Ra_{2} \\ Rb_{5} \\ Rb_{4} \\ Rb_{1} \\ Rb_{1} \\ \end{array}$ | 20<br>25<br>30 | A19 Ra <sub>1</sub> Ra <sub>3</sub>                                                                                                                                                                                                                                                       |
| A19<br>B10 | $Rb_3$ $Rb_2$ $Ra_4$ $Ra_3$ $Rb_8$ $Rb_8$ $Rb_7$ $Rb_6$ $Rb_1$                                       | 35<br>40<br>45 | $Rb_6$ $Rb_7$ $Rb_1$ $Rb_2$ $Rb_3$ $Rb_4$ $Rb_3$ $Rb_3$                                                                                                                                                                                                                                   |
|            | $Rb_5$ $Rb_4$ $Rb_3$ $Rb_2$ $Rb_3$                                                                   | 43             |                                                                                                                                                                                                                                                                                           |
| A19<br>B12 | $\begin{array}{c} Ra_{4} \\ Ra_{3} \\ Ra_{2} \\ Rb_{8} \\ Rb_{1} \end{array}$                        | 50<br>55<br>60 | $Ra_{1} \qquad Ra_{3}$ $Ra_{2} \qquad Rb_{6}$ $Rb_{5} \qquad Rb_{1}$                                                                                                                                                                                                                      |
| F          | $Rb_3$ $Rb_2$ $Rb_4$ $Rb_2$ $Rb_3$                                                                   | 65             | $Rb_3$ $Rb_2$ $m$                                                                                                                                                                                                                                                                         |

TABLE 41-continued

| TABLE | 41-cc | ontinued | 1 |
|-------|-------|----------|---|
|       |       |          |   |

|            | Preferred compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                            | Preferred compounds                                                                                                  |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| A19<br>B61 | $\begin{array}{c c} Ra_1 & Ra_3 \\ Ra_2 & Ra_3 \\ Rb_7 & Rb_7 \\ Rb_6 & Rb_3 & Rb_1 \\ Rb_4 & Rb_3 & Rb_2 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5<br>10<br>15                              | $Ra_{1}$ $Ra_{2}$ $Ra_{3}$ $Ra_{2}$ $Ra_{3}$ $Ra_{1}$ $Ra_{3}$ $Ra_{2}$ $Rb_{1}$ $Rb_{2}$ $Rb_{1}$                   |
| A19<br>B62 | $\begin{array}{c} Ra_1 \\ Ra_2 \\ Rb_6 \\ Rb_7 \\ Rb_1 \\ Rb_2 \\ Rb_3 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20<br>25<br>30                             | $Ra_{1}$ $Ra_{2}$ $Ra_{2}$ $Rb_{3}$ $Rb_{1}$ $Rb_{2}$ $Rb_{3}$ $Rb_{2}$ $Rb_{3}$ $Ra_{2}$ $Rb_{3}$ $Rb_{4}$ $Rb_{2}$ |
| A19<br>B65 | $\begin{array}{c} Ra_{1} \\ Ra_{2} \\ Rb_{6} \\ Rb_{7} \\ Rb_{8} \\ Rb_{9} \\ Rb_{1} \\ Rb_{1} \\ Rb_{2} \\ Rb_{3} \\ Rb_{2} \\ Rb_{3} \\ Rb_{4} \\ Rb_{5} \\ Rb_{7} \\ Rb_{8} \\ Rb_{9} \\ Rb_{1} \\ Rb_{1} \\ Rb_{2} \\ Rb_{3} \\ Rb_{5} \\ Rb_{6} \\ Rb_{7} \\ Rb_{8} \\ Rb_{8} \\ Rb_{9} \\ Rb_{9} \\ Rb_{1} \\ Rb_{2} \\ Rb_{3} \\ Rb_{5} \\ Rb_{5} \\ Rb_{7} \\ Rb_{8} \\ Rb_{1} \\ Rb_{1} \\ Rb_{2} \\ Rb_{3} \\ Rb_{4} \\ Rb_{5} \\ Rb_{5} \\ Rb_{5} \\ Rb_{7} \\ Rb_{8} \\ Rb_{8} \\ Rb_{8} \\ Rb_{8} \\ Rb_{9} \\ Rb_{9$ | 40 45 50                                   | $Rb_4$ $Rb_2$ $Rb_3$ $Rb_2$                                                                                          |
| A19<br>B66 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul><li>55</li><li>60</li><li>65</li></ul> | $Rb_{2}$ $Rb_{2}$ $Rb_{1}$ $Rb_{2}$                                                                                  |

256
TABLE 41-continued

Rb<sub>3</sub>

## Preferred compounds Preferred compounds A20 B61 A20 B66 Ra<sub>3</sub> 10 Ra<sub>4</sub> M(X-Y)<sub>n</sub> $M(X-Y)_n$ Rb<sub>7</sub>. 15 Rb<sub>3</sub> A20 B69 20 25 A20 B62 $M(X-Y)_n$ Ra<sub>3</sub> 30 Ra<sub>4</sub> $M(X-Y)_n$ $Rb_6$ A20 B70 35 Rb7 $M(X-Y)_n$ 40 R<sub>5</sub>-45 Rb<sub>2</sub> A20 B65 A20 B71 50 Ra<sub>3</sub> Ra<sub>4</sub> 55 $M(X-Y)_n$ $M(X-Y)_n$ 60

65

|            | TABLE 41-continued                                                                                              | _        | TABLE 41-continued                                                                                                                                                                                                        |
|------------|-----------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | Preferred compounds                                                                                             | _        | Preferred compounds                                                                                                                                                                                                       |
| A20<br>B72 | $Ra_2$ $Ra_3$ $Ra_4$ | 10       | $\begin{array}{c} A33 \\ B12 \end{array}$ $\begin{array}{c} Ra_2 \\ Ra_3 \\ Ra_4 \\ Rb_8 \end{array}$ $\begin{array}{c} Ra_1 \\ Rb_7 \\ Rb_7 \end{array}$                                                                 |
|            | $\begin{array}{c c} Rb_1 \\ Rb_2 \\ Rb_3 \end{array}$                                                           | 15<br>20 | $Rb_5$ $Rb_3$ $Rb_2$                                                                                                                                                                                                      |
| A33<br>B1  | $Ra_3$ $Ra_4$ $Ra_4$ $Ra_4$ $Ra_4$ $Ra_4$ $Ra_4$                                                                | 25       |                                                                                                                                                                                                                           |
|            | $Rb_4$ $Rb_3$ $Rb_1$ $Rb_2$                                                                                     | 30       | $\begin{array}{c} A33 \\ B55 \end{array}$ $\begin{array}{c} Ra_2 \\ Ra_3 \end{array}$ $\begin{array}{c} Ra_1 \\ Rb_7 \end{array}$ $\begin{array}{c} Ra_1 \\ Rb_7 \end{array}$ $\begin{array}{c} Ra_1 \\ Rb_7 \end{array}$ |
| A33        | m                                                                                                               | 35       |                                                                                                                                                                                                                           |
| B4         | $\begin{array}{c} Ra_{2} \\ Ra_{4} \\ Rb_{6} \\ Rb_{5} \end{array}$                                             | 40       | $\begin{array}{c c} Rb_{5} & Rb_{1} \\ \hline Rb_{4} & Rb_{3} \end{array}$                                                                                                                                                |
|            | Rb <sub>4</sub>                                                                                                 | 45       |                                                                                                                                                                                                                           |
| A33<br>B10 | Rb <sub>3</sub> Rb <sub>2</sub> m                                                                               | 50       | A33<br>B56<br>Ra <sub>3</sub> Ra <sub>1</sub>                                                                                                                                                                             |
|            | $Ra_3$ $Ra_4$ $Rb_8$ $Ra_1$ $Ra_1$ $Ra_1$ $Ra_2$ $Ra_4$ $Rb_8$                                                  | 55       | $Ra_4$ $Rb_6$ $Rb_8$ $M(X-Y)_r$                                                                                                                                                                                           |
|            | Rb <sub>6</sub> Rb <sub>1</sub> Rb <sub>2</sub>                                                                 | 60       | Rb <sub>5</sub>                                                                                                                                                                                                           |
|            | $\begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & \end{bmatrix}_{m}$                                   | 65       |                                                                                                                                                                                                                           |

TABLE 41-continued

| TABLE 41-continued                                                                                                                                                                                                  | 17 IDEL 41-continued                                                                                                                |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Preferred compounds                                                                                                                                                                                                 | Preferred compounds                                                                                                                 |  |  |  |
| $\begin{array}{c} A33 \\ B59 \end{array}$ $\begin{array}{c} Ra_2 \\ Ra_3 \\ Rb_4 \\ Rb_5 \\ Rb_3 \\ Rb_2 \end{array}$ $\begin{array}{c} Ra_2 \\ Ra_1 \\ Ra_1 \\ Rb_1 \\ Rb_2 \\ Rb_3 \\ Rb_2 \end{array}$           | A33 B65  Ra3 Ra4  Rb6  Rb6  Rb7  Rb7  Rb7  Rb7                                                                                      |  |  |  |
|                                                                                                                                                                                                                     | $ \begin{array}{c c} A33 \\ B66 \\ 25 \\ Rb_5 \\ Rb_6 \\ Rb_6 \\ C \end{array} $ $ \begin{array}{c} Ra_2 \\ Ra_1 \\ C \end{array} $ |  |  |  |
| $\begin{array}{c} A33 \\ B61 \end{array}$ $\begin{array}{c} Ra_2 \\ Ra_3 \end{array}$ $\begin{array}{c} Ra_1 \\ Rb_6 \end{array}$ $\begin{array}{c} Ra_4 \\ N \end{array}$ $\begin{array}{c} Rb_7 \\ N \end{array}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                |  |  |  |
| $\begin{array}{c c} Rb_{5} & Rb_{1} \\ \hline Rb_{4} & Rb_{3} & \\ \end{array}$                                                                                                                                     | A33 B69 $Ra_{2}$ $Ra_{1}$ $Ra_{2}$ $Ra_{1}$ $Ra_{2}$ $Ra_{1}$ $Ra_{1}$ $Ra_{2}$ $Ra_{1}$ $Ra_{2}$ $Ra_{1}$ $Ra_{2}$ $Ra_{3}$        |  |  |  |
| A33 Ra <sub>2</sub>                                                                                                                                                                                                 | $Rb_1$ $Rb_2$ $Rb_1$                                                                                                                |  |  |  |
| Ra <sub>3</sub> Ra <sub>1</sub> Ra <sub>1</sub> Ra <sub>4</sub> N                                                                                                                                                   | 50 A33 B70  Ra <sub>2</sub> Ra <sub>3</sub> Ra <sub>1</sub>                                                                         |  |  |  |
| $Rb_6$ $Rb_7$ $N$ $Rb_1$                                                                                                                                                                                            | Ra <sub>4</sub> $N$ $C$ $M(X-Y)_n$                                                                                                  |  |  |  |
| $Rb_3$ $Rb_3$                                                                                                                                                                                                       | $Rb_4$ $Rb_2$ $Rb_3$                                                                                                                |  |  |  |
| Rb4 Rb3                                                                                                                                                                                                             | 65m                                                                                                                                 |  |  |  |

TABLE 41-continued

| TABLE | 41-0 | ontinued |
|-------|------|----------|
|       |      |          |

| Preferred compounds                                                                                                                                                                                                                          | Preferred compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c c} A33 \\ B71 \end{array}$ $\begin{array}{c c} Ra_2 \\ Ra_4 \end{array}$ $\begin{array}{c c} Ra_1 \\ \end{array}$ $\begin{array}{c c} M(X-Y)_n \end{array}$                                                                 | 5 A35 B10 Ra <sub>4</sub> Ra <sub>3</sub> Ra <sub>2</sub> Ra <sub>1</sub> Ra <sub>5</sub> Ra <sub>6</sub> Ra <sub>7</sub> Rb <sub>8</sub> M(X-Y) <sub>n</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $Rb_4$ $Rb_2$ $Rb_3$ $Ray$                                                                                                                                                                                                                   | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\begin{array}{c} A33 \\ B72 \end{array}$ $\begin{array}{c} Ra_{2} \\ Ra_{3} \end{array}$ $\begin{array}{c} Ra_{1} \\ Ra_{4} \end{array}$ $\begin{array}{c} Ra_{1} \\ Rb_{2} \end{array}$ $\begin{array}{c} Rb_{1} \\ Rb_{2} \end{array}$    | 25  A35 B12  Ra4  Ra3  Ra5  Ra6  Rb8  N  M(X-Y)n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\begin{array}{c} A35 \\ B1 \end{array} \qquad \begin{array}{c} Ra_4 \\ Ra_5 \\ Ra_6 \\ Ra_7 \\ Rb_4 \\ Rb_2 \end{array} \qquad \begin{array}{c} Ra_1 \\ Ra_1 \\ Rb_1 \\ Rb_2 \\ \end{array}$                                                | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\begin{array}{c} A35 \\ B4 \end{array} \qquad \begin{array}{c} Ra_{4} \\ Ra_{5} \\ Ra_{6} \\ Rb_{5} \\ Rb_{4} \\ Rb_{3} \\ Rb_{2} \end{array} \qquad \begin{array}{c} Ra_{1} \\ Ra_{1} \\ Rb_{1} \\ Rb_{1} \\ Rb_{1} \\ Rb_{2} \end{array}$ | A35<br>B55  Ra <sub>4</sub> Ra <sub>3</sub> Ra <sub>2</sub> Ra <sub>1</sub> Ra <sub>1</sub> Ra <sub>2</sub> Ra <sub>2</sub> Ra <sub>3</sub> Ra <sub>1</sub> Ra <sub>2</sub> Ra <sub>1</sub> Ra <sub>2</sub> Ra <sub>3</sub> Ra <sub>1</sub> Ra <sub>2</sub> Ra <sub>1</sub> Ra <sub>2</sub> Ra <sub>1</sub> Ra <sub>2</sub> Ra <sub>2</sub> Ra <sub>3</sub> Ra <sub>1</sub> Ra <sub>2</sub> Ra <sub>1</sub> Ra <sub>2</sub> Ra <sub>1</sub> Ra <sub>2</sub> Ra <sub>2</sub> Ra <sub>3</sub> Ra <sub>1</sub> Ra <sub>2</sub> Ra <sub>1</sub> Ra <sub>2</sub> Ra <sub>1</sub> Ra <sub>2</sub> Ra <sub>2</sub> Ra <sub>3</sub> Ra <sub>1</sub> Ra <sub>2</sub> Ra <sub>1</sub> Ra <sub>2</sub> Ra <sub>2</sub> Ra <sub>3</sub> Ra <sub>1</sub> Ra <sub>2</sub> Ra <sub>1</sub> Ra <sub>2</sub> Ra <sub>1</sub> Ra <sub>2</sub> Ra <sub>2</sub> Ra <sub>2</sub> Ra <sub>3</sub> Ra <sub>1</sub> Ra <sub>2</sub> Ra <sub>1</sub> Ra <sub>2</sub> Ra <sub>1</sub> Ra <sub>2</sub> Ra <sub>2</sub> Ra <sub>2</sub> Ra <sub>2</sub> Ra <sub>3</sub> Ra <sub>2</sub> Ra <sub>1</sub> Ra <sub>2</sub> Ra <sub>1</sub> Ra <sub>2</sub> Ra <sub>2</sub> Ra <sub>2</sub> Ra <sub>3</sub> Ra <sub>2</sub> Ra <sub>1</sub> Ra <sub>2</sub> Ra <sub>2</sub> Ra <sub>3</sub> Ra <sub>2</sub> Ra <sub>2</sub> Ra <sub>3</sub> Ra <sub>3</sub> Ra <sub>2</sub> Ra <sub>3</sub> Ra <sub>4</sub> Ra <sub>5</sub> |

Preferred compounds

Ra<sub>3</sub> Ra<sub>3</sub> Ra<sub>2</sub> S Ra<sub>4</sub> Ra<sub>5</sub> Ra<sub>6</sub> Ra<sub>7</sub> Rb<sub>6</sub> Rb<sub>8</sub> Rb<sub>7</sub> Rb<sub>1</sub> Rb<sub>2</sub> Rb<sub>2</sub> Rb<sub>3</sub> Rb<sub>3</sub> Rb<sub>3</sub> Rb<sub>3</sub> Rb<sub>3</sub> Rb<sub>4</sub> Rb<sub>3</sub> Rb<sub>3</sub> Rb<sub>4</sub> Rb<sub>3</sub> Rb<sub>5</sub> Rb<sub>5</sub> Rb<sub>5</sub> Rb<sub>5</sub> Rb<sub>5</sub> Rb<sub>6</sub> Rb<sub>7</sub> Rb<sub>6</sub> Rb<sub>7</sub> Rb<sub>7</sub>

$$\begin{array}{c} A35 \\ B62 \end{array} \begin{array}{c} Ra_4 \\ Ra_5 \\ Ra_6 \\ Ra_7 \\ Rb_6 \\ Rb_7 \\ Rb_6 \\ Rb_7 \\ Rb_2 \\ Rb_2 \end{array}$$

25

35

40

30 A35 B65

$$\begin{array}{c} A35 \\ B59 \end{array} \qquad \begin{array}{c} Ra_4 \\ Ra_5 \\ Ra_6 \\ Ra_7 \\ Rb_5 \\ Rb_5 \\ Rb_7 \\ Rb_8 \\ Rb_8 \\ Rb_8 \\ Rb_9 \\ \end{array} \qquad \begin{array}{c} Ra_1 \\ Ra_1 \\ Ra_1 \\ Ra_2 \\ Ra_2 \\ Ra_1 \\ Ra_2 \\ Ra_2 \\ Ra_1 \\ Ra_2 \\ Ra_2 \\ Ra_2 \\ Ra_3 \\ Ra_2 \\ Ra_4 \\ Ra_5 \\ Ra_5 \\ Ra_5 \\ Ra_5 \\ Ra_5 \\ Ra_7 \\ Ra_5 \\ Ra_7 \\ Ra_8 \\ Ra_8 \\ Ra_7 \\ Ra_8 \\ Ra$$

$$\begin{array}{c} Ra_4 \\ Ra_5 \\ Ra_6 \\ Ra_7 \\ Rb_6 \\ Rb_5 \\ Rb_7 \\ Rb_8 \\ Rb_9 \\ Rb$$

A35
B61

Ra<sub>4</sub>

Ra<sub>3</sub>

Ra<sub>1</sub>

Ra<sub>1</sub>

Ra<sub>4</sub>

Ra<sub>1</sub>

Ra<sub>1</sub>

Ra<sub>1</sub>

Rb<sub>2</sub>

Rb<sub>1</sub>

Rb<sub>1</sub>

Rb<sub>2</sub>

Rb<sub>1</sub>

Rb<sub>1</sub>

Rb<sub>2</sub>

Rb<sub>1</sub>

Rb<sub>2</sub>

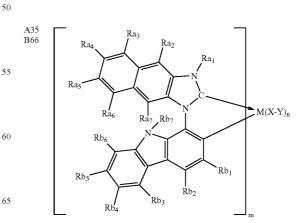
Rb<sub>1</sub>

Rb<sub>2</sub>

Rb<sub>1</sub>

Rb<sub>2</sub>

Rb<sub>2</sub>


Rb<sub>3</sub>

Rb<sub>4</sub>

Rb<sub>5</sub>

Rb<sub>6</sub>

Rb<sub>7</sub>



45

# Preferred compounds A35 B69 10 $M(X-Y)_n$ $M(X-Y)_n$ A35 B71 $M(X-Y)_n$ A35 B72 55 > $M(X-Y)_n$

It is understood that the various embodiments described herein are by way of example only, and are not intended to

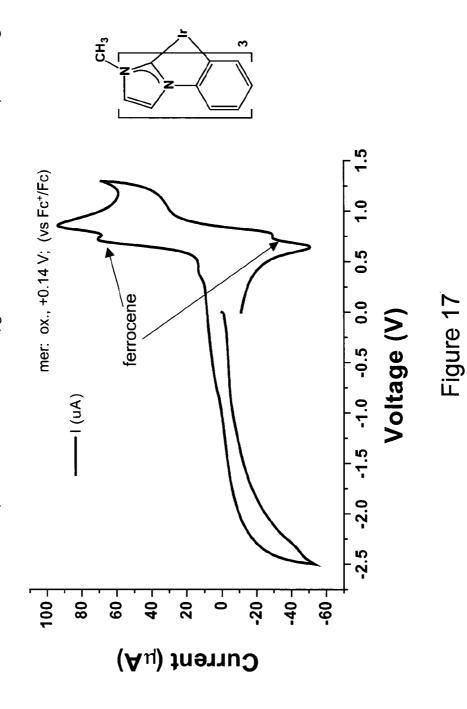
#### 268

limit the scope of the invention. For example, many of the materials and structures described herein may be substituted with other materials and structures without deviating from the spirit of the invention. It is understood that various theories as to why the invention works are not intended to be limiting. For example, theories relating to charge transfer are not intended to be limiting.

#### MATERIAL DEFINITIONS

As used herein, abbreviations refer to materials as follows:

| 15 | CBP:                                                | 4,4'-N,N-dicarbazole-biphenyl                        |
|----|-----------------------------------------------------|------------------------------------------------------|
|    | m-MTDATA                                            | 4,4',4"-tris(3-                                      |
|    |                                                     | methylphenylphenlyamino)triphenylamine               |
|    | Alq <sub>3</sub> :                                  | 8-tris-hydroxyquinoline aluminum                     |
|    | Bphen:                                              | 4,7-diphenyl-1,10-phenanthroline                     |
|    | n-BPhen:                                            | n-doped BPhen (doped with lithium)                   |
| 20 | $F_4$ -TCNQ:                                        | tetrafluoro-tetracyano-quinodimethane                |
| 20 | p-MTDATA:                                           | p-doped m-MTDATA (doped with F <sub>4</sub> -TCNQ)   |
|    | Ir(ppy) <sub>3</sub> :                              | tris(2-phenylpyridine)-iridium                       |
|    | $Ir(ppz)_3$ :                                       | tris(1-phenylpyrazoloto,N,C(2')iridium(III)          |
|    | BCP:                                                | 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline        |
|    | TAZ:                                                | 3-phenyl-4-(1'-naphthyl)-5-phenyl-1,2,4-triazole     |
|    | CuPc:                                               | copper phthalocyanine.                               |
| 25 | ITO:                                                | indium tin oxide                                     |
|    | NPD:                                                |                                                      |
|    |                                                     | N,N'-diphenyl-N-N'-di(1-naphthyl)-benzidine          |
|    | TPD:                                                | N,N'-diphenyl-N-N'-di(3-toly)-benzidine              |
|    | BAlq:                                               | aluminum(III)bis(2-methyl-8-                         |
|    | C.D.                                                | hydroxyquinolinato)4-phenylphenolate                 |
| 20 | mCP:                                                | 1,3-N,N-dicarbazole-benzene                          |
| 30 | DCM:                                                | 4-(dicyanoethylene)-6-(4-dimethylaminostyryl-        |
|    |                                                     | 2-methyl)-4H-pyran                                   |
|    | DMQA:                                               | N,N'-dimethylquinacridone                            |
|    | PEDOT:PSS:                                          | an aqueous dispersion of poly(3,4-                   |
|    |                                                     | ethylenedioxythiophene) with                         |
|    |                                                     | polystyrenesulfonate (PSS)                           |
| 35 | UGH                                                 | 1,3-bis(triphenylsilyl)benzene                       |
|    | 1-Ph-3-Me-imid                                      | 1-phenyl-3-methyl-imidazolin-2-ylidene-C,C2'         |
|    | 1-Ph-3-Me-benzimid                                  | fac-iridium(III) tris(1-phenyl-3-methyl-             |
|    |                                                     | benzimidazolin-2-ylidene-C,C2')                      |
|    | mer-(F <sub>2</sub> ppz) <sub>2</sub> Ir(1-         | mer-iridium(III) bis[(2-(4',6'-difluorophenyl)-2-    |
|    | Ph-3-Me-imid)                                       | pyrazolinato-N,C2')] (1-phenyl-3-methyl-             |
| 40 |                                                     | imidazolin-2-ylidene-C,C <sup>2</sup> )              |
| 40 | mer-(2-(tpy) <sub>2</sub> Ir(1-                     | mer-iridium(III) bis[(2-(4'-methylphenyl)-           |
|    | Ph-3-Me-imid)                                       | 2-pyridinato-N,C <sup>2</sup> )] (1-phenyl-3-        |
|    | Th 5 Me mile)                                       | methyl-imidazolin-2-ylidene-C,C <sup>2</sup>         |
|    | fac-(2-(tpy) <sub>2</sub> Ir(1-                     | fac-iridium(III) bis[(2-(4'-methylphenyl)-           |
|    | Ph-3-Me-imid)                                       | 2-pyridinato-N,C <sup>2</sup> )] (1-phenyl-3-methyl- |
|    | Th-3-Me-limid)                                      | imidazolin-2-ylidene-C,C <sup>2</sup> )              |
| 45 | [(1-Ph-3-Me-imid) <sub>2</sub> IrCl] <sub>2</sub>   | Iridium(III) bis(1-phenyl-3-methyl-imidazolin-       |
|    | [(1-Fii-3-Me-iiiid) <sub>2</sub> iiCi] <sub>2</sub> | 2-ylidene-C,C <sup>2</sup> ) chloride                |
|    | (1 D) 2 M                                           | z-yndene-C,C ) emoride                               |
|    | (1-Ph-3-Me-                                         | Iridium(III) bis[(1-phenyl-3-methyl-imidazolin-      |
|    | imid) <sub>2</sub> Ir(t-Bu-bpy)+                    | 2-ylidene-C,C <sup>2</sup> )] (4,4'-di-tert-butyl-   |
|    |                                                     | (2,2')bipyridinyl)                                   |
| 50 | mer-Ir(1-Ph-3-Me-imid) <sub>3</sub>                 | mer-iridium(III) tris(1-phenyl-3-methyl-             |
| 50 |                                                     | imidazolin-2-ylidene-C,C <sup>2</sup> )              |
|    | (Ir-Fl-Me-imid) <sub>3</sub>                        | tris(1-(2'-(9',9'-dimethyl)fluorenyl)-3-             |
|    |                                                     | methyl-imidazolin-2-                                 |
|    |                                                     | ylidene-C,C3') iridium(III)                          |
|    |                                                     |                                                      |


#### **EXPERIMENTAL**

Specific representative embodiments of the invention will now be described, including how such embodiments may be made. It is understood that the specific methods, materials, conditions, process parameters, apparatus and the like do not necessarily limit the scope of the invention.

Synthesis of Imidazolate Carbene Precursors

1-Phenylimidazole was purchased from Aldrich. All other aryl imidazoles were prepared by a modified Ullmann coupling reaction between imidazole or benzimidazole and the appropriate aryl iodide in anhydrous N,N-dimethylforma-

E-chem of mer-lr(1-Ph-3-Me-imid)<sub>3</sub> in DMF w/0.1M Bu<sub>4</sub>N<sup>+</sup>PF<sub>6</sub><sup>-</sup>



mide using a CuI/1,10-phenanthroline catalyst and  $\mathrm{Cs_2CO_3}$  base, as described in Klapars, et al, *J. Am. Chem. Soc.*, 2001, 123; 7727-7729. The carbene precursor imidazolates were prepared by methylating the corresponding imidazoles with excess methyl iodide in toluene.

#### Example 1

Synthesis of 1-phenyl-3-methylimidazolate iodide

1-phenyl-3-methylimidazolate iodide was synthesized using the modified Ullmann coupling reaction described above. <sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>), ppm: 10.28 (s, 1H), 7.77-7.70 (m, 4H), 7.56-7.46 (m, 3H), 4.21 (s, 3H).

#### Example 2

Synthesis of 1-Phenyl-3-methyl-benzimidazolate iodide

In the dark, an oven-dried 50 ml round-bottomed flask containing a stir bar was charged with CuI (0.171 g, 0.1 eq.), benzimidazole (1.273 g, 1.2 eq.), and cesium carbonate (6.138 g, 2.1 eq.) respectively. The round-bottomed flask with the contents was sealed with septa and degassed with argon 25 for 15 minutes. Iodobenzene (1 ml, 1 eq.), 1,10-Phenanthroline (0.323 g, 0.2 eq.), and dimethylformamide (25 ml) were then successively added into the round-bottomed flask under a continuous flow of argon. The reaction mixture was degassed with argon for 30 minutes. The reaction was stirred  $\,$  30 with heating via an oil bath at 110° C. for 24 hours in the dark under nitrogen. The reaction mixture was cooled to ambient temperature and concentrated in vacuo. 10 ml of ethyl acetate was added into the concentrated reaction mixture. It was then filtered and washed with 30 ml of ethyl acetate. The filtrate 35 was concentrated under vacuo to give the crude product. The crude product was purified by column chromatography on silica gel (40% ethyl acetate:60% hexane as the eluent) providing 0.780 g of 1-Phenyl benzoimidazole (45% yield) as yellow liquid.

Methyl iodide (0.550 ml, 2.2 eq.) was syringed into a 25 ml round-bottomed flask charged with 1-phenyl benzoimidazole (0.780 g, 1 eq.) and toluene (15 ml). The reaction was stirred and heated at 30° C. for 24 hours. The white precipitate was filtered and washed with 20 ml of toluene. The white precipitate was air-dried and weighed to give 0.725 g of 1-phenyl-3-methyl-benzimidizolate iodide (54% yield). Synthesis of Iridium Imidazole Carbene Complexes

#### Example 3

 $Synthesis of mer-iridium(III) bis[(2-(4',6'-difluorophenyl)-2-pyrazolinato-N,C^2')](1-phenyl-3-methyl-imidazolin-2-ylidene-C,C^2')$ 

A 25 ml round-bottomed flask was charged with 0.014 g of silver(I) oxide, 0.030 g of 1-phenyl-3-methyl-imidazolate iodide, 0.062 g of  $[(F2ppz)_2IrCl]_2$ , and 15 ml of 1,2-dichloroethane. The reaction was stirred and heated with an oil bath at 77° C. for 15 hours in the dark under nitrogen while protected from light with aluminum foil. The reaction mixture was cooled to ambient temperature and concentrated under reduced pressure. Filtration through Celite using dichloromethane as the eluent was performed to remove the silver(I) salts. A light yellow solution was obtained and addition of 65 methanol gave 0.025 g (30% yield) of iridium complex as a colorless solid.

#### 270

 $^{1}\mathrm{H}$  NMR (500 MHz, CDCl<sub>3</sub>), ppm: 8.24 (d, 1H, J=2.8 Hz), 8.16 (d, 1H, J=2.8 Hz), 7.43 (d, 1H, J=1.9 Hz), 7.15 (d, 1H, J=7.5 Hz), 6.96 (ddd, 1H, J=7.5, 7.0, 1.9 Hz), 6.93 (dd, 1H, J=7.0, 1.9 Hz), 6.82 (m, 2H), 6.78 (d, 1H, J=1.9 Hz), 6.47 (ddd, 1H, J=11.7, 8.4, 2.3 Hz), 6.43 (ddd, 1H, J=11.7, 8.4, 2.3 Hz), 6.29 (t, 1H, J=2.3 Hz), 6.28 (t, 1H, J=2.3 Hz), 6.14 (dd, 1H, J=7.5, 2.3 Hz), 5.85 (dd, 1H, J=8.0, 2.3 Hz), 3.29 (s, 3H).

FIG. 3 shows the  $^1$ H NMR spectra of mer- $(F_2ppz)_2$ Ir(1-Ph-  $_{10}$  3-Me-imid) in CDCl<sub>3</sub>.

#### Example 4

Synthesis of mer-iridium(III) bis[(2-(4'-methylphenyl)-2-pyridinato-N,C²')](1-phenyl-3-methyl-imidazolin-2-ylidene-C,C²')

A 50 ml round-bottomed flask was charged with 0.103 g of silver(I) oxide, 0.118 g of 1-phenyl-3-methyl-imidazolate iodide, 0.168 g of [(tpy)<sub>2</sub>IrCl]<sub>2</sub>, and 25 ml of 1,2-dichloroethane. The reaction was stirred and heated with an oil bath at 77° C. for 15 hours in the dark under nitrogen while protected from light with aluminum foil. The reaction mixture was cooled to ambient temperature and concentrated under reduced pressure. Filtration through Celite using dichloromethane as the eluent was performed to remove the silver(I) salts. A yellow solution was obtained and further purified by flash column chromatography on silica gel using dichloromethane as the eluent that was reduced in volume to ca. 2 ml. Addition of methanol gave 0.121 g (59% yield) of iridium complex as a bright yellow solid.

FIG. 4 shows the  $^{1}$ H NMR spectra of mer-(tpy) $_{2}$ Ir(1-Ph-3-Me-imid) in CDCl $_{3}$ . FIG. 6 shows the plot of current ( $\mu$ A) vs. voltage (V) of a mer-(tpy) $_{2}$ Ir(1-Ph-3-Me-imid) compound with ferrocene as an internal reference. A solvent of DMF with 0.1M Bu $_{4}$ N $^{+}$ PF $_{6}^{-}$  is used. FIG. 9 shows the emission spectra of mer-(tpy) $_{2}$ Ir(1-Ph-3-Me-imid) in 2-MeTHF at room temperature and at 77K. The compound exhibits lifetimes of 1.7 Us at room temperature and 3.3  $\mu$ s at 77K.

#### Example 5

Synthesis of fac-iridium(III) bis[(2-(4'-methylphe-nyl)-2-pyridinato-N,C<sup>2'</sup>)] (1-phenyl-3-methyl-imida-zolin-2-ylidene-C,C<sup>2'</sup>)

A 200 ml quartz flask was charged with 0.0.059 g of mer-(tpy)<sub>2</sub>Ir(1-Ph-3-Me-imid) and 50 ml of acetonitrile and sparged with nitrogen for five minutes. The mixture was photolyzed for 63 hours using 254 nm light. After photolysis the solvent was removed under reduced pressure and the yellow solid was taken up in 2 ml dichloromethane. Addition of methanol gave 0.045 g (75% yield) of iridium complex as a bright yellow solid that was collected by centrifuge.

FIG. 5 shows the  $^1\text{H}$  NMR spectra of fac-(tpy) $_2\text{Ir}(1\text{-Ph-3-Me-imid})$  in CDCl $_3$ . FIG. 7 shows the plot of current ( $\mu\text{A}$ ) vs. voltage (V) of a fac-(tpy) $_2\text{Ir}(1\text{-Ph-3-Me-imid})$  compound with ferrocene as an internal reference. A solvent of DMF with 0.1M Bu $_4\text{N}^+\text{PF6}^-$  is used. FIG. 8 shows the absorption spectra of fac-(tpy) $_2\text{Ir}(1\text{-Ph-3-Me-imid})$  and mer-(tpy) $_2\text{Ir}(1\text{-Ph-3-Me-imid})$  in CH $_2\text{Cl}_2$ . FIG. 10 shows the emission spectra of fac-(tpy) $_2\text{Ir}(1\text{-Ph-3-Me-imid})$  in 2-MeTHF at room

temperature and at 77K. The compound exhibits lifetimes of  $1.7 \mu s$  at room temperature and  $3.3 \mu s$  at 77K.

#### Example 6

 $Synthesis \ of \ Iridium(III) \ bis(1-phenyl-3-methyl-imidazolin-2-ylidene-C, C^{2'}) \ chloride \ dimer$ 

A 100 ml round-bottomed flask was charged with 0.428 g of silver(I) oxide, 0.946 g of 1-phenyl-3-methyl-imidazolate <sup>10</sup> iodide, 0.301 g of iridium trichloride hydrate, and 60 ml of 2-ethoxyethanol. The reaction was stirred and heated with an oil bath at 120° C. for 15 hours under nitrogen while protected from light with aluminum foil. The reaction mixture was cooled to ambient temperature and the solvent was removed <sup>15</sup> under reduced pressure. The black mixture was extracted with ca. 20 ml dichloromethane and the extract was reduced to ca. 2 ml volume. Addition of methanol gave 0.0160 g (30% yield) of the iridium dimer complex as an off-white solid.

FIG. 11 shows the <sup>1</sup>H NMR spectra of [(1-Ph-3-Me-imid)<sub>2</sub> <sup>20</sup> IrCl]<sub>2</sub> in CDCl<sub>3</sub>.

#### Example 7

Synthesis of mer-iridium(III) tris(1-phenyl-3-methyl-imidazolin-2-ylidene-C,C²')

A 50 ml round-bottomed flask was charged with 0.076 g of silver(I) oxide, 0.109 g of 1-phenyl-3-methyl-imidazolate iodide, 0.029 g of iridium trichloride hydrate, and 20 ml of  $^{30}$  2-ethoxyethanol. The reaction was stirred and heated with an oil bath at  $120^{\circ}$  C. for 15 hours under nitrogen while protected from light with aluminum foil. The reaction mixture was cooled to ambient temperature and concentrated under reduced pressure. Filtration through Celite using dichloromethane as the eluent was performed to remove the silver(I) salts. A white solid was obtained after removing the solvent in vacuo and was washed with methanol to give 0.016 g (24% yield) of meridional tris-iridium complex as a white solid.

FIG. 15 shows the  $^{1}$ H NMR spectra of mer-Ir(1-Ph-3-Me-imid)<sub>3</sub> in CDCl<sub>3</sub>. FIG. 16 shows the  $^{13}$ C NMR spectra of mer-Ir(1-Ph-3-Me-imid)<sub>3</sub> in CDCl<sub>3</sub>. FIG. 17 shows the plot of current ( $\mu$ A) vs. voltage (V) of a mer-Ir(1-Ph-3-Me-imid)<sub>3</sub> compound with ferrocene as an internal reference. A solvent of DMF with 0.1M Bu<sub>4</sub>N<sup>+</sup>PF<sub>6</sub><sup>-</sup> is used. FIG. 18 shows the 45 emission spectra of mer-Ir(1-Ph-3-Me-imid)<sub>3</sub> in 2-MeTHF at room temperature and at 77K.

#### Example 8

Synthesis of fac-iridium(III) tris(1-phenyl-3-methyl-imidazolin-2-ylidene-C,C2')

A 50 ml round-bottomed flask was charged with 0.278 g of silver(I) oxide, 0.080 g of 1-phenyl-3-methyl-imidazolate 55 iodide, 0.108 g of [(1-Ph-3-Me-imid)2IrCl]2, and 25 ml of 1,2-dichloroethane. The reaction was stirred and heated with an oil bath at 77° C. for 15 hours under nitrogen while protected from light with aluminum foil. The reaction mixture was cooled to ambient temperature and concentrated under reduced pressure. Filtration through Celite using dichloromethane as the eluent was performed to remove the silver(I) salts. A light brown solution was obtained and further purified by flash column chromatography on silica gel using dichloromethane as the eluent and was then reduced in volume to ca. 65 2 ml. Addition of methanol gave 0.010 g (8% yield) of iridium complex as a colorless solid.

#### 272

FIG. **19** shows the <sup>1</sup>H NMR spectra of fac-Ir(1-Ph-3-Meimid)<sub>3</sub> in CDCl<sub>3</sub>. FIG. **20** shows the absorption spectra of fac-Ir(1-Ph-3-Me-imid)<sub>3</sub> in CH<sub>2</sub>Cl<sub>2</sub>. FIG. **21** shows the emission spectra of fac-Ir(1-Ph-3-Me-imid)<sub>3</sub> in 2-MeTHF at room temperature and at 77K. The compound exhibits lifetimes of 0.50 μs at room temperature and 6.8 μs at 77K.

#### Example 9

Synthesis of fac-iridium(III) tris(1-phenyl-3-methyl-benzimidazolin-2-ylidene-C.C<sup>2'</sup>)

A 25 ml round-bottomed flask was charged with 0.165 g of silver(I) oxide, 0.200 g of 1-phenyl-3-methyl-benzimida-zolate iodide, 0.0592 g of iridium trichloride hydrate, and 15 ml of 2-ethoxyethanol. The reaction was stirred and heated with an oil bath at 120° C. for 24 hours under nitrogen while protected from light with aluminum foil. The reaction mixture was cooled to ambient temperature and concentrated under reduced pressure. Flash column chromatography on Celite using dichloromethane as the eluent was performed to remove the silver(I) salts. A brown oil was obtained and further purified by flash column chromatography on silica gel using dichloromethane as the eluent to give 0.050 g of facial tris-iridium complex (33% yield) as an off-white solid.

FIG. 22 shows the <sup>1</sup>H NMR spectra of 1-Ph-3-Me-benzimid in CDCl<sub>3</sub>. FIG. 23 shows the <sup>1</sup>H NMR spectra of fac-Ir (1-Ph-3-Me-benzimid)<sub>3</sub> in CDCl<sub>3</sub>. FIG. 24 shows the plot of current (mA) vs. voltage (V) of a fac-Ir(1-Ph-3-Me-benzimid)<sub>3</sub> compound with ferrocene as an internal reference. A solvent of anhydrous DMF is used. FIG. 25 shows the emission spectra of fac-Ir(1-Ph-3-Me-benzimid)<sub>3</sub> in 2-MeTHF at room temperature and at 77K. The compound emits a spectrum at CIE 0.17, 0.04. The lifetime measurements of an Ir(1-Ph-3-Me-benzimid)<sub>3</sub> compound is shown on Table A.

TABLE A

| Peak wavelength | $\mathrm{Lifetime}, \tau$  |
|-----------------|----------------------------|
| 402 nm          | 0.32 μs                    |
| 420 nm          | 0.29 μs                    |
| 400 nm          | 2.6 µs                     |
| 420 nm          | 2.7 μs                     |
|                 | 402 nm<br>420 nm<br>400 nm |

#### Example 10

Synthesis of iridium(III) bis(1-phenyl-3-methyl-imidazolin-2-ylidene-C,C2') (4,4'-di-tert-butylbipyidyl) hexafluorophosphate

A 25 ml round-bottomed flask was charged with 0.010 g of [(1-Ph-3-Me-imid)2IrCl]2, 0.005 g of 4'4'-di-tert-butyl-bipyridine and 15 ml of dichloromethane. The reaction was stirred at room temperature for 16 hours. The solvent was removed under reduced pressure and the resultant yellow solid was dissolved in ca. 2 ml methanol. Addition of an aqueous ammonium hexafluorophosphate solution produced a yellow precipitate. The precipitate was collected by filtration, washed with water and dried. Chromatography on silica addition of hexanes gave 0.015 g (82% yield) of iridium complex as an orange solid.

FIG. 12 shows the <sup>1</sup>H NMR spectra of (1-Ph-3-Me-imid)<sub>2</sub> Ir(t-Bu-bpy)<sup>+</sup> in CDCl<sub>3</sub>. FIG. 13 shows the absorption spectra of (1-Ph-3-Me-imid)<sub>2</sub>Ir(t-Bu-bpy)<sup>+</sup> in CH<sub>2</sub>Cl<sub>2</sub>. FIG. 14 shows the emission spectra of (1-Ph-3-Me-imid)<sub>2</sub>Ir(t-Bu-bpy)<sup>+</sup> in 2-MeTHF at 77K and (1-Ph-3-Me-imid)<sub>2</sub>Ir(t-Bu-byy)<sup>+</sup> in 2-MeTHF at 77K and (1-Ph-3-

bpy)<sup>+</sup> in CH<sub>2</sub>Cl<sub>2</sub> at room temperature. The compound exhibits lifetimes of 0.70  $\mu$ s at room temperature and 6.0  $\mu$ s at 77K.

#### Example 11

Synthesis of mer-iridium(III) bis[(2-(5'-biphenyl)-2-pyridinato-N,C²')] (1-phenyl-3-methyl-imidazolin-2-ylidene-C,C²')

Step 1: Synthesis of 1-phenyl-3-methylimidozolate iodide

About 13 g of 1-phenylimidazole and 13 g of methyl iodide were added to 100 ml of toluene and heated to a gentle reflux. After 4 hours, the solvent was removed and the product was precipitated from dichloromethane with diethyl ether. The white solid product was collected by vacuum filtration yielding about 20 g of 1-phenyl-3-methylimidozolate iodide.

#### Step 2:

To a 500 ml round bottom flasks 4.2 grams of 1-phenyl-3-methylimidozolate iodide, 5 g of [IrCl{2-(5-biphenyl)-pyridine} $_2$ ] $_2$ , made by methods described in Thompson, M. E., *J. Am. Chem. Soc.*, 2001, 123, 4304-4312, 3.4 grams of silver oxide, and 200 ml of 1,2-dicholorethane were added. This mixture was heated to reflux for 5 hours under a nitrogen atmosphere. The reaction was allowed to cool and was then filtered through silica gel using dichloromethane as the eluent. The good fractions were combined, the solvent was removed, and the product was crystallized from a dichloromethane/hexane mixture to yield mer-iridium(III) bis[(2-(5'-biphenyl)-2-pyridinato-N,C²')] (1-phenyl-3-methyl-imidazolin-2-ylidene-C,C²') as a yellow solid.

274

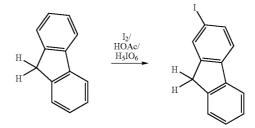
### Example 12

Synthesis of fac-iridium(III) bis[(2-(5'-biphenyl)-2-pyridinato-N,C²')] (1-phenyl-3-methyl-imidazolin-2-ylidene-C,C²')

#### Step 1:

Mer-iridium(III) bis[(2-(5'-biphenyl)-2-pyridinato-N,C²')] (1-phenyl-3-methyl-imidazolin-2-ylidene-C,C²') was syn-10 thesized as described in Example 10 above.

#### Step 2:


2 g of mer-iridium(III) bis[(2-(5'-biphenyl)-2-pyridinato- $N,C^2$ ')] (1-phenyl-3-methyl-imidazolin-2-ylidene- $C,C^2$ ') solid was dissolved in acetonitrile, placed in a quartz reaction flask, and exposed to ultraviolet radiation in a Rayonet Photochemical Reactor for 18 hours. Most of the solvent was removed by rotoevaporation and the solids were filtered. The product was recrystallized form dichloromethane/methanol. Approximately 1.2 g of solids were collected by vacuum filtration. The obtained fac-iridium(III) bis[(2-(5'-biphenyl)-2-pyridinato- $N,C^2$ ')] (1-phenyl-3-methyl-imidazolin-2-ylidene- $C,C^2$ ') was further purified by sublimation.

#### Example 13

Synthesis of mer-iridium(III) tris[1,(2-iodo-9,9-dimethylfluorenyl)-3-methyl-benzimidazolin-2-ylidene-C,C²' and fac-iridium(III) tris[1,(2-iodo-9,9-dimethylfluorenyl)-3-methyl-benzimidazolin-2-ylidene-C,C²'

#### Step 1: Synthesis of 2-Iodofluorene

A 250 mL round-bottomed flask was charged with 20.0 g (120 mmol) fluorene, 16.0 g (60 mmol) iodine and 4.0 g (17 mmol) periodic acid. 150 mL (80%) acetic acid was added to the reaction mixture. The mixture was stirred under nitrogen at 80° C. for 4 hours. The mixture was then allowed to cool to ambient temperature. The solid residue was vacuum filtered, dissolved in toluene and then washed with 5% sodium hydrogen sulphite (to remove excess iodine). The toluene solution was concentrated under vacuo and then passed through a flash column using toluene as the eluent to give 32.0 g (91% yield) of the product (off white solid).



Step 2: Synthesis of 2-iodo-9,9-dimethyl-fluorene

A 500 mL round bottomed flask was charged with 21.8 g (70 mmol) 2-Iodofluorene and 1.18 g (5 mmol) benzyltriethylammonium chloride. 200 mL of dimethylsulfoxide (DMSO) was then added followed by 28 mL (50%) NaOH. The mixture was allowed to stir under nitrogen for 1 hour, before 29 g (210 mmol) methyl iodide was added through the septum. The mixture was allowed to stir at room temperature for 18 hours. After cooling to ambient temperature the mixture was transferred to a 1 L separatory funnel. 100 mL of water and 100 mL of diethylether were added to the mixture. The organic layer was collected and the aqueous layer was extracted with diethyl ether (4×100 mL). The organic fractions were combined, dried over anhydrous magnesium sulfate, and the solvent evaporated under vacuo. A flash column

was then performed using hexanes as the eluent to give 21.0 g (88% yield) of the product (yellow oil).

Step 3: Synthesis of 1,(2-iodo-9,9-dimethylfluorenyl)benzimidazole

A three neck 250 mL round bottomed flask was charged with 8.42 g (1.2 molar equivalent) benzimidazole, 2.13 g (20 mol %) 1,10-phenanthroline and 40.6 g (2.1 molar equivalent) cesium carbonate. Argon was then allowed to flow over the material for about 10 mins. While Argon was still flowing, 1.12 g (10 mol %) copper iodide was added to the mixture in the dark. The three-neck flask was covered with aluminum foil to protect the reaction mixture from light.  $19\,g\,(30\,mmol)$ 2-iodo-9,9-dimethyl-fluorene, was dissolved in 20 mL of anhydrous dimethylformamide (DMF) and added to the mixture via a syringe through the septum. 20 mL of DMF was then further added to allow the mixture to stir. The reaction mixture was heated to 110° C. for 48 hours. After cooling, the mixture was filtered using vacuum filtration. The residue was washed with ethyl acetate and the filtrate concentrated under vacuo. A flash column was performed using hexanes (to get rid of any unreacted 2-iodo-9,9-dimethyl-fluorene, the product stayed in the column). Following the hexanes, a new receiving flask was placed under the column and the eluent was changed to ethylacetate to give the product 12.0 g (66% yield) of product.

Step 4: Synthesis of [1,(2-iodo-9,9-dimethylfluorenyl)-3-methyl-benzimidazolate]iodide

2.3 mL (34 mmol) methyl iodide was syringed into a 250 mL round-bottomed flask charged with 5 g (16 mmol) 1,(2-

iodo-9,9-dimethylfluorenyl)benzimidazole and 50 mL toluene. The reaction was stirred and heated to 30° C. for 24 hours. The white precipitate was filtered and washed with toluene to give 7.0 g (99% yield) of product.

Step 5: Synthesis of mer-iridium(III) tris[1,(2-iodo-9,9-dimethylfluorenyl)-3-methyl-benzimidazolin-2-ylidene-C, C<sup>2'</sup> and fac-iridium(III) tris[1,(2-iodo-9,9-dimethylfluorenyl)-3-methyl-benzimidazolin-2-ylidene-C, C<sup>2'</sup>

A 250 mL round-bottomed flask was charged with 1.53 g (11 mmol) silver(I) oxide, 5.0 g (11 mmol) [1,(2-iodo-9,9-dimethylfluorenyl)-3-methyl-benzimidazolate]iodide and 0.66 g (3.6 mmol) iridium(III)trichloride hydrate and 100 mL of dichloroethane. The reaction was stirred and heated at 80° C. for 24 hours under nitrogen while protected from light with aluminum foil. The reaction mixture was cooled to ambient temperature and concentrated under reduced pressure. Flash column chromatography on silica gel using dichloromethane as the eluent was done to give a 1.9 g (45% yield) of a 70/30 ratio of the mer/fac isomers of the tris Ir(III) product.

mer and fac isomers

Separation of the fac and mer isomers was accomplished by column chromatography using 50/50 ethylacetate and hexanes as the eluent.

#### Example 14

Synthesis of 3:1 mixture of mer:fac-iridium(III) tris [1,(9,9-dimethylfluorenyl)-3-methyl-benzimidazolin-2-ylidene-C.C<sup>2'</sup>

Step 1 and Step 2: Same as Example 13

Step 3: Synthesis of 1,(9,9-dimethylfluorenyl)imidazole

A three neck 250 mL round bottomed flask was charged with 5.10 g (1.2 molar equivalent) imidazole, 2.13 g (20 mol %) 1,10-phenanthroline and 40.6 g (2.1 molar equivalent) cesium carbonate. Argon was then allowed to flow over the 20 material for about 10 mins. While Argon was still flowing, 1.12 g (10 mol %) copper iodide was added to the mixture in the dark. The three-neck flask was covered with aluminum foil to protect the reaction mixture from light. 20.0 g (62  $_{25}$ mmol) 2-iodo-9,9-dimethyl-fluorene, was dissolved in 20 mL of anhydrous dimethylformamide (DMF) and added to the mixture via a syringe through the septum. 20 mL of DMF was then further added to allow the mixture to stir. The reaction mixture was heated to 110° C. for 48 hours. After cooling, the mixture was filtered using vacuum filtration. The residue was washed with ethyl acetate and the filtrate concentrated under vacuo. A flash column was performed using hexanes (to get rid of any unreacted 2-iodo-9,9-dimethyl-fluorene, the prod- 35 uct stayed in the column). Following the hexanes, a new receiving flask was placed under the column and the eluent was changed to ethylacetate to give the product 10.0 g (62% yield) of product.

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

Step 4: Synthesis of [1,(9,9-dimethylfluorenyl)-3-methylimidazolate]iodide

 $2.3~\mathrm{mL}$  (34 mmol) methyl iodide was syringed into a 250 mL round-bottomed flask charged with 5 g (16 mmol) 1,(9, 9-dimethylfluorenyl)imidazole and 50 mL toluene. The reaction was stirred and heated to 30° C. for 24 hours. The white precipitate was filtered and washed with toluene to give 7.0 g (99% yield) of product.

Step 5: Synthesis of 3:1 mixture of mer:fac-iridium(III) tris[1,(9,9-dimethylfluorenyl)-3-methyl-imidazolin-2-ylidene-C,C²'. A 250 mL round-bottomed flask was charged with 1.53 g (11 mmol) silver(I) oxide, 5.0 g (11 mmol) [1,(9,9-dimethylfluorenyl)-3-methyl-imidazolate]iodide and 0.66 g (3.6 mmol) iridium(III)trichloride hydrate and 100 mL of 2-ethoxyethanol. The reaction was stirred and heated at 80° C. for 24 hours under nitrogen while protected from light with aluminum foil. The reaction mixture was cooled to ambient temperature and concentrated under reduced pressure. Flash column chromatography on silica gel using dichloromethane as the eluent was done to give a 1.7 g (42% yield) of a 3:1 ratio of the mer/fac isomers of the tris Ir(III) product.

3:1mer:fac isomers

Device Fabrication and Measurement

60

All devices were fabricated by high vacuum ( $<10^{-7}$  Torr) thermal evaporation. The anode electrode was  $\sim1200$  Å of indium tin oxide (ITO). The cathode consisted of 10 Å of LiF

followed by 1,000 Å of Al. All devices were encapsulated with a glass lid sealed with an epoxy resin in a nitrogen glove box (<1 ppm of  $\rm H_2O$  and  $\rm O_2$ ) immediately after fabrication, and a moisture getter was incorporated inside the package. The electron transporting layer(s) (EML) after the emissive layer consisted of either one layer (ETL2) or 2 layers (ETL2 and ETL1).

Device spectral measurements were done using a PR-705 spectroradiometer manufactured by Photoresearch Inc. Incoming light was focused into the camera and was dispersed by a holographic diffraction grating. The dispersed spectrum was measured by a thermo-electrically cooled silicon diode array detector. The cooled detector was housed in a hermetically sealed, pressurized chamber allowing the instrument to make stable and repeatable measurements. Two onboard microprocessors controlled the hardware and mathematically calculated photometric and calorimetric values for the acquired spectral data during a measurement. The PR-705 measured accurate luminance in the visible spectral range from 380-780 nm.

#### Example 15

The organic stack consisted of sequentially, from the ITO surface, 100 Å of copper phthalocyanine (CuPc) as the hole injection layer (HIL), 300 Å of 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl ( $\alpha$ -NPD) as the hole transporting layer (HTL), 300 Å of 4,4'-bis(N-carbazolyl)biphenyl (CBP) doped with 6 wt % of Iridium(III) bis[(2-(5'-biphenyl)-2-pyridinato-N,C²')] (1-phenyl-3-methyl-imidazolin-2-ylidene-C,C²') as the emissive layer (EML), 100 Å of aluminum(III)bis(2-methyl-8-hydroxyquinolinato)4-phenylphenolate (BAlq) as the ETL2, and 400 Å of tris(8-hydroxyquinolinato)aluminum (Alq3) as the ETL1.

#### Comparative Example 1

The organic stack consisted of sequentially, from the ITO surface, 100 Å of copper phthalocyanine (CuPc) as the hole injection layer (HIL), 300 Å of 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl ( $\alpha$ -NPD) as the hole transporting layer (HTL1), 300 Å of 4,4'-bis(N-carbazolyl)biphenyl (CBP) doped with 4.5 wt % of Ir(5'-Phppy)\_3 as the emissive layer (EML), 100 Å of aluminum(III)bis(2-methyl-8-hydroxyquinolinato)4-phenylphenolate (BAlq) as the ETL2, and  $^{45}$  400 Å of tris(8-hydroxyquinolinato)aluminum (Alq\_3) as the ETL1.

#### Example 16

The organic stack consisted of sequentially, from the ITO surface, 100 Å thick of copper phthalocyanine (CuPc) as the hole injection layer (HIL), 300 Å of 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl ( $\alpha$ -NPD) as the hole transporting layer (HTL), 300 Å of 4,4'-bis(N-carbazolyl)biphenyl (CBP)  $^{55}$  doped with 12 wt % of Iridium(III) bis[(2-(5'-biphenyl)-2-pyridinato-N,C²')] (1-phenyl-3-methyl-imidazolin-2-ylidene-C,C²') as the emissive layer (EML), 100 Å of aluminum(III)bis(2-methyl-8-hydroxyquinolinato)4-phenylphenolate (BAlq) as the ETL2, and 400 Å of tris(8-60 hydroxyquinolinato)aluminum (Alq3) as the ETL1.

#### Example 17

The organic stack consisted of sequentially, from the ITO 65 surface, 100 Å thick of copper phthalocyanine (CuPc) as the hole injection layer (HIL), 300 Å of 4,4'-bis[N-(1-naphthyl)-

280

N-phenylamino]biphenyl ( $\alpha$ -NPD) as the hole transporting layer (HTL), 300 Å of 4,4'-bis(N-carbazolyl)biphenyl (CBP) doped with 6 wt % of mer-iridium(III)tris[1,(2-iodo-9,9-dimethylfluorenyl)-3-methyl-benzimidazolin-2-ylidene-C,C²'] as the emissive layer (EML), 400 Å of aluminum(III)bis(2-methyl-8-hydroxyquinolinato)4-phenylphenolate (BAlq) as the ETL2. There is no ETL1.

#### Comparative Example 2

The organic stack consisted of sequentially, from the ITO surface, 100 Å thick of copper phthalocyanine (CuPc) as the hole injection layer (HIL), 300 Å of 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (α-NPD) as the hole transporting layer (HTL), 300 Å of 4,4'-bis(N-carbazolyl)biphenyl (CBP) doped with 6 wt % of Ir(F<sub>2</sub>ppy)<sub>3</sub> as the emissive layer (EML), 400 Å of aluminum(III)bis(2-methyl-8-hydroxyquinolinato) 4-phenylphenolate (BAlq) as the ETL2. There is no ETL1.

#### Example 18

The organic stack consisted of sequentially, from the ITO surface, 100 Å thick of copper phthalocyanine (CuPc) as the hole injection layer (HIL), 300 Å of 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (α-NPD) as the hole transporting layer (HTL), 300 Å of 4,4'-bis(N-carbazolyl)biphenyl (CBP) doped with 12 wt % of mer-iridium(III) tris[1,(2-iodo-9,9-dimethylfluorenyl)-3-methyl-benzimidazolin-2-ylidene-C, C²'] as the emissive layer (EML), 400 Å of aluminum(III)bis (2-methyl-8-hydroxyquinolinato)-4-phenylphenolate (BAlq) as the ETL. There is no ETL1.

#### Example 19

The organic stack consists of sequentially, from the ITO surface, 100 Å thick of copper phthalocyanine (CuPc) as the hole injection layer (HIL), 300 Å of 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl ( $\alpha$ -NPD) as the hole transporting layer (HTL), 300 Å of 4,4'-bis(N-carbazolyl)biphenyl (CBP) doped with 6 wt % of mer-iridium(III)tris[1,(2-iodo-9,9-dimethylfluorenyl)-3-methyl-benzimidazolin-2-ylidene-C,C²'] as the emissive layer (EML), 100 Å of HPT as the ETL2 and 300 Å of aluminum(III)bis(2-methyl-8-hydroxyquinolinato) 4-phenylphenolate (BAlq) as the ETL1.

#### Example 20

The organic stack consisted of sequentially, from the ITO surface, 100 Å thick of copper phthalocyanine (CuPc) as the hole injection layer (HIL), 300 Å of 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl ( $\alpha$ -NPD) as the hole transporting layer (HTL), 300 Å of 4,4'-bis(N-carbazolyl)biphenyl (CBP) doped with 12 wt % of mer-iridium(III) tris[1,(2-iodo-9,9-dimethylfluorenyl)-3-methyl-benzimidazolin-2-ylidene-C, C²'] as the emissive layer (EML), 100 Å of HPT as the ETL2 and 300 Å of aluminum(III)bis(2-methyl-8-hydroxyquinolinato)4-phenylphenolate (BAlq) as the ETL1.

#### Example 21

The organic stack consisted of sequentially, from the ITO surface, 100 Å thick of copper phthalocyanine (CuPc) as the hole injection layer (HIL), 300 Å of 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl ( $\alpha$ -NPD) as the hole transporting layer (HTL), 300 Å of 1,3-bis(N-carbazolyl)benzene (mCP) doped with 6 wt % of mer-iridium(III)tris[1,(2-iodo-9,9-dimethylfluorenyl)-3-methyl-benzimidazolin-2-ylidene-C,C²']

as the emissive layer (EML), 400 Å of aluminum(III)bis(2-methyl-8-hydroxyquinolinato)4-phenylphenolate (BAlq) as the ETL2. There is no ETL1.

#### Comparative Example 3

The organic stack consisted of sequentially, from the ITO surface, 100 Å thick of copper phthalocyanine (CuPc) as the hole injection layer (HIL), 300 Å of 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl ( $\alpha$ -NPD) as the hole transporting layer (HTL), 300 Å of 1,3-bis(N-carbazolyl)benzene (mCP) doped with 6 wt % of Ir(F\_2ppy)\_3 as the emissive layer (EML), 400 Å of aluminum(III)bis(2-methyl-8-hydroxyquinolinato) 4-phenylphenolate (BAlq) as the ETL2. There is no ETL1.

#### Example 22

The organic stack consisted of sequentially, from the ITO surface, 100 Å thick of copper phthalocyanine (CuPc) as the hole injection layer (HIL), 300 Å of 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl ( $\alpha$ -NPD) as the hole transporting layer (HTL), 300 Å of 1,3-bis(N-carbazolyl)benzene (mCP) doped with 12 wt % of mer-iridium(III)tris[1,(2-iodo-9,9-dimethylfluorenyl)-3-methyl-benzimidazolin-2-ylidene-C, C²'] as the emissive layer (EML), 400 Å of aluminum(III)bis (2-methyl-8-hydroxyquinolinato)4-phenylphenolate (BAlq) as the ETL2. There is no ETL1.

#### Example 23

The organic stack consisted of sequentially, from the ITO surface, 100 Å thick of copper phthalocyanine (CuPc) as the  $^{35}$  hole injection layer (HIL), 300 Å of 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl ( $\alpha$ -NPD), as the hole transporting layer (HTL), 300 Å of 1,3-bis(N-carbazolyl)benzene (mCP) doped with 6 wt % of mer-iridium(III)tris[1,(2-iodo-9,9-dimethylfluorenyl)-3-methyl-benzimidazolin-2-ylidene-C,C $^{2'}$ ] as the emissive layer (EML), 100 Å of HPT as the ETL2 and 300 Å of aluminum(III)bis(2-methyl-8-hydroxyquinolinato) 4-phenylphenolate (BAlq) as the ETL1.

#### Example 24

The organic stack consisted of sequentially, from the ITO surface, 100 Å thick of copper phthalocyanine (CuPc) as the hole injection layer (HIL), 300 Å of 4,4'-bis[N-(1-naphthyl)- 50 N-phenylamino]biphenyl ( $\alpha$ -NPD) as the hole transporting layer (HTL), 300 Å of 1,3-bis(N-carbazolyl)benzene (mCP) doped with 12 wt % of mer-iridium(III)tris[1,(2-iodo-9,9-dimethylfluorenyl)-3-methyl-benzimidazolin-2-ylidene-C, C²'] as the emissive layer (EML), 100 Å of HPT as the ETL2 55 and 300 Å of aluminum(III)bis(2-methyl-8-hydroxyquinolinato)-4-phenylphenolate (BAlq) as the ETL1.

#### Example 25

The organic stack consisted of sequentially, from the ITO surface, 100 Å thick of copper phthalocyanine (CuPc) as the hole injection layer (HIL.), 300 Å of 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl ( $\alpha$ -NPD) as the hole transporting layer (HTL), 300 Å of 1,3-bis(N-carbazolyl)benzene (mCP) 65 doped with 6 wt % of fac-iridium(III)tris[1,(2-iodo-9,9-dimethylfluorenyl)-3-methyl-benzimidazolin-2-ylidene-C,C²']

282

as the emissive layer (EML), 400 Å of aluminum(III)bis(2-methyl-8-hydroxyquinolinato)4-phenylphenolate (BAlq) as the ETL2. There is no ETL1.

#### Example 26

The organic stack consists of sequentially, from the ITO surface, 100 Å thick of copper phthalocyanine (CuPc) as the hole injection layer (HIL), 300 Å of 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (α-NPD) as the hole transporting layer (HTL), 300 Å of 1,3-bis(N-carbazolyl)benzene (mCP) doped with 6 wt % of fac-iridium(III)tris[1,(2-iodo-9,9-dimethylfluorenyl)-3-methyl-benzimidazolin-2-ylidene-C,C²'] as the emissive layer (EML), 100 Å of HPT as the ETL2 and 300 Å of aluminum(III)bis(2-methyl-8-hydroxyquinolinato) 4-phenylphenolate (BAlq) as the ETL1.

#### Example 27

The organic stack consists of sequentially, from the ITO surface, 100 Å thick of copper phthalocyanine (CuPc) as the hole injection layer (HIL), 300 Å of 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (α-NPD) as the hole transporting layer (HTL), 50 Å of Ir(1-Ph-3-Me-imid)<sub>3</sub> as the electron blocking layer (EBL), 300 Å of 4,4'-bis(N-carbazolyl)biphenyl (CBP) doped with 4.5 wt % of Ir(5'-Phppy)<sub>3</sub> as the emissive layer (EML), 400 Å of aluminum(III)bis(2-methyl-8-hydroxyquinolinato)4-phenylphenolate (BAlq) as the ETL2. There is no ETL1.

#### Example 28

The organic stack consists of sequentially, from the ITO surface, 100 Å thick of copper phthalocyanine (CuPc) as the hole injection layer (HIL), 300 Å of 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl ( $\alpha$ -NPD) as the hole transporting layer (HTL), 300 Å of Ir(1-Ph-3-Me-imid)<sub>3</sub> as the emissive layer (EML), and 400 Å of aluminum(III)bis(2-methyl-8-hydroxyquinolinato)4-phenylphenolate (BAlq) as the ETL2. There is no ETL1.

#### Example 29

The organic stack consisted of sequentially, from the ITO surface, 100 Å thick of copper phthalocyanine (CuPc) as the hole injection layer (HIL), 300 Å of 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (α-NPD) as the hole transporting layer (HTL), 300 Å of 1,3-bis(triphenylsilyl)benzene (UGH) doped with 6 wt % of Ir(1-Ph-3-Me-imid)<sub>3</sub> as the emissive layer (EML), 400 Å of aluminum(III)bis(2-methyl-8-hydroxyquinolinato)4-phenylphenolate (BAlq) as the ETL2. There is no ETL1.

#### Example 30

The organic stack consists of sequentially, from the ITO surface, 100 Å thick of copper phthalocyanine (CuPc) as the hole injection layer (HIL), 300 Å of 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl ( $\alpha$ -NPD) as the hole transporting layer (HTL), 300 Å of 1,3-bis(triphenylsilyl)benzene (UGH) doped with 12 wt % of Ir(1-Ph-3-Me-imid)<sub>3</sub> as the emissive layer (EML), 100 Å of HPT as the ETL2 and 300 Å of aluminum(III)bis(2-methyl-8-hydroxyquinolinato)4-phenylphenolate (BAlq) as the ETL1.

The external quantum efficiencies and the CIE coordinates of Examples 15-30 and Comparative Examples 1-3 are summarized in Table B.

TABLE B

|                       | ***                                                                                                                                | NDLL D        |      |                  |                                                                |               |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------|------|------------------|----------------------------------------------------------------|---------------|
| Example               | EML                                                                                                                                | Doping %      | ETL2 | ETL1             | External quantum<br>efficiency at 10 mA/cm <sup>2</sup><br>(%) | CIE           |
| 15                    | CBP: Iridium(III)bis[(2-(5'-biphenyl)-2-pyridinato-N,C <sup>2'</sup> )](1-phenyl-3-methyl-imidazolin-2-ylidene-C,C <sup>2'</sup> ) | 6             | BAlq | $Alq_3$          | 7.2                                                            | 0.30,<br>0.63 |
| 16                    | CBP: Iridium(III)bis[(2-(5'-biphenyl)-2-pyridinato-N,C <sup>2</sup> )](1-phenyl-3-methyl-imidazolin-2-ylidene-C,C <sup>2</sup> ')  | 12            | BAlq | $\mathrm{Alq}_3$ | 5.35                                                           | 0.30,<br>0.63 |
| 17                    | CBP: mer-iridium(III)tris[1,(2-iodo-9,9-dimethylfluorenyl)-3-methylbenzimidazolin-2-ylidene-C,C <sup>2</sup> ]                     | 6             | BAlq | none             | 0.4                                                            | 0.17,<br>0.33 |
| 18                    | CBP: mer-iridium(III)tris[1,(2-iodo-<br>9,9-dimethylfluorenyl)-3-methyl-<br>benzimidazolin-2-ylidene-C.C <sup>2</sup> ]            | 12            | BAlq | none             | 0.5                                                            | 0.18,<br>0.37 |
| 19                    | CBP: mer-iridium(III)tris[1,(2-iodo-<br>9,9-dimethylfluorenyl)-3-methyl-<br>benzimidazolin-2-ylidene-C,C <sup>2</sup> ]            | 6             | HPT  | BAlq             | 0.3                                                            | 0.18,<br>0.32 |
| 20                    | CBP: mer-iridium(III)tris[1,(2-iodo-<br>9,9-dimethylfluorenyl)-3-methyl-<br>benzimidazolin-2-ylidene-C.C <sup>2</sup> ]            | 12            | HPT  | BAlq             | 0.4                                                            | 0.18,<br>0.37 |
| 21                    | mCP: mer-iridium(III)tris[1,(2-iodo-<br>9,9-dimethylfluorenyl)-3-methyl-<br>benzimidazolin-2-ylidene-C.C <sup>2</sup> ]            | 6             | BAlq | none             | 2.2                                                            | 0.17,<br>0.37 |
| 22                    | mCP: mer-iridium(III)tris[1,(2-iodo-9,9-dimethylfluorenyl)-3-methyl-benzimidazolin-2-ylidene-C,C <sup>2</sup> ]                    | 12            | BAlq | none             | 1.3                                                            | 0.17,<br>0.36 |
| 23                    | mCP: mer-iridium(III)tris[1,(2-iodo-9,9-dimethylfluorenyl)-3-methylbenzimidazolin-2-ylidene-C,C <sup>2</sup> ]                     | 6             | HPT  | BAlq             | 2.1                                                            | 0.18,<br>0.40 |
| 24                    | mCP: mer-iridium(III)tris[1,(2-iodo-9,9-dimethylfluorenyl)-3-methylbenzimidazolin-2-ylidene-C,C <sup>2</sup> ]                     | 12            | HPT  | BAlq             | 2.5                                                            | 0.18,<br>0.40 |
| 25                    | mCP: fac-iridium(III)tris[1,(2-iodo-<br>9,9-dimethylfluorenyl)-3-methyl-<br>benzimidazolin-2-ylidene-C,C <sup>2</sup> ]            | 6             | BAlq | none             | 1.4                                                            | 0.17,<br>0.33 |
| 26                    | mCP: fac-iridium(III)tris[1,(2-iodo-<br>9,9-dimethylfluorenyl)-3-methyl-<br>benzimidazolin-2-ylidene-C,C <sup>2</sup> ]            | 6             | HPT  | BAlq             | 1.4                                                            | 0.17,<br>0.36 |
| 27                    | CBP: Ir(5'-Phppy) <sub>3</sub>                                                                                                     | 4.5           | BAlq | $Alq_3$          | 11.8                                                           | 0.30,<br>0.65 |
| 28                    | Ir(1-Ph-3-Me-imid) <sub>3</sub>                                                                                                    | neat<br>layer | BAlq | none             | 0.6                                                            | 0.19,<br>0.36 |
| 29                    | UGH: Ir(1-Ph-3-Me-imid) <sub>3</sub>                                                                                               | 12            | BAlq | none             | 1.3                                                            | 0.17,<br>0.20 |
| 30                    | UGH: Ir(1-Ph-3-Me-imid) <sub>3</sub>                                                                                               | 12            | HPT  | BAlq             | 1                                                              | 0.17,<br>0.18 |
| Comparative example 1 | CBP: Ir(5'-Phppy) <sub>3</sub>                                                                                                     | 4.5           | BAlq | $Alq_3$          | 7.1                                                            | 0.31,<br>0.64 |
| Comparative example 2 | $CBP: Ir(F_2ppy)_3$                                                                                                                | 6             | BAlq | none             | 0.5                                                            | 0.17,<br>0.30 |
|                       | $mCP: Ir(F_2ppy)_3$                                                                                                                | 6             | BAlq | none             | 4                                                              | 0.16,<br>0.36 |
| Comparative example 4 | UGH                                                                                                                                | Neat<br>layer | BAIQ | None             | 0.4                                                            | 0.15,<br>0.12 |

FIG. 27 shows the external quantum efficiency vs. current 50 density of examples 15-16 and comparative example 1. FIG. 28 shows the electroluminescence spectra of examples 15-16 and comparative example 1 at 10 mA/cm². It can be seen that the device efficiency and emission color are similar for Iridium(III) bis[(2-(5'-biphenyl)-2-pyridinato-N,C²')] (1-phenyl-3-methyl-imidazolin-2-ylidene-C,C²') and Ir(5'-Phppy)<sub>3</sub>. FIG. 29 shows the operational stability of example 15 vs comparative example 1. The halflife,  $T_{1/2}$ , defined as the time required for the electroluminescence to drop to 50% of its initial value, is ~200 hrs for comparative example 1. This is slightly longer than that of example 10 (~120 hrs).

FIG. 30 shows the external quantum efficiency vs. current density of examples 17-20. FIG. 31 shows the electroluminescence spectra of examples 17-20. It can be seen these 65 devices with CBP as the host emit light blue color with 0.3 to 0.7% external quantum efficiency.

FIG. 32 shows the external quantum efficiency vs. current density of examples 21-24. FIG. 33 shows the electroluminescence spectra of examples 21-24. It can be seen these devices with mCP as the host emit light blue color with 1.4 to 3.4% external quantum efficiency which are higher than examples 17-20 which have the exact device structure except that example 17-20 use CBP as the host.

FIG. 34 shows the external quantum efficiency vs. current density of examples 25 and 26. FIG. 35 shows the electroluminescence spectra of examples 25 and 26. Examples 25 and 26 devices are analogous to examples 21 and 23 respectively. The difference is that examples 16 and 17 utilize the facial isomer of the invention compound, whereas examples 21 and 23 utilize the meridional isomer of the invention compound. They all utilize mCP as the host. It can been seen that devices with the meridional isomer are more efficient than devices with the facial isomer (see Table B) in this device structure.

FIG. 36 shows the external quantum efficiency vs. current density of example 27. FIG. 37 shows the electroluminescence spectra of example 27. It can be seen the device with Ir(1-Ph-3-Me-imid)<sub>3</sub> as the electron blocking layer has a device efficiency of 11.8% at 10 mA/cm<sup>2</sup>, significantly enhanced from 7.1% at 10 mA/cm<sup>2</sup> obtained from comparative example 1 which does not utilize an electron blocking layer

FIG. 38 shows the external quantum efficiency vs. current density of example 28. FIG. 39 shows the electroluminescence spectra of example 28. It can be seen the device does not emit through Ir(1-Ph-3-Me-imid)<sub>3</sub> but rather through BAlq, which is the layer next to the Ir(1-Ph-3-Me-imid)<sub>3</sub> layer. It suggests hole transport is the dominant role of the Ir(1-Ph-3-Me-imid)<sub>3</sub> layer in this device structure.

FIG. 40 shows the external quantum efficiency vs. current density of example 29 and 30. FIG. 41 shows the electroluminescence spectra of example 29 and 30. The device structures of examples 29 and 30 include the compound Ir(1-Ph-3-Me-imid)<sub>3</sub> doped into the high energy host, UGH. The 20 devices have different ETL layers. Example 29 has only a BAIQ ETL, and example 30 has a 100 Å layer of hole blocking HPT followed by BAIQ. HPT is believed to be an effective hole blocking material. In these devices, high energy emission is observed with peak intensities at 384 nm and 404 nm. 25 Additional peaks are observed at 429 nm, 451 nm, and 503 nm. A comparison of the PL spectra of the dopant (FIG. 18) and the EL spectra (FIG. 41), suggests that the high energy peaks are believed to be attributable to emission from the dopant.

FIG. 43 shows the quantum efficiency vs. current density for comparative example 4. FIG. 44 shows the normalized electroluminescence spectra for Comparative example 4, which has a similar device structure to example 29 using the UGH host except the host is not doped. It can be seen that the 35 device of comparative example 4 emits almost entirely from the NPD HTL layer and has an EL peak intensity at 440 nm. It is believed that the emission from the NPD is due to the fact that UGH acts as a poor hole conductor. Therefore, all recombination may take place at the NPD/UGH interface. It can be 40 seen from FIG. 41 that the device having an undoped UGH host in comparative example 4 has no high energy peaks below 440 nm, as was observed in the devices with the doped UGH hosts of examples 29 and 30.

FIG. 42 shows the subtracted EL spectra of example 29 45 from example 30. This is also shown as the shaded region between the EL spectra of examples 29 and 30. It can be seen that the difference between the devices appears to be an additional contribution from the emission of BAIQ emission in example 29. BAIQ emits with a Gaussian shape and has a peak intensity at 480 nm, which looks very similar to the spectral difference. BAIQ may emit in the device of example 29 because Ir(1-Ph-3-Me-imid)<sub>3</sub> may act as a good hole conductor allowing for recombination to take place in the BAIQ layer near the interface with the emissive layer. The addition of the HPT hole blocking material may prevent hole electron recombination from taking place in BAIQ resulting in the spectral difference between examples 29 and 30.

The addition of another layer between NPD and the emissive layer may be desirable to increase the emission from the 60 dopant. It has been shown in R. J. Holmes et al. *APL* 2003, 83, 3818), which is incorporated by reference in its entirety, that a layer of mCP inserted between NPD and the emissive layer may be necessary to reduce NPD emission and improve efficiency. Holmes describes a device using a blue emitting 65 dopant in a high energy aryl-silane host which is a structural isomer of the UGH host used in examples 29 and 30. It is

286

believed that similar device modifications for UGH: Ir(1-Ph-3-Me-imid)<sub>3</sub> would have a comparable effect. Thus the insertion of different materials between NPD and the UGH: Ir(1-Ph-3-Me-imid)<sub>3</sub> emissive layer may improve the intensity and spectral contribution from the UV emitting dopant.

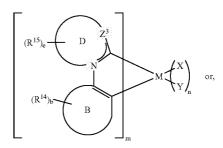
While the present invention is described with respect to particular examples and preferred embodiments, it is understood that the present invention is not limited to these examples and embodiments. The present invention as claimed therefore includes variations from the particular examples and preferred embodiments described herein, as will be apparent to one of skill in the art.

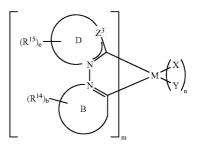
What is claimed is:

1. An organic light emitting device, comprising an anode, a cathode and a phosphorescent emissive layer disposed between the anode and the cathode, wherein the phosphorescent emissive layer comprises a phosphorescent emissive material; and wherein the phosphorescent emissive material comprises a cyclometallated, five-membered ring, which includes a metal atom bound to two carbon atoms within the ring, wherein one of the metal-carbon bonds is a metal-carbene bond and the other is a metal-mono-anionic carbon bond.

2. The organic light emitting device of claim 1, wherein the highest peak wavelength in the in-solution emission spectrum of the phosphorescent emissive material is less than 450 nm.

3. The organic light emitting device of claim 2, wherein the highest peak wavelength in the in-solution emission spectrum of the phosphorescent emissive material less than 440 nm.


4. The organic light emitting device of claim 2, wherein the highest peak wavelength in the in-solution emission spectrum of the phosphorescent emissive material is less than 390 nm.


5. The organic light emitting device of claim 1, wherein the device emits at room temperature.

6. The organic light emitting device of claim 1, wherein the metal is selected from the group consisting of Ir, Pt, Pd, Rh, Re, Ru, Os, Au, and Ag.

7. The organic light emitting device of claim 6, wherein the metal is Ir.

**8**. The organic light emitting device of claim **1**, wherein the phosphorescent emissive material has the structure:





M is a metal;

(X-Y) is selected from a photoactive ligand or an ancillary ligand:

 $Z^3$  is selected from the group consisting of O, S, N— $R^6$ , or P—R<sup>6</sup>, wherein R<sup>6</sup> is selected from the group consisting of alkyl, alkenyl, alkynyl, aralkyl, R', O-R', N(R')2, SR', C(O)R', C(O)OR', C(O)NR'<sub>2</sub>, CN, CF<sub>3</sub>, NO<sub>2</sub>, SO<sub>2</sub>, SOR', SO<sub>3</sub>R', halo, aryl and heteroaryl; each R' is inde- 10 pendently selected from H, alkyl, alkenyl, alkynyl, heteroalkyl, aralkyl, aryl and heteroaryl; and

ring B is independently an aromatic cyclic, heterocyclic, fused cyclic, or fused heterocyclic ring with at least one 15 carbon atom coordinated to metal M, wherein ring B can be optionally substituted with one or more substituents R14; and

ring D is independently a heterocyclic or fused heterocyclic ring with at least one carbon atom coordinated to  $\ ^{20}$ metal M, wherein ring B can be optionally substituted with one or more substituents R<sup>15</sup>; and

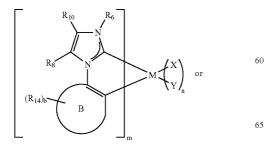
 $R^{14}$  and  $R^{15}$  are independently selected from alkyl, alkenyl, OR', C(O)NR'2, CN, CF3, NO2, SO2, SOR', SO3R', halo, aryl and heteroaryl; each R' is independently selected from H, alkyl, alkenyl, alkynyl, heteroalkyl, aralkyl, aryl and heteroaryl; or

alternatively, two  $R^{14}$  groups on adjacent ring atoms and R<sup>15</sup> groups on adjacent ring atoms form a fused 5- or 6-membered cyclic group, wherein said cyclic group is cycloalkyl, cycloheteroalkyl, aryl or heteroaryl; and wherein said cyclic group is optionally substituted by 35 one or more substituents J;

m is a value from 1 to the maximum number of ligands that may be attached to the metal;

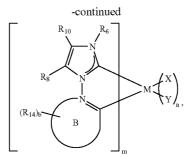
m+n is the maximum number of ligands that may be  $\frac{1}{40}$ attached to metal M;

b is 0, 1, 2, 3, or 4; and


e is 0, 1, 2, or 3.

9. The organic light emitting device of claim 8, wherein M is selected from the group consisting of Ir, Pt, Pd, Rh, Re, Ru, Os, Au, and Ag

10. The organic light emitting device of claim 9, wherein M is Ir.


11. The organic light emitting device of claim 10, wherein 50 m is 3 and n is 0.

12. The organic light emitting device of claim 8, wherein the phosphorescent emissive material has the structure:

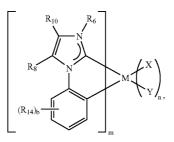


55

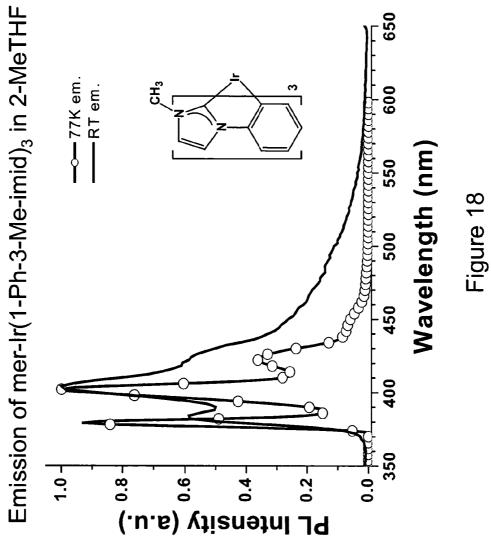
288



wherein R<sub>8</sub> and R<sub>10</sub> are independently selected from the group consisting of H, alkyl, alkenyl, alkynyl, aralkyl, R', O-R', N(R')2, SR', C(O)R', C(O)OR', C(O)NR'2, CN, CF<sub>3</sub>, NO<sub>2</sub>, SO<sub>2</sub>, SOR', SO<sub>3</sub>R', halo, aryl and heteroaryl; each R' is independently selected from H, alkyl, alkenyl, alkynyl, heteroalkyl, aralkyl, aryl and heteroarv1.

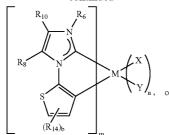

13. The organic light emitting device of claim 12, wherein alkynyl, aralkyl, R', O—R', N(R')<sub>2</sub>, SR', C(O)R', C(O)

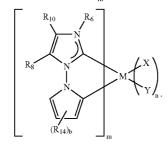
M is selected from the group consisting of Ir, Pt, Pd, Rh, Re, Ru, Os, Au, and Ag.


> 14. The organic light emitting device of claim 13, wherein <sup>30</sup> M is Ir.

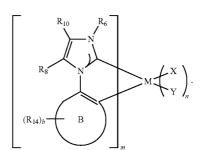
15. The organic light emitting device of claim 12, wherein m is 3 and n is 0.

16. The organic light emitting device of claim 12, wherein the phosphorescent emissive material has the structure:

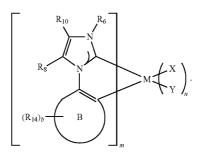




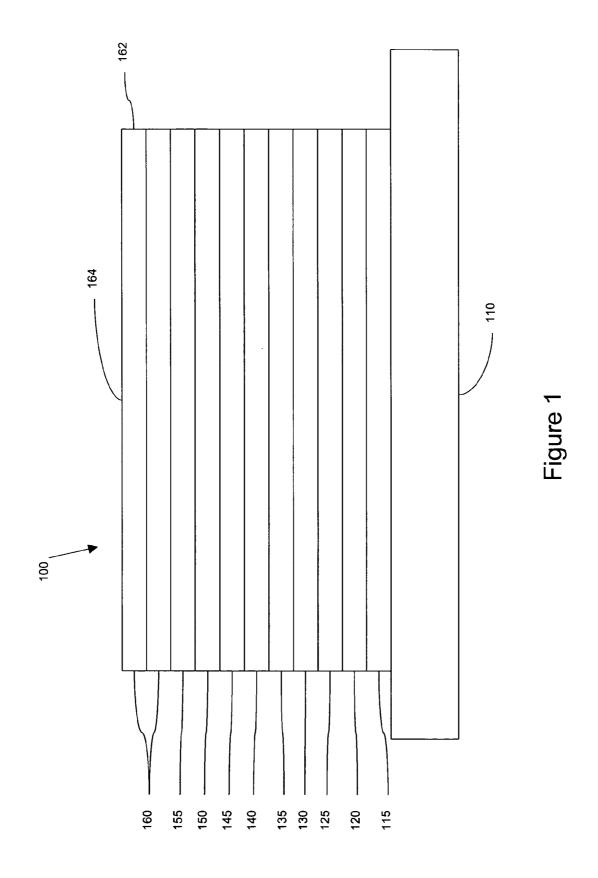


30

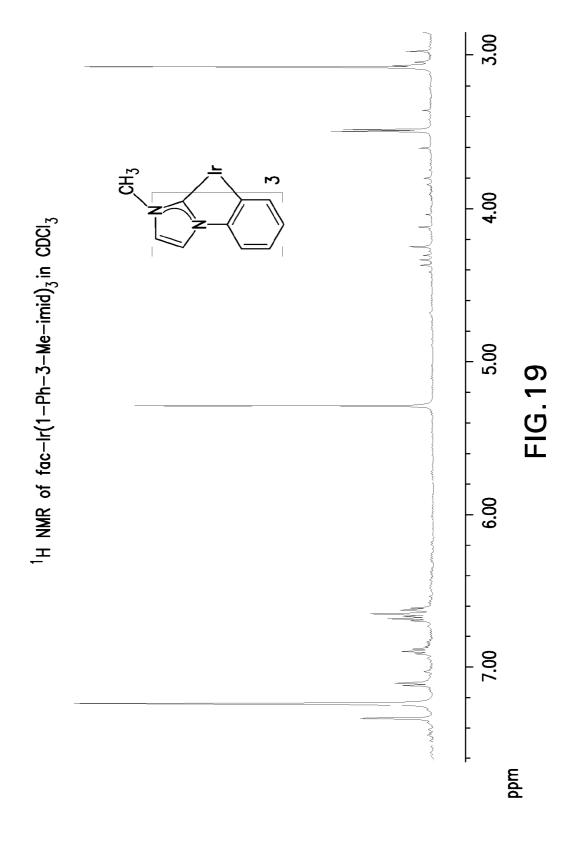
-continued

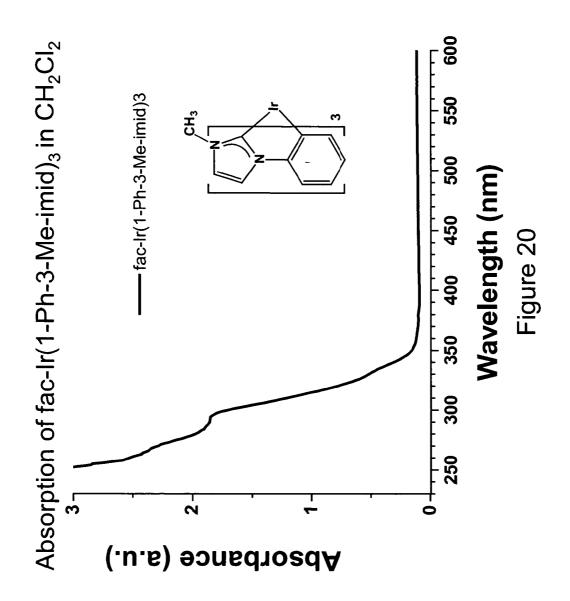


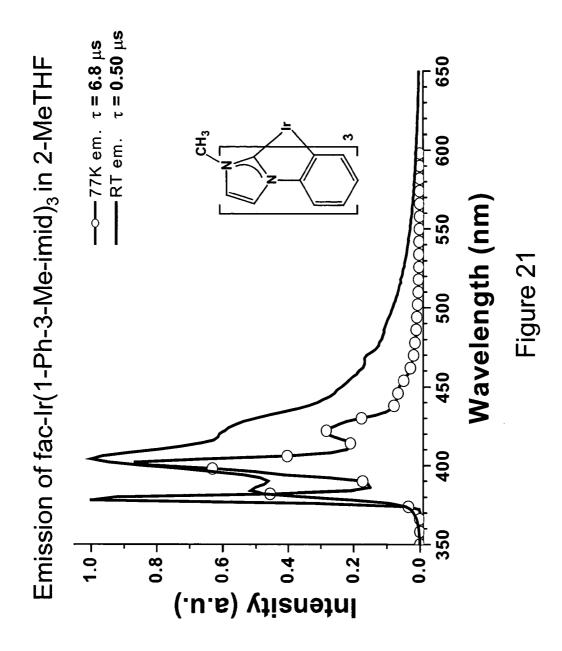



- 17. The organic light emitting device of claim 16, wherein  $^{25}$  M is selected from the group consisting of Ir, Pt, Pd, Rh, Re, Ru, Os, Au, and Ag.
- 18. The organic light emitting device of claim 17, wherein M is Ir
- 19. The organic light emitting device of claim 16, wherein m is 3 and n is 0.
- 20. The organic light emitting device of claim 12, wherein the phosphorescent emissive material has the structure:

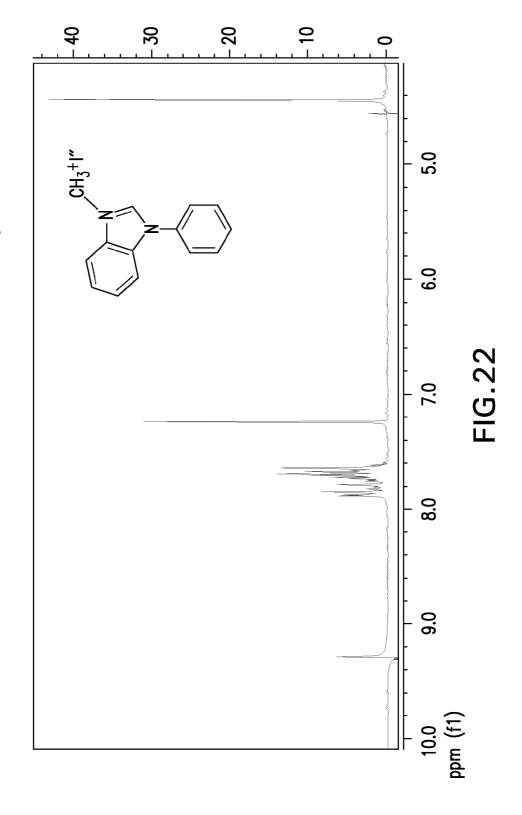


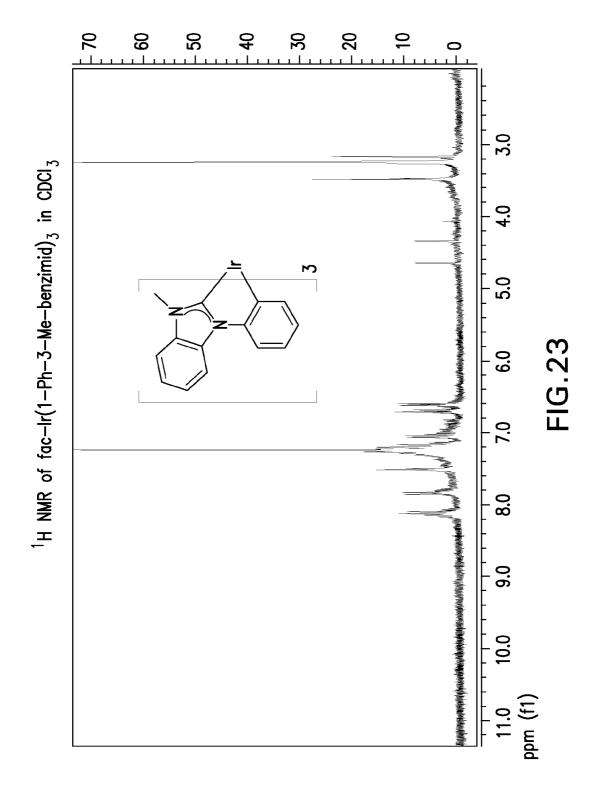


- 21. The organic light emitting device of claim 20, wherein 5 M is Ir or Pt.
  - 22. The organic light emitting device of claim 12, wherein the phosphorescent emissive material has the structure:



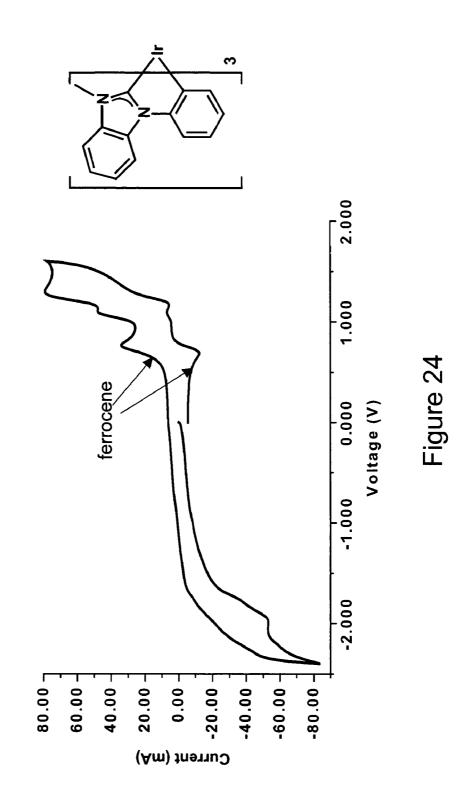


 ${\bf 23}.$  The organic light emitting device of claim  ${\bf 22},$  wherein M is Ir or Pt.

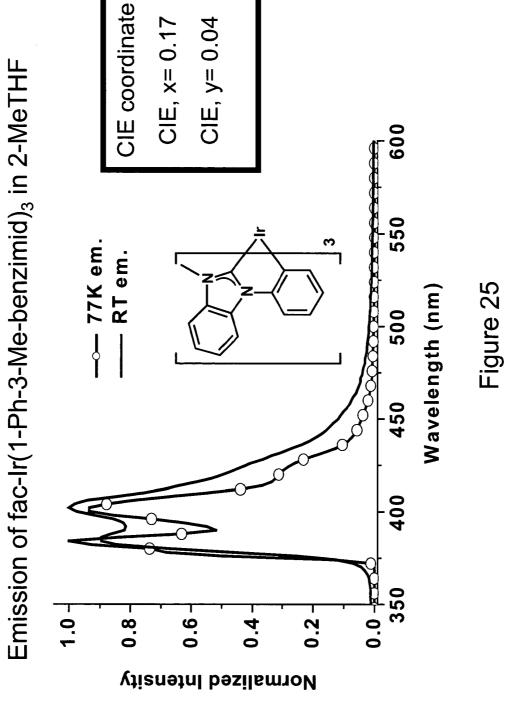
\* \* \* \* \*



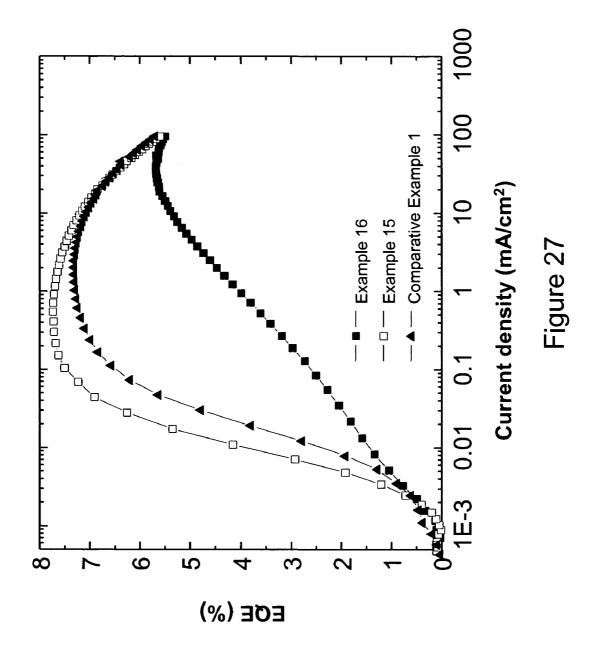



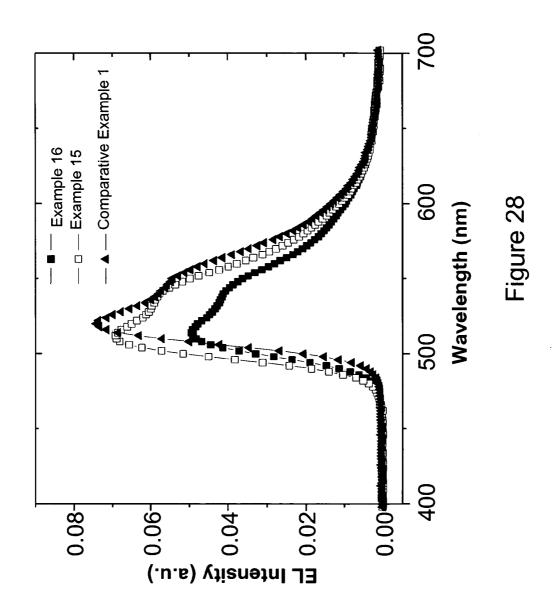


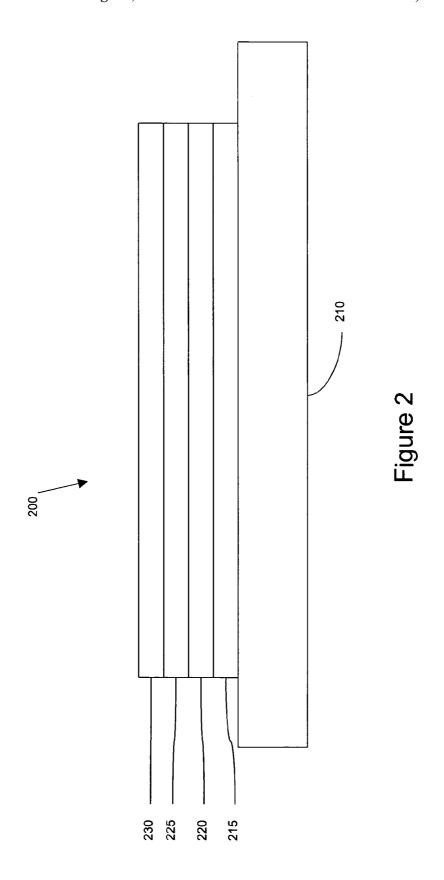



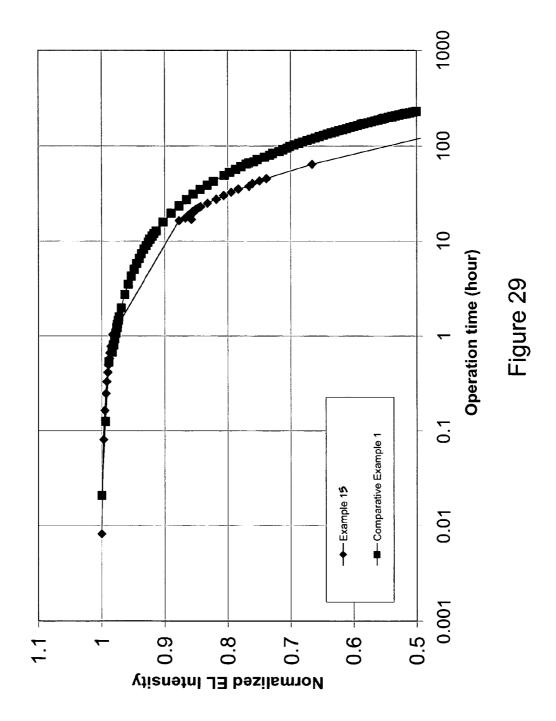


 $^{1}\mathrm{H}$  NMR of 1-Ph-3-Me-benzimid in CDCl  $_{3}$ 

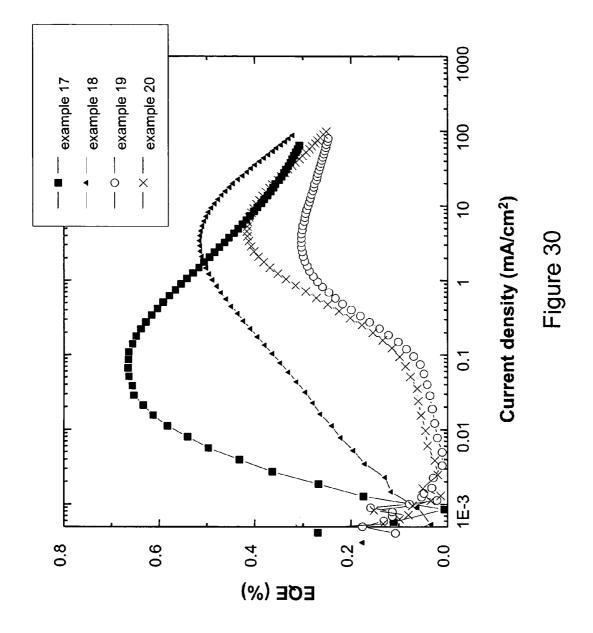


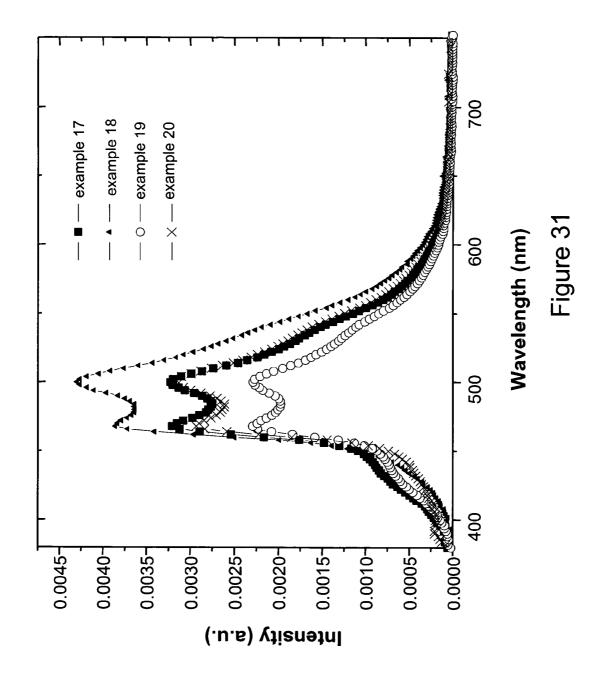


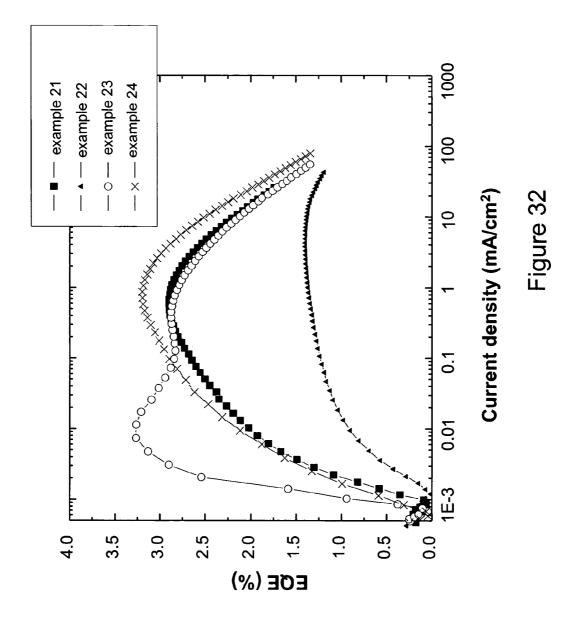


Cyclic Voltammetry of fac-Ir(1-Ph-3-Me-benzimid)<sub>3</sub> in anhydrous



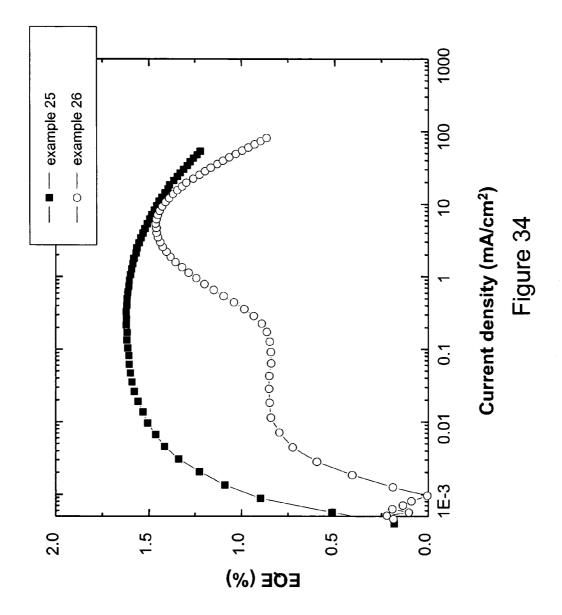



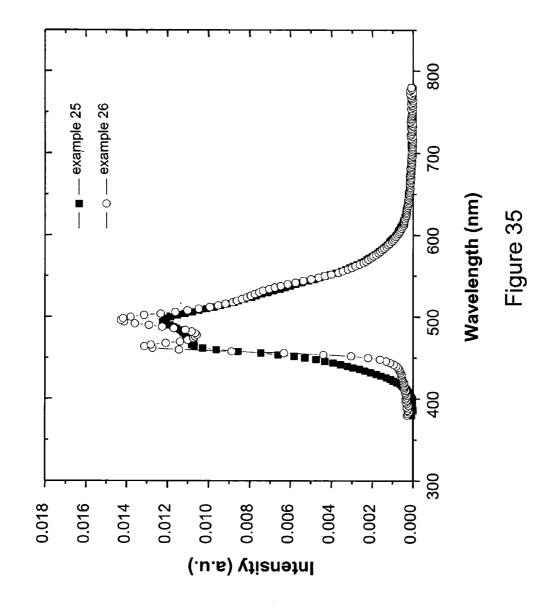


Emission of a 3:1 mixture of mer: fac tris-Ir-FI-Me-imid in 2-750 700 at 77K RT 35 Ŋ at 650 —o—462 nm  $\vdash$ -466 nm at life tim e Wavelength (nm) Figure 26 life tim e 550 450 400 350 1.0 8. 0.0 9.0 Normalized Intensity

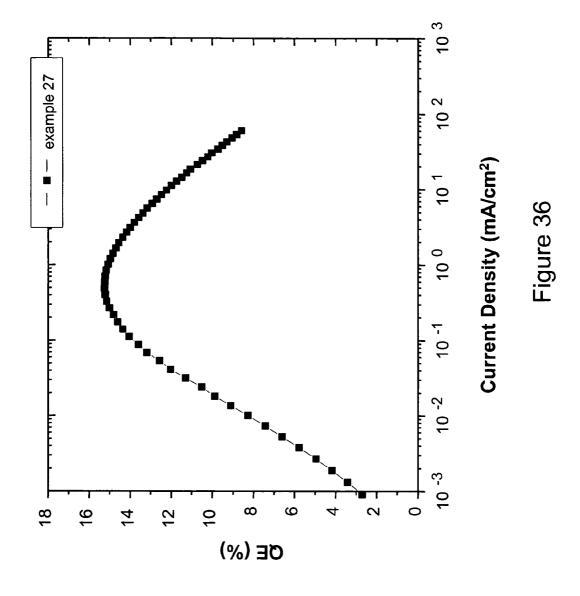


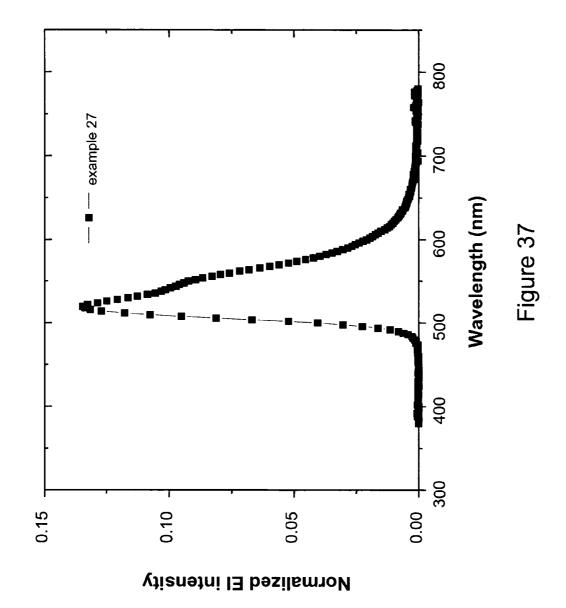



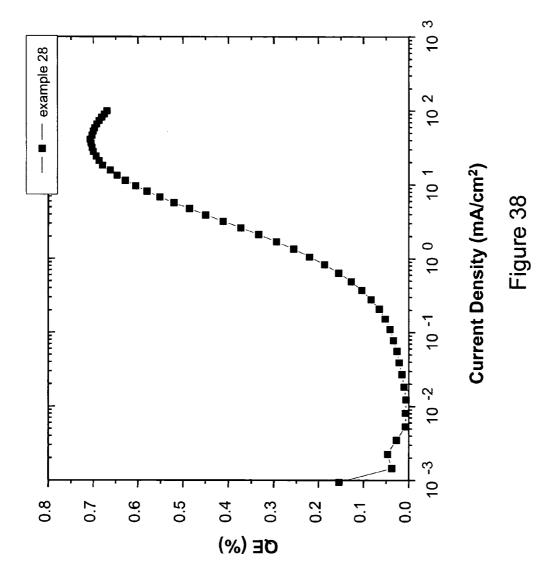


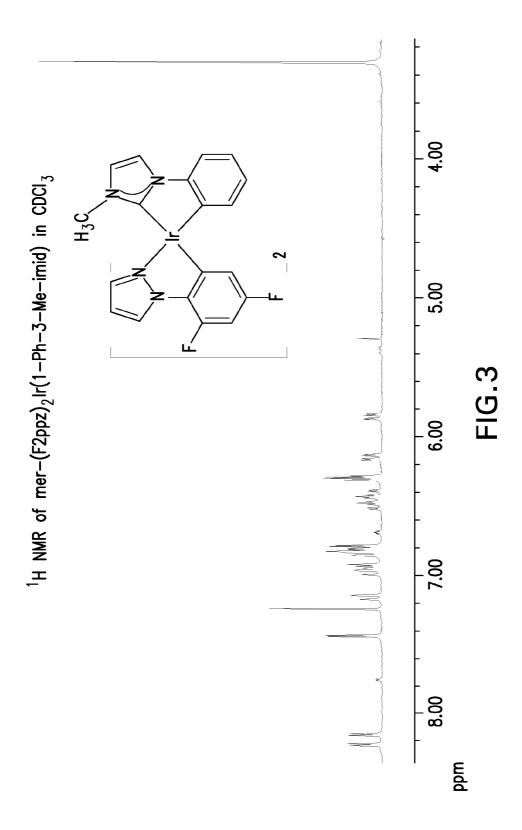



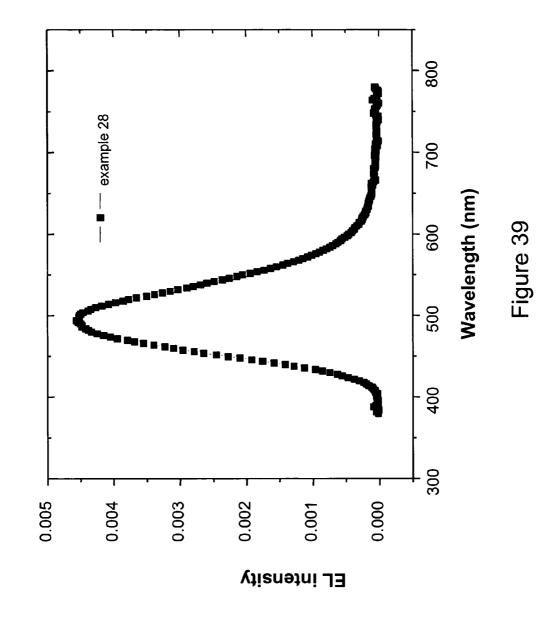



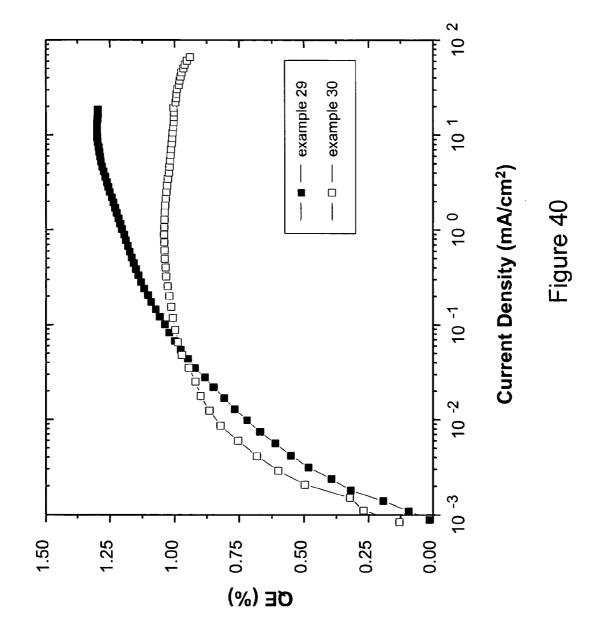



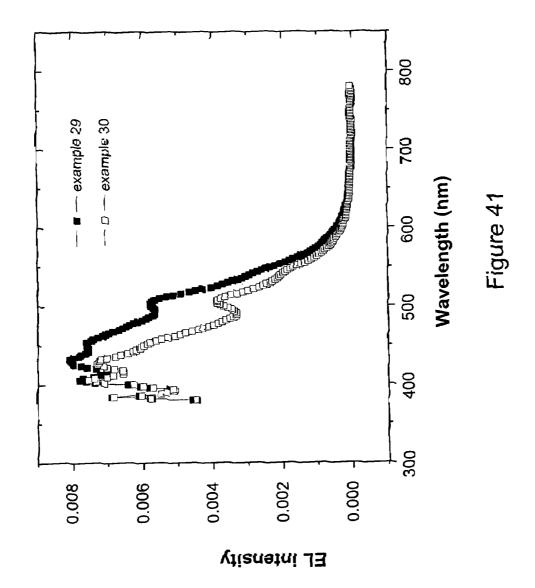



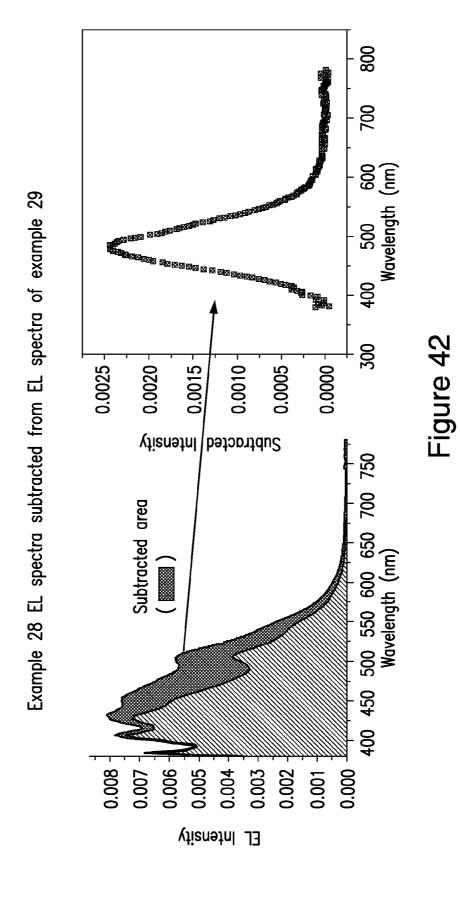



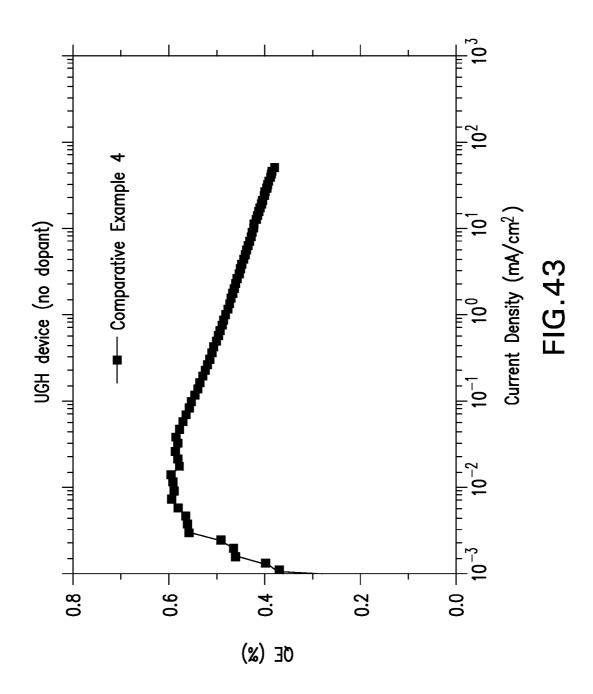



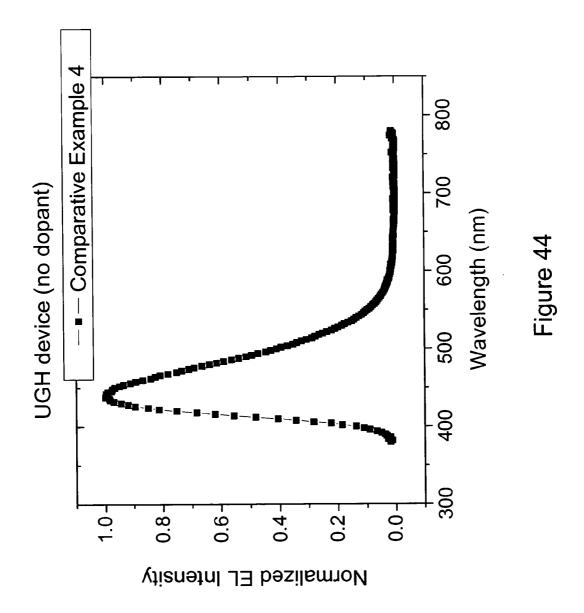














# LUMINESCENT COMPOUNDS WITH CARBENE LIGANDS

# CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. application Ser. No. 10/880,384, filed Jun. 28, 2004, now U.S. Pat. No. 7,393,599, which is a continuation-in-part of U.S. application Ser. No. 10/849,301, filed May 18, 2004, now U.S. Pat. No. 7,491,823, entitled Luminescent Compounds with Carbene Ligands, and which is incorporated by reference in its entirety.

### FIELD OF THE INVENTION

The present invention relates to organic light emitting devices (OLEDs), and more specifically to phosphorescent organic materials used in such devices. More specifically, the present invention relates to carbene-metal complexes incorporated into OLEDs.

#### BACKGROUND

Opto-electronic devices that make use of organic materials 25 are becoming increasingly desirable for a number of reasons. Many of the materials used to make such devices are relatively inexpensive, so organic opto-electronic devices have the potential for cost advantages over inorganic devices. In addition, the inherent properties of organic materials, such as 30 their flexibility, may make them well suited for particular applications such as fabrication on a flexible substrate. Examples of organic opto-electronic devices include organic light emitting devices (OLEDs), organic photodetectors. For 35 OLEDs, the organic materials may have performance advantages over conventional materials. For example, the wavelength at which an organic emissive layer emits light may generally be readily tuned with appropriate dopants.

As used herein, the term "organic" includes polymeric 40 materials as well as small molecule organic materials that may be used to fabricate organic opto-electronic devices. "Small molecule" refers to any organic material that is not a polymer, and "small molecules" may actually be quite large. Small molecules may include repeat units in some circum- 45 stances. For example, using a long chain alkyl group as a substituent does not remove a molecule from the "small molecule" class. Small molecules may also be incorporated into polymers, for example as a pendent group on a polymer backbone or as a part of the backbone. Small molecules may 50 also serve as the core moiety of a dendrimer, which consists of a series of chemical shells built on the core moiety. The core moiety of a dendrimer may be an fluorescent or phosphorescent small molecule emitter. A dendrimer may be a "small molecule," and it is believed that all dendrimers currently 55 used in the field of OLEDs are small molecules.

OLEDs make use of thin organic films that emit light when voltage is applied across the device. OLEDs are becoming an increasingly interesting technology for use in applications such as flat panel displays, illumination, and backlighting. 60 Several OLED materials and configurations are described in U.S. Pat. Nos. 5,844,363, 6,303,238, and 5,707,745, which are incorporated herein by reference in their entirety.

OLED devices are generally (but not always) intended to emit light through at least one of the electrodes, and one or 65 more transparent electrodes may be useful in an organic optoelectronic devices. For example, a transparent electrode 2

material, such as indium tin oxide (ITO), may be used as the bottom electrode. A transparent top electrode, such as disclosed in U.S. Pat. Nos. 5,703,436 and 5,707,745, which are incorporated by reference in their entireties, may also be used. For a device intended to emit light only through the bottom electrode, the top electrode does not need to be transparent, and may be comprised of a thick and reflective metal layer having a high electrical conductivity. Similarly, for a device intended to emit light only through the top electrode, the bottom electrode may be opaque and/or reflective. Where an electrode does not need to be transparent, using a thicker layer may provide better conductivity, and using a reflective electrode may increase the amount of light emitted through the other electrode, by reflecting light back towards the transparent electrode. Fully transparent devices may also be fabricated, where both electrodes are transparent. Side emitting OLEDs may also be fabricated, and one or both electrodes may be opaque or reflective in such devices.

As used herein, "top" means furthest away from the substrate, while "bottom" means closest to the substrate. For example, for a device having two electrodes, the bottom electrode is the electrode closest to the substrate, and is generally the first electrode fabricated. The bottom electrode has two surfaces, a bottom surface closest to the substrate, and a top surface further away from the substrate. Where a first layer is described as "disposed over" a second layer, the first layer is disposed further away from substrate. There may be other layers between the first and second layer, unless it is specified that the first layer is "in physical contact with" the second layer. For example, a cathode may be described as "disposed over" an anode, even though there are various organic layers in between.

As used herein, "solution processible" means capable of being dissolved, dispersed, or transported in and/or deposited from a liquid medium, either in solution or suspension form.

The carbene ligand has been well known in organometallic chemistry, and is used to generate a wide range of thermally stable catalytic materials. The carbene ligands have been employed both as active groups, directly engaged in the catalytic reactions, and serving a role of stabilizing the metal in a particular oxidation state or coordination geometry. However, applications of carbene ligands are not well known in photochemistry and have yet to be used as electroluminescent compounds.

One issue with many existing organic electroluminescent compounds is that they are not sufficiently stable for use in commercial devices. An object of the invention is to provide a class of organic emissive compounds having improved stability.

In addition, existing compounds do not include compounds that are stable emitters for high energy spectra, such as a blue spectra. An object of the invention is to provide a class of organic emissive compounds that can emit light with various spectra, including high energy spectra such as blue, in a stable manner.

## SUMMARY OF THE INVENTION

An organic light emitting device is provided. The device has an anode, a cathode and an organic layer disposed between the anode and the cathode. The organic layer comprises a compound further comprising one or more carbene ligands coordinated to a metal center.

# BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an organic light emitting device having separate electron transport, hole transport, and emissive layers, as well as other layers.

FIG. 2 shows an inverted organic light emitting device that does not have a separate electron transport layer.

FIG. 3 shows the <sup>1</sup>H NMR spectra of mer-(F<sub>2</sub>ppz)<sub>2</sub>Ir(1-Ph-3-Me-imid) in CDCl<sub>3</sub>.

FIG. 4 shows the <sup>1</sup>H NMR spectra of mer-(tpy)<sub>2</sub>Ir(1-Ph-3-<sup>5</sup> Me-imid) in CDCl<sub>3</sub>.

FIG. 5 shows the <sup>1</sup>H NMR spectra of fac-(tpy)<sub>2</sub>Ir(1-Ph-3-Me-imid) in CDCl<sub>3</sub>.

FIG. 6 shows the plot of current ( $\mu$ A) vs. voltage (V) of a mer-(tpy)<sub>2</sub>Ir(1-Ph-3-Me-imid) device with ferrocene as an internal reference. A solvent of DMF with 0.1M Bu<sub>4</sub>N<sup>+</sup>PF<sub>6</sub>

FIG. 7 shows the plot of current ( $\mu$ A) vs. voltage (V) of a fac-(tpy)<sub>2</sub>Ir(1-Ph-3-Me-imid) device with ferrocene as an <sub>15</sub> internal reference. A solvent of DMF with 0.1M Bu<sub>4</sub>N<sup>+</sup>PF6<sup>-</sup> is used.

FIG. 8 shows the absorption spectra of fac-(tpy), Ir(1-Ph-3-Me-imid) and mer-(tpy)<sub>2</sub>Ir(1-Ph-3-Me-imid) in CH<sub>2</sub>Cl<sub>2</sub>.

FIG. 9 shows the emission spectra of mer- $(tpy)_2$ Ir(1-Ph-3-20)Me-imid) in 2-MeTHF at room temperature and at 77K. The compound exhibits lifetimes of 1.7 µs at room temperature and 3.3 µs at 77K.

FIG. 10 shows the emission spectra of fac-(tpy)<sub>2</sub>Ir(1-Ph-3-Me-imid) in 2-MeTHF at room temperature and at 77K. 25 The compound exhibits lifetimes of 1.7 µs at room temperature and 3.3 µs at 77K.

FIG. 11 shows the <sup>1</sup>H NMR spectra of [(1-Ph-3-Me-imid) 2IrCl], in CDCl3.

FIG. 12 shows the  ${}^{1}\text{H}$  NMR spectra of (1-Ph-3-Me-imid)  ${}^{30}$  28. <sub>2</sub>Ir(t-Bu-bpy)<sup>+</sup> in CDCl<sub>3</sub>.

FIG. 13 shows the absorption spectra of (1-Ph-3-Me-imid) <sub>2</sub>Ir(t-Bu-bpy)<sup>+</sup> in CH<sub>2</sub>Cl<sub>2</sub>.

FIG. 14 shows the emission spectra of (1-Ph-3-Me-imid) 35 <sub>2</sub>Ir(t-Bu-bpy)<sup>+</sup> in 2-MeTHF at 77K and (1-Ph-3-Me-imid)<sub>2</sub>Ir (t-Bu-bpy)+ in CH<sub>2</sub>Cl<sub>2</sub> at room temperature. The compound exhibits lifetimes of 0.70 µs at room temperature and 6.0 µs at 77K.

FIG. 15 shows the <sup>1</sup>H NMR spectra of mer-Ir(1-Ph-3-Me- 40 for comparative example 4. imid)<sub>3</sub> in CDCl<sub>3</sub>.

FIG. 16 shows the <sup>13</sup>C NMR spectra of mer-Ir(1-Ph-3-Meimid), in CDCl<sub>2</sub>.

FIG. 17 shows the plot of current ( $\mu A$ ) vs. voltage (V) of a reference. A solvent of DMF with 0.1M Bu<sub>4</sub>N<sup>+</sup>PF<sub>6</sub><sup>-</sup> is used.

FIG. 18 shows the emission spectra of mer-Ir(1-Ph-3-Meimid)<sub>3</sub> in 2-MeTHF at room temperature and at 77K.

FIG. 19 shows the <sup>1</sup>H NMR spectra of fac-Ir(1-Ph-3-Meimid)<sub>3</sub> in CDCl<sub>3</sub>.

FIG. 20 shows the absorption spectra of fac-Ir(1-Ph-3-Meimid) $_3$  in  $CH_2Cl_2$ .

FIG. 21 shows the emission spectra of fac-Ir(1-Ph-3-Meimid)<sub>3</sub> in 2-MeTHF at room temperature and at 77K. The device exhibits lifetimes of 0.50 µs at room temperature and 6.8 us at 77K.

FIG. 22 shows the <sup>1</sup>H NMR spectra of 1-Ph-3-Me-benzimid in CDCl<sub>3</sub>.

FIG. 23 shows the <sup>1</sup>H NMR spectra of fac-Ir(1-Ph-3-Mebenzimid)<sub>3</sub> in CDCl<sub>3</sub>.

FIG. 24 shows the plot of current (mA) vs. voltage (V) of a fac-Ir(1-Ph-3-Me-benzimid)<sub>3</sub> device with ferrocene as an internal reference. A solvent of anhydrous DMF is used.

FIG. 25 shows the emission spectra of fac-Ir(1-Ph-3-Me-65 benzimid)<sub>3</sub> in 2-MeTHF at room temperature and at 77K. The device emits a spectrum at CIE 0.17, 0.04.

FIG. 26 shows the emission spectra of (Ir—Fl-Me-imid), in 2-MeTHF at room temperature and at 77K. The device exhibits lifetimes of 5 µs at room temperature and 35 µs at

FIG. 27 shows the external quantum efficiency vs. current density of examples 15-16 and comparative example 1.

FIG. 28 shows the electroluminescence spectra of examples 15-16 and comparative example 1 at 10 mA/cm<sup>2</sup>.

FIG. 29 shows the operational stability of example 15 vs 10 comparative example 1.

FIG. 30 shows the external quantum efficiency vs. current density of examples 17-20.

FIG. 31 shows the electroluminescence spectra of examples 17-20.

FIG. 32 shows the external quantum efficiency vs. current density of examples 21-24.

FIG. 33 shows the electroluminescence spectra of examples 21-24.

FIG. 34 shows the external quantum efficiency vs. current density of examples 25 and 26.

FIG. 35 shows the electroluminescence spectra of examples 25 and 26.

FIG. 36 shows the external quantum efficiency vs. current density of example 27.

FIG. 37 shows the electroluminescence spectra of example 27.

FIG. 38 shows the external quantum efficiency vs. current density of example 28.

FIG. 39 shows the electroluminescence spectra of example

FIG. 40 shows the external quantum efficiency vs. current density of example 29 and 30.

FIG. 41 shows the electroluminescence spectra of example 29 and 30.

FIG. 42 shows the subtracted EL spectra of example 29 from example 30.

FIG. 43 shows the quantum efficiency vs. current density for comparative example 4.

FIG. 44 shows the normalized electroluminescent spectra

### DETAILED DESCRIPTION

Generally, an OLED comprises at least one organic layer mer-Ir(1-Ph-3-Me-imid), device with ferrocene as an internal 45 disposed between and electrically connected to an anode and a cathode. When a current is applied, the anode injects holes and the cathode injects electrons into the organic layer(s). The injected holes and electrons each migrate toward the oppositely charged electrode. When an electron and hole localize on the same molecule, an "exciton," which is a localized electron-hole pair having an excited energy state, is formed. Light is emitted when the exciton relaxes via a photoemissive mechanism. In some cases, the exciton may be localized on an excimer or an exciplex. Non-radiative mechanisms, such as thermal relaxation, may also occur, but are generally considered undesirable.

> The initial OLEDs used emissive molecules that emitted light from their singlet states ("fluorescence") as disclosed, for example, in U.S. Pat. No. 4,769,292, which is incorporated by reference in its entirety. Fluorescent emission generally occurs in a time frame of less than 10 nanoseconds.

More recently, OLEDs having emissive materials that emit light from triplet states ("phosphorescence") have been demonstrated. Baldo et al., "Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices," Nature, vol. 395, 151-154, 1998; ("Baldo-I") and Baldo et al., "Very high-efficiency green organic light-emitting devices ------

based on electrophosphorescence," Appl. Phys. Lett., vol. 75, No. 3, 4-6 (1999) ("Baldo-II"), which are incorporated by reference in their entireties. Phosphorescence may be referred to as a "forbidden" transition because the transition requires a change in spin states, and quantum mechanics indicates that such a transition is not favored. As a result, phosphorescence generally occurs in a time frame exceeding at least 10 nanoseconds, and typically greater than 100 nanoseconds. If the natural radiative lifetime of phosphorescence is too long, triplets may decay by a non-radiative mechanism. 10 such that no light is emitted. Organic phosphorescence is also often observed in molecules containing heteroatoms with unshared pairs of electrons at very low temperatures. 2,2'bipyridine is such a molecule. Non-radiative decay mechanisms are typically temperature dependent, such that a material that exhibits phosphorescence at liquid nitrogen temperatures may not exhibit phosphorescence at room temperature. But, as demonstrated by Baldo, this problem may be addressed by selecting phosphorescent compounds that do phosphoresce at room temperature. Representative emissive 20 layers include doped or un-doped phosphorescent organometallic materials such as disclosed in U.S. Pat. Nos. 6,303, 238 and 6,310,360; U.S. Patent Application Publication Nos. 2002-0034656; 2002-0182441; and 2003-0072964; and WO-02/074015.

Generally, the excitons in an OLED are believed to be created in a ratio of about 3:1, i.e., approximately 75% triplets and 25% singlets. See, Adachi et al., "Nearly 100% Internal Phosphorescent Efficiency In An Organic Light Emitting Device," J. Appl. Phys., 90, 5048 (2001), which is incorpo- 30 rated by reference in its entirety. In many cases, singlet excitons may readily transfer their energy to triplet excited states via "intersystem crossing," whereas triplet excitons may not readily transfer their energy to singlet excited states. As a result, 100% internal quantum efficiency is theoretically pos- 35 sible with phosphorescent OLEDs. In a fluorescent device, the energy of triplet excitons is generally lost to radiationless decay processes that heat-up the device, resulting in much lower internal quantum efficiencies. OLEDs utilizing phosphorescent materials that emit from triplet excited states are 40 disclosed, for example, in U.S. Pat. No. 6,303,238, which is incorporated by reference in its entirety.

Phosphorescence may be preceded by a transition from a triplet excited state to an intermediate non-triplet state from which the emissive decay occurs. For example, organic molecules coordinated to lanthanide elements often phosphoresce from excited states localized on the lanthanide metal. However, such materials do not phosphoresce directly from a triplet excited state but instead emit from an atomic excited state centered on the lanthanide metal ion. The europium 50 diketonate complexes illustrate one group of these types of species.

Phosphorescence from triplets can be enhanced over fluorescence by confining, preferably through bonding, the organic molecule in close proximity to an atom of high atomic 55 number. This phenomenon, called the heavy atom effect, is created by a mechanism known as spin-orbit coupling. Such a phosphorescent transition may be observed from an excited metal-to-ligand charge transfer (MLCT) state of an organometallic molecule such as tris(2-phenylpyridine)iridium(III). 60

As used herein, the term "triplet energy" refers to an energy corresponding to the highest energy feature discernable in the phosphorescence spectrum of a given material. The highest energy feature is not necessarily the peak having the greatest intensity in the phosphorescence spectrum, and could, for 65 example, be a local maximum of a clear shoulder on the high energy side of such a peak.

6

FIG. 1 shows an organic light emitting device 100. The figures are not necessarily drawn to scale. Device 100 may include a substrate 110, an anode 115, a hole injection layer 120, a hole transport layer 125, an electron blocking layer 130, an emissive layer 135, a hole blocking layer 140, an electron transport layer 145, an electron injection layer 150, a protective layer 155, and a cathode 160. Cathode 160 is a compound cathode having a first conductive layer 162 and a second conductive layer 164. Device 100 may be fabricated by depositing the layers described, in order.

Substrate 110 may be any suitable substrate that provides desired structural properties. Substrate 110 may be flexible or rigid. Substrate 110 may be transparent, translucent or opaque. Plastic and glass are examples of preferred rigid substrate materials. Plastic and metal foils are examples of preferred flexible substrate materials. Substrate 110 may be a semiconductor material in order to facilitate the fabrication of circuitry. For example, substrate 110 may be a silicon wafer upon which circuits are fabricated, capable of controlling OLEDs subsequently deposited on the substrate. Other substrates may be used. The material and thickness of substrate 110 may be chosen to obtain desired structural and optical properties.

Anode 115 may be any suitable anode that is sufficiently 25 conductive to transport holes to the organic layers. The material of anode 115 preferably has a work function higher than about 4 eV (a "high work function material"). Preferred anode materials include conductive metal oxides, such as indium tin oxide (ITO) and indium zinc oxide (IZO), aluminum zinc oxide (AlZnO), and metals. Anode 115 (and substrate 110) may be sufficiently transparent to create a bottomemitting device. A preferred transparent substrate and anode combination is commercially available ITO (anode) deposited on glass or plastic (substrate). A flexible and transparent substrate-anode combination is disclosed in U.S. Pat. Nos. 5,844,363 and 6,602,540 B2, which are incorporated by reference in their entirety. Anode 115 may be opaque and/or reflective. A reflective anode 115 may be preferred for some top-emitting devices, to increase the amount of light emitted from the top of the device. The material and thickness of anode 115 may be chosen to obtain desired conductive and optical properties. Where anode 115 is transparent, there may be a range of thickness for a particular material that is thick enough to provide the desired conductivity, yet thin enough to provide the desired degree of transparency. Other anode materials and structures may be used.

Hole transport layer 125 may include a material capable of transporting holes. Hole transport layer 130 may be intrinsic (undoped), or doped. Doping may be used to enhance conductivity.  $\alpha$ -NPD and TPD are examples of intrinsic hole transport layers. An example of a p-doped hole transport layer is m-MTDATA doped with  $F_4$ -TCNQ at a molar ratio of 50:1, as disclosed in United States Patent Application Publication No. 2002-0071963 A1 to Forrest et al., which is incorporated by reference in its entirety. Other hole transport layers may be used.

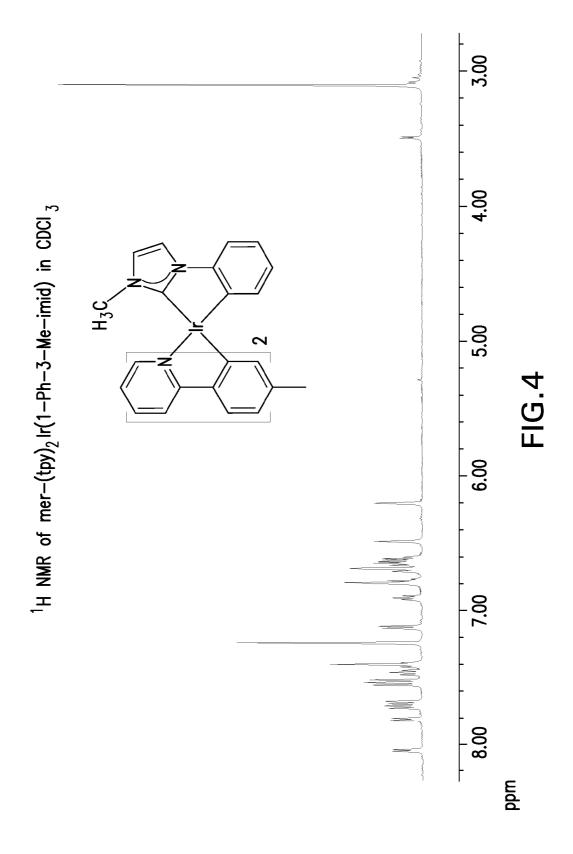
Emissive layer 135 may include an organic material capable of emitting light when a current is passed between anode 115 and cathode 160. Preferably, emissive layer 135 contains a phosphorescent emissive material, although fluorescent emissive materials may also be used. Phosphorescent materials are preferred because of the higher luminescent efficiencies associated with such materials. Emissive layer 135 may also comprise a host material capable of transporting electrons and/or holes, doped with an emissive material that may trap electrons, holes, and/or excitons, such that excitons relax from the emissive material via a photoemissive mecha-

nism. Emissive layer 135 may comprise a single material that combines transport and emissive properties. Whether the emissive material is a dopant or a major constituent, emissive layer 135 may comprise other materials, such as dopants that tune the emission of the emissive material. Emissive layer 135 may include a plurality of emissive materials capable of, in combination, emitting a desired spectrum of light. Examples of phosphorescent emissive materials include Ir(ppy)<sub>3</sub>. Examples of fluorescent emissive materials include DCM and DMQA. Examples of host materials include Alq<sub>3</sub>, CBP and mCP. Examples of emissive and host materials are disclosed in U.S. Pat. No. 6,303,238 to Thompson et al., which is incorporated by reference in its entirety. Emissive material may be included in emissive layer 135 in a number of ways. For example, an emissive small molecule may be incorporated into a polymer. This may be accomplished by several ways: by doping the small molecule into the polymer either as a separate and distinct molecular species; or by incorporating the small molecule into the backbone of the polymer, so as to form a co-polymer; or by bonding the small molecule as a 20 pendant group on the polymer. Other emissive layer materials and structures may be used. For example, a small molecule emissive material may be present as the core of a dendrimer.

Electron transport layer 140 may include a material capable of transporting electrons. Electron transport layer 25 140 may be intrinsic (undoped), or doped. Doping may be used to enhance conductivity. Alq<sub>3</sub> is an example of an intrinsic electron transport layer. An example of an n-doped electron transport layer is BPhen doped with Li at a molar ratio of 1:1, as disclosed in United States Patent Application Publication No. 2002-0071963 A1 to Forrest et al., which is incorporated by reference in its entirety. Other electron transport layers may be used.

The charge carrying component of the electron transport layer may be selected such that electrons can be efficiently 35 injected from the cathode into the LUMO (Lowest Unoccupied Molecular Orbital) level of the electron transport laver. The "charge carrying component" is the material responsible for the LUMO that actually transports electrons. This component may be the base material, or it may be a dopant. The 40 LUMO level of an organic material may be generally characterized by the electron affinity of that material and the relative electron injection efficiency of a cathode may be generally characterized in terms of the work function of the cathode material. This means that the preferred properties of 45 an electron transport layer and the adjacent cathode may be specified in terms of the electron affinity of the charge carrying component of the ETL and the work function of the cathode material. In particular, so as to achieve high electron injection efficiency, the work function of the cathode material 50 is preferably not greater than the electron affinity of the charge carrying component of the electron transport layer by more than about 0.75 eV, more preferably, by not more than about 0.5 eV. Similar considerations apply to any layer into which electrons are being injected.

Cathode 160 may be any suitable material or combination of materials known to the art, such that cathode 160 is capable of conducting electrons and injecting them into the organic layers of device 100. Cathode 160 may be transparent or opaque, and may be reflective. Metals and metal oxides are examples of suitable cathode materials. Cathode 160 may be a single layer, or may have a compound structure. FIG. 1 shows a compound cathode 160 having a thin metal layer 162 and a thicker conductive metal oxide layer 164. In a compound cathode, preferred materials for the thicker layer 164 include ITO, IZO, and other materials known to the art. U.S. Pat. Nos. 5,703,436, 5,707,745, 6,548,956 B2, and 6,576,134


B2, which are incorporated by reference in their entireties, disclose examples of cathodes including compound cathodes having a thin layer of metal such as Mg:Ag with an overlying transparent, electrically-conductive, sputter-deposited ITO layer. The part of cathode 160 that is in contact with the underlying organic layer, whether it is a single layer cathode 160, the thin metal layer 162 of a compound cathode, or some other part, is preferably made of a material having a work function lower than about 4 eV (a "low work function mate-

Blocking layers may be used to reduce the number of charge carriers (electrons or holes) and/or excitons that leave the emissive layer. An electron blocking layer 130 may be disposed between emissive layer 135 and the hole transport layer 125, to block electrons from leaving emissive layer 135 in the direction of hole transport layer 125. Similarly, a hole blocking layer 140 may be disposed between emissive layer 135 and electron transport layer 145, to block holes from leaving emissive layer 135 in the direction of electron transport layer 140. Blocking layers may also be used to block excitons from diffusing out of the emissive layer. The theory and use of blocking layers is described in more detail in U.S. Pat. No. 6,097,147 and United States Patent Application Publication No. 2002-0071963 Al to Forrest et al., which are incorporated by reference in their entireties.

As used herein, the term "blocking layer" means that the layer provides a barrier that significantly inhibits transport of charge carriers and/or excitons through the device, without suggesting that the layer necessarily completely blocks the charge carriers and/or excitons. The presence of such a blocking layer in a device may result in substantially higher efficiencies as compared to a similar device lacking a blocking layer. Also, a blocking layer may be used to confine emission to a desired region of an OLED.

Generally, injection layers are comprised of a material that may improve the injection of charge carriers from one layer, such as an electrode or an organic layer, into an adjacent organic layer. Injection layers may also perform a charge transport function. In device 100, hole injection layer 120 may be any layer that improves the injection of holes from anode 115 into hole transport layer 125. CuPc is an example of a material that may be used as a hole injection layer from an ITO anode 115, and other anodes. In device 100, electron injection layer 150 may be any layer that improves the injection of electrons into electron transport layer 145. LiF/Al is an example of a material that may be used as an electron injection layer into an electron transport layer from an adjacent layer. Other materials or combinations of materials may be used for injection layers. Depending upon the configuration of a particular device, injection layers may be disposed at locations different than those shown in device 100. More examples of injection layers are provided in U.S. patent application Ser. No. 09/931,948 to Lu et al., now U.S. Pat. No. 7,071,615, which is incorporated by reference in its entirety. 55 A hole injection layer may comprise a solution deposited material, such as a spin-coated polymer, e.g., PEDOT:PSS, or it may be a vapor deposited small molecule material, e.g., CuPc or MTDATA.

A hole injection layer (HIL) may planarize or wet the anode surface so as to provide efficient hole injection from the anode into the hole injecting material. A hole injection layer may also have a charge carrying component having HOMO (Highest Occupied Molecular Orbital) energy levels that favorably match up, as defined by their herein-described relative ionization potential (IP) energies, with the adjacent anode layer on one side of the HIL and the hole transporting layer on the opposite side of the HIL. The "charge carrying compo-



nent" is the material responsible for the HOMO that actually transports holes. This component may be the base material of the HIL, or it may be a dopant. Using a doped HIL allows the dopant to be selected for its electrical properties, and the host to be selected for morphological properties such as wetting, flexibility, toughness, etc. Preferred properties for the HIL material are such that holes can be efficiently injected from the anode into the HIL material. In particular, the charge carrying component of the HIL preferably has an IP not more than about 0.7 eV greater that the IP of the anode material. 10 More preferably, the charge carrying component has an IP not more than about 0.5 eV greater than the anode material. Similar considerations apply to any layer into which holes are being injected. HIL materials are further distinguished from conventional hole transporting materials that are typically 15 used in the hole transporting layer of an OLED in that such HIL materials may have a hole conductivity that is substantially less than the hole conductivity of conventional hole transporting materials. The thickness of the HIL of the present invention may be thick enough to help planarize or 20 wet the surface of the anode layer. For example, an HIL thickness of as little as 10 nm may be acceptable for a very smooth anode surface. However, since anode surfaces tend to be very rough, a thickness for the HIL of up to 50 nm may be desired in some cases.

A protective layer may be used to protect underlying layers during subsequent fabrication processes. For example, the processes used to fabricate metal or metal oxide top electrodes may damage organic layers, and a protective layer may be used to reduce or eliminate such damage. In device 100, 30 protective layer 155 may reduce damage to underlying organic layers during the fabrication of cathode 160. Preferably, a protective layer has a high carrier mobility for the type of carrier that it transports (electrons in device 100), such that it does not significantly increase the operating voltage of 35 device 100. CuPc, BCP, and various metal phthalocyanines are examples of materials that may be used in protective layers. Other materials or combinations of materials may be used. The thickness of protective layer 155 is preferably thick enough that there is little or no damage to underlying layers 40 due to fabrication processes that occur after organic protective layer 160 is deposited, yet not so thick as to significantly increase the operating voltage of device 100. Protective layer 155 may be doped to increase its conductivity. For example. a CuPc or BCP protective layer 160 may be doped with Li. A 45 more detailed description of protective layers may be found in U.S. patent application Ser. No. 09/931,948 to Lu et al., now U.S. Pat. No. 7,071,615, which is incorporated by reference in its entirety.

FIG. 2 shows an inverted OLED 200. The device includes 50 a substrate 210, an cathode 215, an emissive layer 220, a hole transport layer 225, and an anode 230. Device 200 may be fabricated by depositing the layers described, in order. Because the most common OLED configuration has a cathode disposed over the anode, and device 200 has cathode 215 disposed under anode 230, device 200 may be referred to as an "inverted" OLED. Materials similar to those described with respect to device 100 may be used in the corresponding layers of device 200. FIG. 2 provides one example of how some layers may be omitted from the structure of device 100.

The simple layered structure illustrated in FIGS. 1 and 2 is provided by way of non-limiting example, and it is understood that embodiments of the invention may be used in connection with a wide variety of other structures. The specific materials and structures described are exemplary in 65 nature, and other materials and structures may be used. Functional OLEDs may be achieved by combining the various

10

layers described in different ways, or layers may be omitted entirely, based on design, performance, and cost factors. Other layers not specifically described may also be included. Materials other than those specifically described may be used. Although many of the examples provided herein describe various layers as comprising a single material, it is understood that combinations of materials, such as a mixture of host and dopant, or more generally a mixture, may be used. Also, the layers may have various sublayers. The names given to the various layers herein are not intended to be strictly limiting. For example, in device 200, hole transport layer 225 transports holes and injects holes into emissive layer 220, and may be described as a hole transport layer or a hole injection layer. In one embodiment, an OLED may be described as having an "organic layer" disposed between a cathode and an anode. This organic layer may comprise a single layer, or may further comprise multiple layers of different organic materials as described, for example, with respect to FIGS. 1 and 2.

Structures and materials not specifically described may also be used, such as OLEDs comprised of polymeric materials (PLEDs) such as disclosed in U.S. Pat. No. 5,247,190, Friend et al., which is incorporated by reference in its entirety. By way of further example, OLEDs having a single organic layer may be used. OLEDs may be stacked, for example as described in U.S. Pat. No. 5,707,745 to Forrest et al, which is incorporated by reference in its entirety. The OLED structure may deviate from the simple layered structure illustrated in FIGS. 1 and 2. For example, the substrate may include an angled reflective surface to improve out-coupling, such as a mesa structure as described in U.S. Pat. No. 6,091,195 to Forrest et al., and/or a pit structure as described in U.S. Pat. No. 5,834,893 to Bulovic et al., which are incorporated by reference in their entireties.

Unless otherwise specified, any of the layers of the various embodiments may be deposited by any suitable method. For the organic layers, preferred methods include thermal evaporation, ink-jet, such as described in U.S. Pat. Nos. 6,013,982 and 6,087,196, which are incorporated by reference in their entireties, organic vapor phase deposition (OVPD), such as described in U.S. Pat. No. 6,337,102 to Forrest et al., which is incorporated by reference in its entirety, and deposition by organic vapor jet printing (OVJP), such as described in U.S. patent application Ser. No. 10/233,470, now U.S. Pat. No. 7,431,968, which is incorporated by reference in its entirety. Other suitable deposition methods include spin coating and other solution based processes. Solution based processes are preferably carried out in nitrogen or an inert atmosphere. For the other layers, preferred methods include thermal evaporation. Preferred patterning methods include deposition through a mask, cold welding such as described in U.S. Pat. Nos. 6,294,398 and 6,468,819, which are incorporated by reference in their entireties, and patterning associated with some of the deposition methods such as ink-jet and OVJD. Other methods may also be used. The materials to be deposited may be modified to make them compatible with a particular deposition method. For example, substituents such as alkyl and aryl groups, branched or unbranched, and preferably containing at least 3 carbons, may be used in small molecules to enhance their ability to undergo solution processing. Substituents having 20 carbons or more may be used, and 3-20 carbons is a preferred range. Materials with asymmetric structures may have better solution processibility than those having symmetric structures, because asymmetric materials may have a lower tendency to recrystallize. Dendrimer substituents may be used to enhance the ability of small molecules to undergo solution processing.

Devices fabricated in accordance with embodiments of the invention may be incorporated into a wide variety of consumer products, including flat panel displays, computer monitors, televisions, billboards, lights for interior or exterior illumination and/or signaling, heads up displays, fully transparent displays, flexible displays, laser printers, telephones, cell phones, personal digital assistants (PDAs), laptop computers, digital cameras, camcorders, viewfinders, micro-displays, vehicles, a large area wall, theater or stadium screen, or a sign. Various control mechanisms may be used to control devices fabricated in accordance with the present invention, including passive matrix and active matrix. Many of the devices are intended for use in a temperature range comfortable to humans, such as 18 degrees C. to 30 degrees C., and more preferably at room temperature (20-25 degrees C.).

The materials and structures described herein may have applications in devices other than OLEDs. For example, other optoelectronic devices such as organic solar cells and organic photodetectors may employ the materials and structures. More generally, organic devices, such as organic transistors, 20 may employ the materials and structures.

A compound comprising a carbene ligand bound to a metal center is provided. Carbene compounds include small molecules, dendrimers, and polymers that include a carbene-metal bond. In one embodiment, the compound is a phosphorescent emissive material, preferably a dopant. The compound may also be doped into a wide band gap host material such as disclosed in U.S. patent application Ser. No. 10/680,066 (now abandoned; Pub. No. US 2004/0209116 A1), which is incorporated by reference in its entirety, or it 30 may be doped into an inert wide band gap host such as disclosed in WO-074015, which is incorporated by reference in its entirety.

In another embodiment, the metal-carbene compound is a host material in an emissive layer. For example, the metal- 35 carbene compound may be used as a high energy host materials for doped blue devices. The dopant in this case could be a triplet emitter or a singlet emitter (using phosphor sensitized fluorescence). In some embodiments, the dopant is a blue or UV emissive material. In this case, the host material prefer-  $\,$   $\,$  40  $\,$ ably has a wide energy gap. As used herein, the energy gap refers to the difference in the energy between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) for a particular compound. The triplet energy for a given material is related to, but less 45 than, the energy gap. Materials for use as a wide gap host are selected to have a wide energy gap so that the host material does not quench the dopant emission by endothermic or exothermic energy transfer. The wide gap host is preferably selected so as to have a triplet energy at least about 300 mV 50 higher than that of the dopant.

Additionally, the high band gap of metal-carbene compounds may make these materials effective in carrier blocking and transporting layers. Specifically, these materials may be used in the electron blocking layer, hole blocking layer, exciton blocking layer, hole transport layer, or electron transport layer of an OLED. In other embodiments a metal-carbene compound may be used as a hole injection layer, electron injection layer, or protective layer. It is believed that metal-carbene compounds described herein have improved thermal stability when incorporated into an organic light emitting device due to the carbene-metal bond, as compared to existing compounds without a carbene-metal bond.

As used herein, the term "carbene" refers to compounds having a divalent carbon atom with only six electrons in its 65 valence shell when not coordinated to a metal. A useful exercise to determine whether a ligand includes a carbene-metal

12

bond is to mentally deconstruct the complex as a metal fragment and a ligand, and to then determine whether a carbon atom in the ligand that was previously bound to the metal is a neutral divalent carbon atom in the deconstructed state. The resonance forms of a preferred embodiment may be shown as:

This definition of carbene is not limited to metal-carbene complexes synthesized from carbenes, but is rather intended to address the orbital structure and electron distribution associated with the carbon atom that is bound to the metal. The definition recognizes that the "carbene" may not technically be divalent when bound to the metal, but it would be divalent if it were detached from the metal. Although many such compounds are synthesized by first synthesizing a carbene and then binding it to a metal, the definition is intended to encompass compounds synthesized by other methods that have a similar orbital structure and electron configuration. Lowry & Richardson, Mechanism and Theory in Organic Chemistry 256 (Harper & Row, 1976) defines "carbene" in a way that is consistent with the way the term is used herein. Some references may define "carbene" as a carbon ligand that forms a double bond to a metal. While this definition is not being used in the present application, there may be some overlap between the two definitions. A variety of representations are used to depict the bonding in such carbenes, including those in which a curved line is used to indicate partial multiple bonding between the carbene carbon and the adjacent heteroatom(s).

In the figures and structures herein, a carbene-metal bond may be depicted as  $C\rightarrow M$ , as for example:

$$Ra_2$$
 $Ra_1$ 
 $Ra_3$ 
 $Rb_4$ 
 $Rb_1$ 
 $Rb_2$ 

Such structures that use an arrow to represent the presence of a metal-carbene bond are used interchangeably herein with structures that don't include the arrow, without any intention of suggesting there is a difference in the structure shown.

The term "organometallic" as used herein is as generally understood by one of ordinary skill in the art and as given, for example, in "Inorganic Chemistry" (2nd Edition) by Gary L. Miessler and Donald A. Tarr, Prentice-Hall (1998). Thus, the term organometallic refers to compounds which have an organic group bonded to a metal through a carbon-metal

bond. This class does not include per se coordination compounds, which are substances having only donor bonds from heteroatoms, such as metal complexes of amines, halides, pseudohalides (CN, etc.), and the like. In practice organometallic compounds generally comprise, in addition to one or more carbon-metal bonds to an organic species, one or more donor bonds from a heteroatom. The carbon-metal bond to an organic species refers to a direct bond between a metal and a carbon atom of an organic group, such as phenyl, alkyl, alkenyl, etc., but does not refer to a metal bond to an "inorganic carbon," such as the carbon of CN.

Carbene ligands are especially desirable in OLED applications due to the high thermal stability exhibited by metal-carbene complexes. It is believed that the carbene, which behaves much as an electron donative group, generally bonds strongly to the metals, thus forming a more thermally stable complex than, for example, previous cyclometallated complexes used as phosphorescent emitters. It is also believed that carbene analogs of ligands employed in existing phosphorescent emissive materials (for example the phenylpyridine or 20 Irppy, etc.) may exhibit greater stability and emit at substantially higher energy than their existing analogs.

As used herein, a "non-carbene analog" of a metal carbene compound refers to existing ligands having a substantially similar chemical structure to the metal-carbene compound, 25 but unlike the carbene compounds of the present invention, which features a carbene-metal bond, the analog has some other bond, such as a carbon-metal or a nitrogen-metal bond, in place of the carbene-metal bond. For example, Ir(ppz)<sub>3</sub> has a nitrogen in each ligand bound to the Ir. Ir(1-phenylimida-zolin-2-ylidene) is analogous to Ir(ppz)<sub>3</sub> where the nitrogen bound to the Ir has been replaced with a carbene bound to the Ir, and where the atoms surrounding the carbene have been changed to make the carbon a carbene. Thus, embodiments of the present invention include metal-carbene complexes (e.g. 35 Ir(1-phenylimidazolin-2-ylidene) with similar structures to existing emissive compounds (e.g. Ir(ppz)<sub>3</sub>).

Examples of existing emissive compounds include Ir(ppy)<sub>3</sub> and Ir(ppz)<sub>3</sub>, discussed above. Other examples are disclosed in the references below, which are incorporated 40 herein by reference in their entirety. In preferred embodiments, the carbene ligands are imidazoles, pyrazoles, benzimidazoles, and pyrroles.

It is believed that the carbene-metal bond in Ir(1-Ph-3-Me-imid)<sub>3</sub> is stronger than the N-metal bond in Ir(ppz)<sub>3</sub>. Moreover, due to the nature of a carbene-metal bond, it is believed that replacing a carbon-metal bond or nitrogen-metal bond in existing emissive organometallic molecules with a carbene-metal bond (making other changes as needed to make the carbon atom a carbene) may result in an emissive molecule that is more stable than the non-carbene analog, and that has stronger spin-orbit coupling. It is further believed that the emissive spectra of the molecule including a carbene may be different from the emissive spectra of the analog without a carbene.

Metal-carbene complexes may be tuned to emit a wide variety of spectra from the near-ultraviolet across the entire visible spectra by the selection of substituents and/or chemical groups on the ligand(s). More significantly, it may now be possible to obtain saturated blue color emissions with peak 60 wavelengths at about 450 nm. Because it is believed to be materially easier to reduce than to increase the triplet energy by tuning an emissive compound, the ability to make stable blue emitters at such high energies would also allow for the possibility of obtaining any color by reducing the energy so as 65 to red-shift the emission. For example, FIG. 18 shows that Ir(1-Ph-3-Me-imid)<sub>3</sub>, which is a preferred embodiment of

14

this invention, in a 2-MeTHF solution emits in the near-UV spectra at a wavelength of about 380 nm at 77 K and at room temperature. The substitution of a fluorenyl group for the phenyl group attached to the methylimidazole results in a red-shift in the emission as shown in FIG. 26. Thus, FIG. 26 shows Ir—(FIMeImid)<sub>3</sub>, which is another embodiment of this invention, to emit at the visible part of the spectra at a wavelength of 462 nm at 77 K and at 466 nm at room temperature.

The appropriate selection of substituents and/or chemical groups attached to carbene ligands may also minimize quantum efficiency losses associated with increasing temperatures. The observable difference in lifetime measurements between emission at room temperature and at low temperatures (e.g. 77 K) is believed to be attributed to non-radiative quenching mechanisms that compete with phosphorescent emission. Such quenching mechanisms are further believed to be thermally activated, and consequently, at cooler temperatures of about 77 K, where energy loss due to quenching is not an issue, quantum efficiency is about 100%. For example, FIG. 21 shows the emission spectra of fac-Ir(1-Ph-3-Me-imid)<sub>3</sub> in 2-MeTHF. The compound exhibits a lifetime of 6.8 µs at 77 K and 0.50 is at room temperature, and the difference may be attributed to quenching mechanisms. It is believed that appropriate substituents on the carbene ligand, or doping in a more rigid matrix, such as disclosed in Turro, "Modern Molecular Photochemistry", University Science Books (1991), 109-10, may increase quantum efficiency at room temperature and correspondingly show longer lifetimes.

Due to the nature of the carbene-metal bond, the emission of a carbene analog may be substantially different from that of its non-carbene analog, and the emission of the carbene analog may be stable and at a higher energy than previously obtainable with stable non-carbene compounds. Embodiments of the present invention shown in FIGS. 18, 21, 25, and 26, show higher energy emissions than have previously been obtained with other phosphorescent organometallic emissive materials. It is believed that devices incorporating these materials, and having optimized architecture, will have electroluminescent spectras showing high triplet energies similar to the photoluminescent spectras shown in these figures.

In some embodiments, the triplet energy of the carbene complex has a corresponding wavelength in the deep blue or ultraviolet (UV) part of the spectra. In some embodiments, the phosphorescent emissive compound has triplet energy corresponding to a wavelength of less than 450 nm. In preferred embodiments, the triplet energy corresponds to a wavelength of less than 440 nm, and in even more preferred embodiments, it corresponds to a wavelength less than 400 nm, which is believed to be in the UV region of the spectrum, since 400 nm is believed to represent the cut-off between the UV and the visible regions of the spectrum. Such high triplet energy may make these compounds useful in optically pumping down converting layers. For such applications, an overlap is preferred between the emission spectra of the ultraviolet carbene compound and the absorption spectra of the down converting layer. It is believed that when about 50% of the integral of the curve for the normalized electroluminescent spectra of the device is at a wavelength less than about 450 nm, there is sufficient energy to optically pump a down converting layer. More preferably, greater than 90% of the emission may be produced below 440 nm, as disclosed herein. Preferably, 50% of the integral of the curve for the normalized electroluminescent spectra is less than about 440 nm, and more preferably, it is less than about 400 nm. The wavelength cutoffs mentioned above are not intended to be absolute limi-

tations as they depend on the energy of the material to be pumped. It is also believed that these emissions may occur at room temperature.

The strong metal-carbon bond is also believed to lead to greater spin-orbit coupling in metal carbene complexes. 5 Moreover, the triplet energy of coordinated carbenes are shown to be significantly higher than pyridine analogs. FIG. 18 shows the emission spectra of mer-Ir(1-Ph-3-Me-imid)<sub>3</sub>, which is one of the embodiments of the invention. The emission is shown to be in the near-ultraviolet range of the spec- 10 trum even at room temperature. It is believed herein that other metal carbene complexes may be capable of emitting at similarly high energies due to the strong metal-ligand bond associated with carbene ligands. The stability of metal-carbene complexes may also allow increased versatility in the types of 15 ligands and metals that may be used as phosphorescent emitters in OLEDs. The strong metal-carbene bond may allow a variety of metals to form useful phosphorescent complexes with carbene ligands to give novel emissive compounds. For example, one embodiment includes gold or copper bonded to 20 a carbene ligand. Such metals have been calculated to form metal-carbon bonds having quite high bond dissociation energies, such as illustrated in Nemcsok et al., "The Significance of  $\pi$ -Interactions in Group 11 Complexes with N-Heterocyclic Carbenes," 2004 American Chemical Society, 25 Publ, on Web, Jun. 19, 2004. Such high bond dissociation energies may be expected to improve the chemical stability of metal-carbene complexes as compared with the analogous metal-phenyl-pyridine ("metal-ppy") based complexes that are typically used in an OLED. Thus, in addition to their use 30 as the emissive materials in an OLED, metal-carbene complexes may be also used advantageously, because of their improved chemical stability, for other functions in an OLED, for example, as a host material in the emissive layer, as an electron or hole transporting material in an electron or hole 35 transporting layer, and/or as an electron or hole blocking material in an electron or hole blocking layer.

Additionally, although cyclometallated complexes are preferred embodiments, the present invention is not limited to such embodiments. The increased strength of a metal-carbene 40 bond, as compared to other types of bonds with metal, may make monodentate ligands feasible for use as emissive materials. Until recently, bidentate ligands were strongly preferred due to stability concerns. Thus, embodiments include monodentate carbene ligands as well as bidentate. Embodiments 45 also include tridentate carbene ligands, which may be quite stable, and many examples are found in the art, such as those disclosed in Koizumi et al., Organometallics 2003, 22, 970-975. Other embodiments may also feature a tetradentate ligand, such as porphyrin analogs in which one or more 50 nitrogens are replaced by a carbene, which is disclosed in Bourissou et al. Chem. Rev. 2000, 100, 39-91. Still other embodiments may include metallaquinone carbenes, which are compounds in which one of the oxygen atoms of a quinone has been replaced by a metal, such as those disclosed 55 in Ashekenazi et al., J. Am. Chem. Soc. 2000, 122, 8797-8798. In addition, The metal-carbene compound may be present as part of a multi-dentate group such as disclosed in U.S. patent application Ser. No. 10/771,423 to Ma et al. (now abandoned; Pub. No. US 2005/0170206 A1), which is incorporated by 60 reference in its entirety.

It is believed that many of the (C,C) or (C,N) ligands of many existing electroluminescent compounds may be modified to create an analogous (C,C) ligand including a carbene. Specific non limiting examples of such modification include: 65

 the substituents on the carbene-bonded branch of the (C,C)-ligand and the substituents on the mono-anionic16

carbon-bonded branch of the (C,C)-ligand may be independently selected from the group consisting of

(a) the substituents on the N-bonded branch of the existing (C,N)-ligands, such as disclosed in the references listed below, which is typically but not necessarily a pyridine group; and

(b) the substituents on the mono-anionic-carbon-bonded branch of the existing (C,N)-ligands, such as disclosed in the references listed below, which is typically but not necessarily a phenyl group;

(c) and/or a combination thereof; and

(2) the compounds including the metal-carbene bonds may further include ancillary ligands selected from the group consisting of the ancillary ligands such as disclosed in the following references:

U.S. Pat. Application Publ. No. 2002-0034656 (K&K 10020/ 15303), FIGS. 11-50, U.S. Pat. Application Publ. No. 2003-0072964 (Thompson et al.), paragraphs 7-132; and FIGS. 1-8; U.S. Pat. Application Publ. No. 2002-0182441 (Lamansky et al.), paragraphs 13-165, including FIGS. 1-9(g); U.S. Pat. No. 6,420,057 B1 (Ueda et al.), col. 1, line 57, through col. 88, line 17, including each compound I-1 through XXIV-12; U.S. Pat. No. 6,383,666 B1 (Kim et al.), col. 2, line 9, through col. 21, line 67; U.S. Pat. Application Publ. No. 2001-0015432 A1 (Igarashi et al.), paragraphs 2-57, including compounds (1-1) through (1-30); U.S. Pat. Application Publ. No. 2001-0019782 A1 (Igarashi et al.), paragraphs 13-126, including compounds (1-1) through (1-70), and (2-1) through (2-20); U.S. Pat. Application Publ. No. 2002-0024293 (Igarashi et al.), paragraphs 7-95, including general formulas K-I through K-VI, and example compounds (K-1) through (K-25); U.S. Pat. Application Publ. No. 2002-0048689 A1 (Igarashi et al.), paragraphs 5-134, including compounds I-81, and example compounds (1-1) through (1-81); U.S. Pat. Application Publ. No. 2002-0063516 (Tsuboyama et al.), paragraphs 31-161, including each compound 1-16; U.S. Pat. Application Publ. No. 2003-0068536 (Tsuboyama et al.), paragraphs 31-168, including each compound in Tables 1-17, corresponds to EP-1-239-526-A2; U.S. Pat. Application Publ. No. 2003-0091862 (Tokito et al.), paragraphs 10-190, including each compound in Tables 1-17, corresponds to EP-1-239-526-A2; U.S. Pat. Application Publ. No. 2003-0096138 (Lecloux et al.), paragraphs 8-124, including FIGS. 1-5; U.S. Pat. Application Publ. No. 2002-0190250 (Grushin et al.), paragraphs 9-191; U.S. Pat. Application Publ. No. 2002-0121638 (Grushin et al.), paragraphs 8-125; U.S. Pat. Application Publ. No. 2003-0068526 (Kamatani et al.), paragraphs 33-572, including each compound in Tables 1-23; U.S. Pat. Application Publ. No. 2003-0141809 (Furugori et al.), paragraphs 29-207; U.S. Pat. Application Publ. No. 2003-0162299 A1 (Hsieh et al.), paragraphs 8-42; WO 03/084972, (Stossel et al.), Examples 1-33; WO 02/02714 A2 ((Petrov et al.), pages 2-30, including each compound in Tables 1-5; EP 1-191-613 A1 (Takiguchi et al.), paragraphs 26-87, including each compound in Tables 1-8, (corresponding to U.S. Pat. Application Publ. No. 2002-0064681); and EP 1-191-614 A2 (Tsuboyama et al.), paragraphs 25-86, including each compound in Tables 1-7; which are incorporated herein by reference in their entirety.

Carbene ligands may be synthesized using methods known in the art, such as those disclosed in Cattoën, et al., *J. Am. Chem. Soc.*, 2004, 126; 1342-1343; Chiu-Yuen Wong, et al, *Organometallics* 2004, 23, 2263-2272; Klapars, et al, *J. Am. Chem. Soc.*, 2001, 123; 7727-7729; Bourissou et al. *Chem. Rev.* 2000, 100, 39-91; Siu-Wai Lai, et al, *Organometallics* 1999, 18, 3327-3336; Wen-Mei Xue et al., *Organometallics* 1998, 17, 1622-1630; Wang & Lin, *Organometallics* 1998,

17, 972-975; Cardin, et al., *Chem. Rev.* 1972, 5, 545-574; and other references discussed herein.

In one embodiment, a phosphorescent emissive compound having the following formula is provided:

$$Z^2$$

wherein  $Z^1$  and  $Z^2$  may be a carbon containing moiety, an amine containing moiety, oxygen containing moiety, a phosphine containing moiety, and a sulfur containing moiety.

In another embodiment, the compound has the structure:

in which the ligands have the structure:

$$R_3$$
 $Z_1$ 
 $R_3$ 
 $Z_1$ 
 $R_3$ 
 $Z_1$ 
 $R_3$ 
 $Z_1$ 
 $R_2$ 
 $R_3$ 
 $Z_1$ 
 $R_2$ 
 $R_3$ 
 $R_3$ 
 $R_4$ 
 $R_5$ 
 $R_7$ 
 $R_7$ 

in which

M is a metal;

the dotted lines represent optional double bonds; each  $Z_1$ , A, and A' is independently selected from C, N, O, P, or S'.

R¹, R², and R³ are independently selected from H, alkyl, aryl or heteroaryl; and additionally or alternatively, one or more of R¹ and R² and R³ together from independently a 5 or 45 6-member cyclic group, wherein said cyclic group is cycloalkyl, cycloheteroalkyl, aryl or heteroaryl; and wherein said cyclic group is optionally substituted by one or more substituents J; each substituent J is independently selected from the group consisting of R¹, O—R¹, N(R¹)₂, SR¹, C(O)R¹, C(O)OR¹, C(O)NR¹₂, CN, NO₂, SO₂, SOR¹, or SO₃R¹, and additionally, or alternatively, two J groups on adjacent ring atoms form a fused 5- or 6-membered aromatic group; each R¹ is independently selected from H, alkyl, alkenyl, alkynyl, heteroalkyl, aralkyl, aryl and heteroaryl; (X-Y) is selected from a photoactive ligand or an ancilliary ligand, a is 0, 1, or 2.

m is a value from 1 to the maximum number of ligands that may be attached to the metal;

m+n is the maximum number of ligands that may be attached to metal M.

The term "halo" or "halogen" as used herein includes fluorine, chlorine, bromine and iodine.

The term "alkyl" as used herein contemplates both straight and branched chain alkyl radicals. Preferred alkyl groups are those containing from one to fifteen carbon atoms and 65 includes methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tertbutyl, and the like. Additionally, the alkyl group may be

optionally substituted with one or more substituents selected from halo, CN, CO<sub>2</sub>R, C(O)R, NR<sub>2</sub>, cyclic-amino, NO<sub>2</sub>, and OR.

The term "cycloalkyl" as used herein contemplates cyclic alkyl radicals. Preferred cycloalkyl groups are those containing 3 to 7 carbon atoms and includes cyclopropyl, cyclopentyl, cyclohexyl, and the like. Additionally, the cycloalkyl group may be optionally substituted with one or more substituents selected from halo, CN, CO<sub>2</sub>R, C(O)R, NR<sub>2</sub>, cyclicamino, NO<sub>2</sub>, and OR.

The term "alkenyl" as used herein contemplates both straight and branched chain alkene radicals. Preferred alkenyl groups are those containing two to fifteen carbon atoms. Additionally, the alkenyl group may be optionally substituted with one or more substituents selected from halo, CN, CO<sub>2</sub>R, C(O)R, NR<sub>2</sub>, cyclic-amino, NO<sub>2</sub>, and OR.

The term "alkynyl" as used herein contemplates both straight and branched chain alkyne radicals. Preferred alkyl groups are those containing two to fifteen carbon atoms. Additionally, the alkynyl group may be optionally substituted with one or more substituents selected from halo, CN, CO<sub>2</sub>R, C(O)R, NR<sub>2</sub>, cyclic-amino, NO<sub>2</sub>, and OR.

The terms "alkylaryl" as used herein contemplates an alkyl group that has as a substituent an aromatic group. Additionally, the alkylaryl group may be optionally substituted on the aryl with one or more substituents selected from halo, CN, CO<sub>2</sub>R, C(O)R, NR<sub>2</sub>, cyclic-amino, NO<sub>2</sub>, and OR.

The term "heterocyclic group" as used herein contemplates non-aromatic cyclic radicals. Preferred heterocyclic groups are those containing 3 or 7 ring atoms which includes at least one hetero atom, and includes cyclic amines such as morpholino, piperidino, pyrrolidino, and the like, and cyclic ethers, such as tetrahydrofuran, tetrahydropyran, and the like.

The term "aryl" or "aromatic group" as used herein contemplates single-ring groups and polycyclic ring systems. The polycyclic rings may have two or more rings in which two carbons are common by two adjoining rings (the rings are "fused") wherein at least one of the rings is aromatic, e.g., the other rings can be cycloalkyls, cycloalkenyls, aryl, heterocycles and/or heteroaryls.

The term "heteroaryl" as used herein contemplates singlering hetero-aromatic groups that may include from one to three heteroatoms, for example, pyrrole, furan, thiophene, imidazole, oxazole, thiazole, triazole, pyrazole, pyridine, pyrazine and pyrimidine, and the like. The term heteroaryl also includes polycyclic hetero-aromatic systems having two or more rings in which two atoms are common to two adjoining rings (the rings are "fused") wherein at least one of the rings is a heteroaryl, e.g., the other rings can be cycloalkyls, cycloalkenyls, aryl, heterocycles and/or heteroaryls.

All value ranges, for example those given for n and m, are inclusive over the entire range. Thus, for example, a range between 0-4 would include the values 0, 1, 2, 3 and 4.

Embodiments include photoactive carbene ligands. A ligand is referred to as "photoactive" because it is believed that it contributes to the photoactive properties of the emissive material. m represents the number of photoactive ligands. For example, for Ir, m may be 1, 2 or 3. n, the number of "ancillary" ligands of a particular type, may be any integer from zero to one less than the maximum number of ligands that may be attached to the metal. (X-Y) represents an ancillary ligand. These ligands are referred to as "ancillary" because it is believed that they may modify the photoactive properties of the molecule, as opposed to directly contributing to the photoactive properties. The definitions of photoactive and ancillary are intended as non-limiting theories. For example, for Ir, n may be 0, 1 or 2 for bidentate ligands. Ancillary ligands for use in the emissive material may be selected from those known in the art. Non-limiting examples of ancillary ligands

may be found in PCT Application Publication WO 02/15645 A1 to Lamansky et al. at pages 89-90, which is incorporated herein by reference.

The metal forming the metal-carbene bond may be selected from a wide range of metals. Preferred metals include main 5 group metals, 1st row transition metals, 2nd row transition metals,  $3^{rd}$  row transition metals, and lanthanides. Although one skilled in the art typically expects room temperature phosphorescence only from metal atoms that exert a strong heavy atom effect, phosphorescent emission has been 10 observed in Kunkley, et al. J. Organometallic Chem. 2003, 684, 113-116 for a compound with a Nickel (Ni) metal, which is typically not expected to exert a strong heavy atom effect. Thus, embodiments also include first row transition metal, such as Ni, and other metals that do not normally exert a 15 strong heavy atom effect but exhibits phosphorescent emission when coordinated to one or more carbene ligands. More preferred metals include 3<sup>rd</sup> row transition metals. The following are also preferred metals: Ir, Pt, Pd, Rh, Re, Ru, Os, Tl, Pb, Bi, In, Sn, Sb, Te, Au, and Ag. Most preferably, the metal 20 is Iridium.

The most preferred embodiments are N-heterocyclic carbenes, which Bourissou has also reported as having "remarkable stability" as free compounds in Bourissou et al. *Chem Rev.* 2000, 100, 39-91.

In one embodiment, the metal-carbene compound has the structure

$$\begin{bmatrix} R_3 & & & \\ R_2 & & & \\ & & & \\ R_2 & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

and a ligand with the structure

$$R_3$$
 $Z_1$ 
 $R_2$ 
 $R_3$ 
 $R_4$ 
 $R_1$ 
 $R_2$ 

in which  $R^4$  is either an aromatic or an amine group; and  $R^3$  50 and  $R^4$  together from independently a 5 or 6-member cyclic group, which may be cycloalkyl, cycloheteroalkyl, aryl or heteroaryl, and which may optionally be substituted by one or more substituents J.

In other embodiments, the metal-carbene compound may  $\,_{55}$  have one of the following structures

-continued  $\begin{bmatrix} R_5 & R_6 \\ R_3 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_3 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_3 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_2 & R_1 \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_2 & R_1 \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_2 & R_1 \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} & \begin{bmatrix} R_5 & R_6 \\ R_1 & N \end{bmatrix} &$ 

in which the ligand has the corresponding structure selected from:

$$R_3$$
 $R_4$ 
 $R_5$ 
 $R_6$ 
 $R_5$ 
 $R_6$ 
 $R_7$ 
 $R_8$ 
 $R_8$ 
 $R_9$ 
 $R_9$ 

in which  $R^5$  and  $R^6$  may be alkyl, alkenyl, alkynyl, aralkyl, R', O—R',  $N(R')_2$ , SR', C(O)R', C(O)OR',  $C(O)NR'_2$ , CN,  $CF_3$ ,  $NO_2$ ,  $SO_2$ , SOR', or  $SO_3R'$  halo, aryl and heteroaryl; and each R' is independently selected from H, alkyl, alkenyl, alkynyl, heteroalkyl, aralkyl, aryl and heteroaryl; and additionally or alternatively, one or more of  $R^1$  and  $R^2$ ,  $R^2$  and  $R^3$ ,  $R^3$  and  $R^5$ , and  $R^5$  together form independently a 5 or 6-member cyclic group, wherein said cyclic group is cycloalkyl, cycloheteroalkyl, aryl or heteroaryl; and wherein said cyclic group is optionally substituted by one or more substituents J.

In another embodiment the metal carbene compound has the structure:

$$R_{10}$$
 $R_{11}$ 
 $R_{6}$ 
 $R_{9}$ 
 $R_{8}$ 
 $R_{10}$ 
 $R_{6}$ 
 $R_{9}$ 
 $R_{10}$ 
 $R_{11}$ 
 $R_{10}$ 
 $R_{11}$ 
 $R_{11}$ 

and the carbene ligand has the structure

30

in which  $R^8,\,R^9,\,R^{10},\,$  and  $R^{11}$  may be alkyl, alkenyl, alkynyl, aralkyl,  $R',\,$  O— $R',\,$  N( $R')_2,\,$  SR', C(O)R', C(O)OR', C(O)NR'\_2, CN, CF\_3,\, NO\_2, SO\_2, SOR', or SO\_3R' halo, aryl and heteroaryl; each R' is independently selected from H, alkyl, alkenyl, alkynyl, heteroalkyl, aralkyl, aryl and heteroaryl; and additionally or alternatively, one or more of  $R^1$  and  $R^2,\,R^2$  and  $R^8,\,R^8$  and  $R^{10},\,$  and  $R^6$  and  $R^{10}$  together form independently a 5 or 6-member cyclic group, wherein said cyclic group is cycloalkyl, cycloheteroalkyl, aryl or heteroaryl; and wherein said cyclic group is optionally substituted by one or more substituents J.

In another embodiment, the carbene-metal compound may have one of the structures below:

$$\begin{bmatrix} R_{10} & R_{6} \\ R_{8} & N \\ R_{2} & A \\ R_{10} & M \\ R_{10} & M \end{bmatrix}_{m}$$

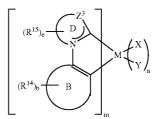
$$\begin{bmatrix} (R_{12})_d & & & \\ & & & \\ & & & \\ R_2 & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

in which the ligand has the structure selected from

$$R_{10}$$
  $R_{6}$   $R_{8}$   $R_{10}$   $R_{6}$   $R_{8}$   $R_{10}$   $R_{10$ 

in which each  $R_{12}$  may be an alkyl, alkenyl, alkynyl, aralkyl, R', O—R', N(R')<sub>2</sub>, SR', C(O)R', C(O)OR', C(O)NR'<sub>2</sub>, CN, CF<sub>3</sub>, NO<sub>2</sub>, SOR', or SO<sub>3</sub>R' halo, aryl and heteroaryl; each R' is independently selected from H, alkyl, alkenyl, 60 alkynyl, heteroalkyl, aralkyl, aryl and heteroaryl; or alternatively, two  $R_{12}$  groups on adjacent ring atoms may form a fused 5- or 6-membered cyclic group, wherein said cyclic group is cycloalkyl, cycloheteroalkyl, aryl or heteroaryl; and wherein said cyclic group is optionally substituted by one or more substituents J; and d is 0, 1, 2, 3, or 4.

Another embodiment has a metal-carbene structure:


$$\begin{bmatrix} (R_{12})_d & & & \\ & & & \\ & & & \\ (R_{13})_c & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

with a ligand having the structure

$$(R_{12})_d$$
 $N$ 
 $(R_{13})_c$ 
 $(R_{13})_c$ 

in which each  $R_{13}$  may be an alkyl, alkenyl, alkynyl, aralkyl, R', O—R', N(R')<sub>2</sub>, SR', C(O)R', C(O)OR', C(O)NR'<sub>2</sub>, CN, CF<sub>3</sub>, NO<sub>2</sub>, SO<sub>2</sub>, SOR', or SO<sub>3</sub>R' halo, aryl and heteroaryl; each R' is independently selected from H, alkyl, alkenyl, alkynyl, heteroalkyl, aralkyl, aryl and heteroaryl; or alternatively, two  $R_{13}$  groups on adjacent ring atoms may form a fused 5- or 6-membered cyclic group, in which the cyclic group is cycloalkyl, cycloheteroalkyl, aryl or heteroaryl; and which is optionally substituted by one or more substituents J; and c may be 0, 1, 2, or 3.

Preferred embodiments include metal-carbene compounds having the structure selected from:



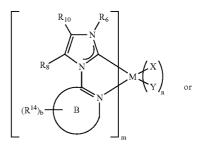
-continued
$$\begin{bmatrix}
(R^{15})_e & D \\
N & M \\
X & Y \\
M & Y
\end{bmatrix}_m,$$
5

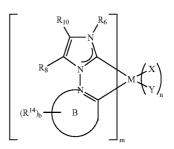
with corresponding ligands having the structures selected from

$$(R^{15})_{e} \xrightarrow{Z^{2}} (R^{15})_{e} \xrightarrow{D} (R^{15$$

in which Z<sup>3</sup> may be O, S, N—R<sup>6</sup>, or P—R<sup>6</sup>; and ring B is independently an aromatic cyclic, heterocyclic, fused cyclic, 35 or fused heterocyclic ring with at least one carbon atom coordinated to metal M, in which ring B may be optionally substituted with one or more substituents  $R_{14}$ ; and ring D is independently a cyclic, heterocyclic, fused cyclic, or fused heterocyclic ring with at least one carbon atom coordinated to 40 metal M, in which ring B may be optionally substituted with one or more substituents  $R_{15}$ ; and  $R_{14}$  and  $R_{15}$  are independent dently selected from alkyl, alkenyl, alkynyl, aralkyl, R', O—Ř', N(R')<sub>2</sub>, SR', C(O)Ř', C(O)OŘ', C(O)NŘ'<sub>2</sub>, CN, CF<sub>3</sub>, NO<sub>2</sub>, SO<sub>2</sub>, SOR', or SO<sub>3</sub>R' halo, aryl and heteroaryl; each R' 45 is independently selected from H, alkyl, alkenyl, alkynyl, heteroalkyl, aralkyl, aryl and heteroaryl; or alternatively, two R<sub>14</sub> groups on adjacent ring atoms and R<sub>15</sub> groups on adjacent ring atoms form a fused 5- or 6-membered cyclic group, in which the cyclic group is cycloalkyl, cycloheteroalkyl, aryl or 50 heteroaryl; and which is optionally substituted by one or more substituents J; b may be 0, 1, 2, 3, or 4; and e may be 0, 1, 2, 3, 3

In one embodiment the metal-carbene compound has the structure:


$$\begin{bmatrix}
(R^{15})_e & D_{\bullet} \\
N & X \\
N & Y
\end{bmatrix}_{m}$$
60


in which the ligand has the structure

$$(R^{15})_e$$
 $(R^{14})_b$ 
 $(R^{14})_b$ 

Preferably, the compound has the structure:

$$\begin{bmatrix} R_{10} & R_6 \\ R_8 & N \\ R_8 & N \end{bmatrix}$$





55 and the ligand has the structure:

$$R_{10}$$
 $R_{6}$ 
 $R_{10}$ 
 $R_{6}$ 
 $R_{10}$ 
 $R_{6}$ 
 $R_{10}$ 
 $R_{6}$ 
 $R_{10}$ 
 $R_{6}$ 
 $R_{10}$ 
 $R_{10}$ 

More preferably the metal-carbene has a structure selected from:

$$\begin{bmatrix} R_{10} & R_{6} \\ R_{8} & N \\ R_{14} & M \\ \end{bmatrix}_{m} X$$

$$R_{10}$$
 $R_{6}$ 
 $R_{7}$ 
 $R_{10}$ 
 $R_{6}$ 
 $R_{7}$ 
 $R_{10}$ 
 $R_{10$ 

$$\begin{bmatrix} R_{10} & R_6 \\ R_8 & N \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

-continued 
$$\begin{bmatrix} R_{10} & R_6 \\ R_8 & N \\ N & M \\ N & M \end{bmatrix}$$
 and the ligand from 
$$\begin{bmatrix} R_{10} & R_6 \\ N & N \\ N & M \end{bmatrix}$$

$$R_{10}$$
 $R_{10}$ 
 $R_{10}$ 

Another preferred embodiment has the structure:

$$\begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

in which the ligand has the structure

$$\begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

in which  $R_6$  is an alkyl or aryl group. In a most preferred embodiment, the metal is Ir. Preferably, m is 3 and n is 0. In one embodiment,  $R_6$  is methyl. In another embodiment m is 2 and n is one. The ancillary ligand X-Y may have one of the following structures:

Other preferred ancillary ligands are acetylacetonate, picolinate, and their derivatives.

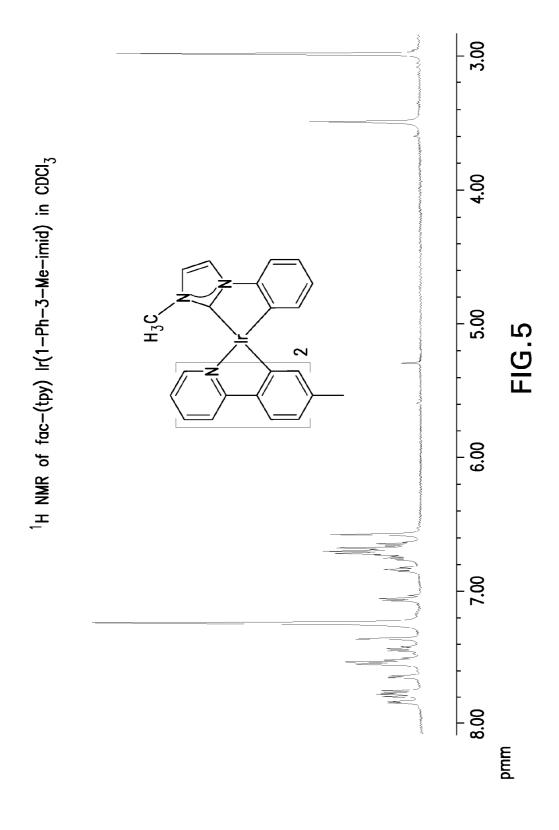
Other preferred embodiments have the following general structures:

$$\begin{pmatrix} R_{12} \rangle_d & R_6 \\ 1 \\ N \\ N \\ M \\ Y \end{pmatrix}$$

$$(R_{12})_d$$
 $N$ 
 $M$ 
 $X$ 
 $Y$ 
 $N$ 

-continued
$$\begin{pmatrix} R_{12} \\ R_{12} \\ R_{10} \\ R_{10}$$

in which the ligands have the structure


45

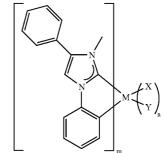
55

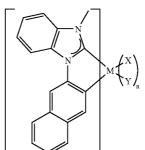
60

65

$$\begin{array}{c} (R_{12})_d \\ \\ R_8 \\ \\ N \\ \\ (R_{14})_a \end{array}$$




-continued


$$\begin{array}{c} (R_{12})_d \\ \\ R_8 \\ \\ N \\ \\ \end{array}$$

$$R_{10}$$
 $R_{6}$ 
 $R_{10}$ 
 $R_{6}$ 
 $R_{10}$ 
 $R_{6}$ 
 $R_{10}$ 
 $R_{6}$ 
 $R_{10}$ 
 $R_{10$ 

More preferred embodiments have the following structures:

$$\begin{bmatrix} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$





and more preferred ligands have the following corresponding

35

40

45

50

55

60

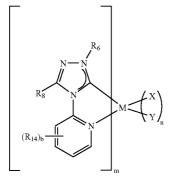
65

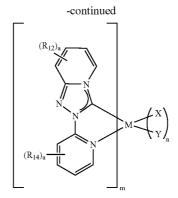
-continued

Other embodiments may have the general structure:

and the ligands may have the corresponding structure

$$R_8$$
 $R_2$ 
 $R_1$ 
 $R_6$ 
 $R_1$ 
 $R_6$ 
 $R_6$ 
 $R_6$ 
 $R_1$ 
 $R_6$ 
 $R_6$ 
 $R_6$ 
 $R_7$ 
 $R_8$ 
 $R_8$ 
 $R_8$ 
 $R_8$ 
 $R_9$ 
 $R_9$ 


Preferably, the metal-carbene compound has the structure:


 $^{25}\,$  and the carbene ligand has the structure

$$R_8$$
 or  $R_{10}$   $R_6$   $R_{10}$   $R_{10}$ 

Other preferred embodiments include:

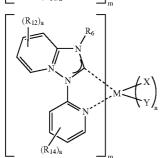
-continued





$$R_{10}$$
 $R_{6}$ 
 $N$ 
 $N$ 
 $N$ 
 $M$ 
 $X$ 
 $Y$ 
 $M$ 

$$\begin{pmatrix} (R_{12})_a & & & \\ & N - N & & \\ & & N - N & \\ & & & M - \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$


$$(R_{12})_a$$
 $N$ 
 $N$ 
 $N$ 
 $M$ 
 $X$ 
 $Y$ 
 $M$ 

35 
$$(R_{12})_a$$

$$(R_{14})_a$$

$$(R_{14})_a$$

$$(R_{14})_a$$



15

30

35

40

45

-continued

-continued 
$$\begin{pmatrix} R_{12} \\ N \end{pmatrix}$$
 
$$\begin{pmatrix} R_{14} \\ N \end{pmatrix}$$

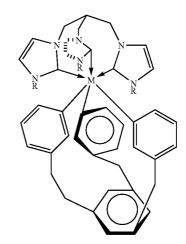
$$(R_{14})_a$$
  $(R_{14})_a$   $(R_{12})_d$   $(R_{12})_d$   $(R_{12})_d$   $(R_{12})_d$ 

$$\begin{array}{c}
(R_{12})_d \\
N - N
\end{array}$$

$$\begin{array}{c}
(R_{12})_d \\
N \end{array}$$

$$\begin{array}{c}
(R_{12})_d \\
N \end{array}$$

$$\begin{array}{c}
(R_{12})_d \\
N \end{array}$$


$$\begin{array}{c}
(R_{12})_d \\
N \end{array}$$

Other embodiments also include compounds having ancillary carbene ligands. For example, the dopant in the device of Examples 13 and 14 is an Iridium compound having two  $_{50}$ photoactive phenylpyridine (ppy) ligands and one carbene ancillary ligand:

In other embodiments, the carbene ligand may be substituted to affect charge transport. For example, a triarylamine (TAA), which has been used as a hole transport material, may be a substituent, as shown in the partial structure below:

This type of substitution may also be designed to trap charges to control recombination in the emissive layer, which may lead to more stable and efficient devices.

Other embodiments include tripodal ligands, such as those shown below. Substituents may include groups that are believed to be emissive or have charge transport properties.



30

35

45

55

Other embodiments that may be preferred for include carbenes that exhibit improved stability or are easier to synthesize. These include hexadentate carbene complexes, which may be linked by a phenyl ring, for example:

and complexes wherein the rings of the ligand are strapped, for example:

Other embodiments include tridentate osmium complexes. Preferably, the complex has two carbenes and one anionic phenyl ring, such as:

Other embodiments include:

Table 38 lists partial structures of carbene compounds ("A" part of the ligand), which in combination with the partial structures listed in Table 39 ("B" part of the ligand) make up additional embodiments. Specifically, representative embodiments include compounds having the core chemical structure of AxBy, wherein x is an integer from 1 to 47, preferably 1, 2, 5, 6, 7, 18, 19, 20, 33, or 35, and y is an integer from 1 to 86, preferably 1, 4, 10, 12, 55, 56, 59, 61, 62, 65, 66, 69, 70, 71, or 72. Preferably, the Ra1 substituent is an alkyl, an un-substituted aryl group, or an aryl group substituted with one or more electron donor groups, such as alkylamine,

alkoxy, alkyl, or thiol groups, or electron acceptor groups, such as carboxylate, carbonyl, cyano, sulfoxide, sulfone, nitro, or phenyl groups, and the remaining Ra-substituents and Rb-substituents may be H, an alkyl group, an un-substituted aryl group, or an aryl group substituted with one or more electron donor or electron acceptor groups. Specific representative embodiments are shown in Tables 1-37, wherein the carbon and nitrogen positions are numbered for the convenient use of these tables. Some preferred embodiments are shown in Table 41. Other embodiments are shown in Table 40.

Preferred "B" parts of the carbene ligand include triphenylenes, e.g., B29 and B46, fluorenes, e.g., B55-B60, and carbazoles, e.g., B61-B66, which are believed to have high triplet energies and may be potential blue phosphors. In addition, it is well known in the art that carbazole is a stable host and is used in hole transport layers in OLEDs. Other "B" parts of the carbene ligand may be useful as red or green emitters or charge transporters. When a heteroatom not bound to the metal is present in the A or B ring, it is preferred that the heteroatom-carbon bonds are single bonds (e.g., B67, B70, 20 B73, B76, and B79) rather than double bonds because it is believed that the heteroatom-carbon double bonds may be more susceptible to nucleophilic attacks which may lead to reduced device stability.

It is also believed that nitrogen containing heterocyclic 25 rings with no formal double bonds to the nitrogen, e.g., B67, B70, B73, B76, and B79 lead to better device stability.

Each specific individual compound may be represented as "AxBy-z1-z2," wherein z1-z2 is the compound number ("Cpd No.") as shown in the tables. For the z1-z2 component, 30 the prefix z1 corresponds to the table number and the suffix z2 corresponds to the line number of that table, thus specifically identifying the individual compound. For example, for the core chemical structure of A1B1, which has two carbon atoms available for substitution on the "A" part of the ligand and 35 four available carbon atoms on the "B" part of the ligand, Table 2 is used, since it lists specific embodiments for a structure having two available carbon atoms on the "A" part of the ligand and four available carbon atoms on the "B" part of the ligand. Thus, for the compound having the identifying 40 number "A1B1-2-1," Ra1 is methyl and Ra2, Ra3, Rb1, Rb2, Rb3 and Rb4 are each H; for "A1B1-2-2," Ra1 and Rb1 are each methyl and Ra2, Ra3, Rb2, Rb3 and Rb4 are each H; and for "A1B1-2-3," Ra1 and Rb2 are each methyl and Ra2, Ra3, Rb1, Rb3 and Rb4 are each H.

For AxBy complexes wherein m=3, there are known to be two stereo-isomers, one that is typically referred to as the "mer" isomer and the other as the "fac" isomer. Thus, using the compound identifying terminology, as defined herein, the mixture of both isomers is identified as "AxBy-z1-z2," whereas the "mer" isomer is identified as "mer-AxBy-z1-z2," and the "fac" isomer, as "fac-AxBy-z1-z2." As would be understood by one skilled in the art, steric considerations may either limit or favor the synthesis of particular embodiments. For example, having large bulky groups on adjacent positions 55 could hinder the synthesis of certain compounds. Alternatively, there may be particular groups that improve ease of synthesis, solubility, sublimation temperature, and/or thermal stability of certain compounds. For example, for each of the embodiments having a ligand with a fluorene group, such as 60 the B55, B56 or B59 groups, or a carbazole group, such as the B61, B62, B65 or B66 groups, the methyl groups that are on the methylene carbon of fluorene groups, for example, the R7 and R8 positions on B55, or on the N-atom of the carbazole group, for example, the R7 position of B61, the methyl groups 65 that are shown in the tables at these positions may instead readily be phenyl groups that form highly stable compounds.

44

Thus, as specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A1B1, wherein M is Ir, m=3, n=0, and each R-substituent is H, methyl ("Me") or phenyl ("Ph"), with specific individual compounds having the core chemical structure of A1B1 being listed in Table 2.

As further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A1B4, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A1B4 being listed in Table 3.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A1B10, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A1B10 being listed in Table 5.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A1B12, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A1B12 being listed in Table 5.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A1B55, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A1B55 being listed in Table 33

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A1B56, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A1B56 being listed in Table 33.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A1B59, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A1B59 being listed in Table 33.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A1B61, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A1B61 being listed in Table 4.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A1B62, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A1B62 being listed in Table 4.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A1B65, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A1B65 being listed in Table 4.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A1B66, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A1B66 being listed in Table 4.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A1B69, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A1B69 being listed in Table 1.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A1B70, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A1B70 being listed in Table 21.

, ,

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A1B71, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A1B71 being listed in Table 2.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A1B72, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A1B72 being listed in Table 2.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A2B1, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A2B1 being listed in Table 12.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A2B4, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A2B4 being listed in Table 13.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A2B10, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A2B10 being listed in Table 15.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A2B12, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A2B12 being listed in Table 15.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A2B55, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A2B55 being listed in Table 35

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A2B56, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A2B56 being listed in Table 35.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A2B59, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A2B59 being listed in Table 35.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A2B61, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A2B61 being listed in Table 14.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A2B62, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A2B62 being listed in Table 14.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A2B65, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A2B65 being listed in Table 14.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A2B66, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A2B66 being listed in Table 14.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core

46 are of A2B69, wherein M is Ir, m

chemical structure of A2B69, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A2B69 being listed in Table 11.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A2B70, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A2B70 being listed in Table 23.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A2B71, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A2B71 being listed in Table 12.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A2B72, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A2B72 being listed in Table 12.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A5B1, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A5B1 being listed in Table 2.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A5B4, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A5B4 being listed in Table 3.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A5B10, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A5B10 being listed in Table 5.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A5B12, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A5B12 being listed in Table 5.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A5B55, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A5B55 being listed in Table 33

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A5B56, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A5B56 being listed in Table 33.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A5B59, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A5B59 being listed in Table 33.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A5B61, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A5B61 being listed in Table 4.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A5B62, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A5B62 being listed in Table 4.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A5B65, wherein M is Ir, m=3, n=0, with

specific individual compounds having the core chemical structure of A5B65 being listed in Table 4.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A5B66, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A5B66 being listed in Table 4.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A5B69, wherein M is Ir, m=3, n=0, with  $\,$  10 specific individual compounds having the core chemical structure of A5B69 being listed in Table 1.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A5B70, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A5B70 being listed in Table 21.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A5B71, wherein M is Ir, m=3, n=0, with 20 specific individual compounds having the core chemical structure of A5B71 being listed in Table 2.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A5B72, wherein M is Ir, m=3, n=0, with 25 specific individual compounds having the core chemical structure of A5B72 being listed in Table 2.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A6B1, wherein M is Ir, m=3, n=0, with 30 specific individual compounds having the core chemical structure of A6B1 being listed in Table 17.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A6B4, wherein M is Ir, m=3, n=0, with 35 specific individual compounds having the core chemical structure of A6B4 being listed in Table 18.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A6B10, wherein M is Ir, m=3, n=0, with  $\,$  40 specific individual compounds having the core chemical structure of A6B10 being listed in Table 20.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A6B12, wherein M is Ir, m=3, n=0, with 45 specific individual compounds having the core chemical structure of A6B12 being listed in Table 20.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A6B55, wherein M is Ir, m=3, n=0, with 50 specific individual compounds having the core chemical structure of A6B55 being listed in Table 36

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A6B56, wherein M is Ir, m=3, n=0, with 55 specific individual compounds having the core chemical structure of A6B56 being listed in Table 36.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A6B59, wherein M is Ir, m=3, n=0, with 60 specific individual compounds having the core chemical structure of A6B59 being listed in Table 36.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A6B61, wherein M is Ir, m=3, n=0, with 65 specific individual compounds having the core chemical structure of A6B61 being listed in Table 19.

48

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A6B62, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A6B62 being listed in Table 19.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A6B65, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A6B65 being listed in Table 19.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A6B66, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A6B66 being listed in Table 19.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A6B69, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A6B69 being listed in Table 16.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A6B70, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A6B70 being listed in Table 24.

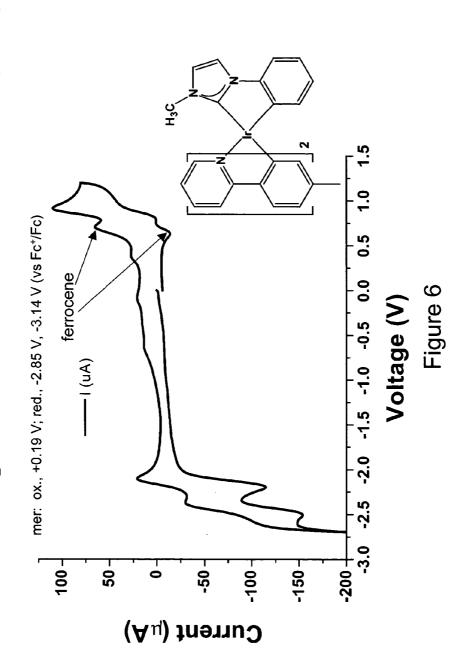
As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A6B71, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A6B71 being listed in Table 17.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A6B72, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A6B72 being listed in Table 17.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A7B1, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A7B1 being listed in Table 26.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A7B4, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A7B4 being listed in Table 28.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A7B10, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A7B10 being listed in Table 30.


As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A7B12, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A7B12 being listed in Table 30.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A7B55, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A7B55 being listed in Table 37

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A7B56, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A7B56 being listed in Table 37.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core

E-chem of mer-(tpy)<sub>2</sub>lr(1-Ph-3-Me-imid) in DMF w/0.1M Bu<sub>4</sub>N<sup>+</sup>PF<sub>6</sub>-



chemical structure of A7B59, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A7B59 being listed in Table 37.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A7B61, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A7B61 being listed in Table 29.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A7B62, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A7B62 being listed in Table 29.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A7B65, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A7B65 being listed in Table 29.

As still further specific representative embodiments, the 20 phosphorescent material may be a compound having the core chemical structure of A7B66, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A7B66 being listed in Table 29.

As still further specific representative embodiments, the 25 phosphorescent material may be a compound having the core chemical structure of A7B69, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A7B69 being listed in Table 25.

As still further specific representative embodiments, the 30 phosphorescent material may be a compound having the core chemical structure of A7B70, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A7B70 being listed in Table 27.

As still further specific representative embodiments, the 35 phosphorescent material may be a compound having the core chemical structure of A7B71, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A7B71 being listed in Table 26.

As still further specific representative embodiments, the 40 phosphorescent material may be a compound having the core chemical structure of A7B72, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A7B72 being listed in Table 26.

As still further specific representative embodiments, the 45 phosphorescent material may be a compound having the core chemical structure of A18B1, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A18B1 being listed in Table 12.

As still further specific representative embodiments, the 50 phosphorescent material may be a compound having the core chemical structure of A18B4, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A18B4 being listed in Table 13.

As still further specific representative embodiments, the 55 phosphorescent material may be a compound having the core chemical structure of A18B10, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A18B10 being listed in Table 15.

As still further specific representative embodiments, the 60 phosphorescent material may be a compound having the core chemical structure of A18B12, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A18B12 being listed in Table 15.

As still further specific representative embodiments, the 65 phosphorescent material may be a compound having the core chemical structure of A18B55, wherein M is Ir, m=3, n=0,

with specific individual compounds having the core chemical structure of A18B55 being listed in Table 35

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A18B56, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A18B56 being listed in Table 35.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A18B59, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A18B59 being listed in Table 35.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A18B61, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A18B61 being listed in Table 14.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A18B62, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A18B62 being listed in Table 14.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A18B65, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A18B65 being listed in Table 14.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A18B66, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A18B66 being listed in Table 14.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A18B69, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A18B69 being listed in Table 11.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A18B70, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A18B70 being listed in Table 23.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A18B71, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A18B71 being listed in Table 12.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A18B72, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A18B72 being listed in Table 12.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A19B1, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A19B1 being listed in Table 7.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A19B4, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A19B4 being listed in Table 8.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A19B10, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A19B10 being listed in Table 10.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A19B12, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A19B12 being listed in Table 10.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A19B55, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A19B55 being listed in Table 34.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A19B56, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A19B56 being listed in Table 34.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A19B59, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A19B59 being listed in Table 34.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A19B61, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A19B61 being listed in Table 9.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A19B62, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A19B62 being listed in Table 9.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A19B65, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A19B65 being listed in Table 9.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A19B66, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A19B66 being listed in Table 9.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A19B69, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A19B69 being listed in Table 6.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A19B70, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A19B70 being listed in Table 22.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A19B71, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A19B71 being listed in Table 7.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A19B72, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A19B72 being listed in Table 7.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A20B1, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A20B1 being listed in Table 7.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A20B4, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A20B4 being listed in Table 8.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A20B10, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A20B10 being listed in Table 10.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A20B12, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A20B12 being listed in Table 10.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A20B55, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A20B55 being listed in Table 34.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A20B56, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A20B56 being listed in Table 34.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A20B59, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A20B59 being listed in Table 34.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A20B61, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A20B61 being listed in Table 9.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A20B62, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A20B62 being listed in Table 9.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A20B65, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A20B65 being listed in Table 9.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A20B66, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A20B66 being listed in Table 9.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A20B69, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A20B69 being listed in Table 6.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A20B70, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A20B70 being listed in Table 22.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A20B71, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A20B71 being listed in Table 7.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A20B72, wherein M is Ir, m=3, n=0,

with specific individual compounds having the core chemical structure of A20B72 being listed in Table 7.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A33B1, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A33B1 being listed in Table 7.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A33B4, wherein M is Ir, m=3, n=0, with 10 specific individual compounds having the core chemical structure of A33B4 being listed in Table 8.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A33B10, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A33B10 being listed in Table 10.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A33B12, wherein M is Ir, m=3, n=0, 20 with specific individual compounds having the core chemical structure of A33B12 being listed in Table 10.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A33B55, wherein M is Ir, m=3, n=0, 25 with specific individual compounds having the core chemical structure of A33B55 being listed in Table 34.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A33B56, wherein M is Ir, m=3, n=0, 30 with specific individual compounds having the core chemical structure of A33B56 being listed in Table 34.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A33B59, wherein M is Ir, m=3, n=0, 35 with specific individual compounds having the core chemical structure of A33B59 being listed in Table 34.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A33B61, wherein M is Ir, m=3, n=0, 40 with specific individual compounds having the core chemical structure of A33B61 being listed in Table 9.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A33B62, wherein M is Ir, m=3, n=0, 45 with specific individual compounds having the core chemical structure of A33B62 being listed in Table 9.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A33B65, wherein M is Ir, m=3, n=0, 50 with specific individual compounds having the core chemical structure of A33B65 being listed in Table 9.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A33B66, wherein M is Ir, m=3, n=0, 55 with specific individual compounds having the core chemical structure of A33B66 being listed in Table 9.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A33B69, wherein M is Ir, m=3, n=0, 60 with specific individual compounds having the core chemical structure of A33B69 being listed in Table 6.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A33B70, wherein M is Ir, m=3, n=0, 65 with specific individual compounds having the core chemical structure of A33B70 being listed in Table 22.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A33B71, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A33B71 being listed in Table 7.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A33B72, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A33B72 being listed in Table 7.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A35B1, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A35B1 being listed in Table 17.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A35B4, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A35B4 being listed in Table 18.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A35B10, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A35B10 being listed in Table 20.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A35B12, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A35B12 being listed in Table 20.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A35B55, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A35B55 being listed in Table 36

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A35B56, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A35B56 being listed in Table 36.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A35B59, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A35B59 being listed in Table 36.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A35B61, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A35B61 being listed in Table 19.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A35B62, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A35B62 being listed in Table 19.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A35B65, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A35B65 being listed in Table 19.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core chemical structure of A35B66, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A35B66 being listed in Table 19.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core

chemical structure of A35B69, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A35B69 being listed in Table 16.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core 5 chemical structure of A35B70, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A35B70 being listed in Table 24.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core 10 chemical structure of A35B71, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A35B71 being listed in Table 17.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core 15 chemical structure of A35B72, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of A35B72 being listed in Table 17.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core 20 chemical structure of C1, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of C1 being listed in Table 31.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core 25 chemical structure of C2, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of C2 being listed in Table 31.

As still further specific representative embodiments, the phosphorescent material may be a compound having the core 30 chemical structure of C3, wherein M is Ir, m=3, n=0, with specific individual compounds having the core chemical structure of C3 being listed in Table 32.

Any one of the preceding specific representative embodiments may be selected so as to achieve particular desired 35 device characteristics, for example, emission color, stability, HOMO and/or LUMO energy levels, and/or electron or hole trapping properties of the material. In addition, any one of the preceding specific representative embodiments may be further substituted, for example, with additional electron donor 40 or electron acceptor groups, so as to further adjust certain device properties, such as emission color or stability. For example, any one of the compounds referred to in Tables 1-37 may include one or more additional methyl or phenyl groups, and/or the methyl and/or phenyl groups may be replaced with 45 other aryl or alkyl groups such as ethyl or t-butyl. In addition, one or more of the AxBy ligands of the tris-iridium compound may be replaced with an ancillary "X-Y" ligand, also so as to further adjust the specific device properties, such as emission color or stability. The ancillary "X-Y" ligand may be one or 50 more ligands selected from the group consisting of monodentate, bi-dentate, tri-dentate or tetra-dentate ligands. The ancillary ligand may be another organometallic ligand, such as another carbene ligand, or a non-organometallic ligand, such as acetoacetonate and others previously mentioned. 55 Moreover, the iridium atom of any one of the preceding specific representative embodiments may be replaced with another metal atom so as to further adjust particular device properties, such as emission color or stability. The metal atom, other than Ir, may be any 3<sup>rd</sup> row transition metals, 60 preferably Pt, Pd, Rh, Re, Ru, Os, Tl, Pb, Bi, In, Sn, Sb, Te, Au, or Ag, more preferably, Pt, Rh, Re, Au, Os, or Ru, and most preferably, Pt.

In addition, any one of the specific representative embodiments may be selected, as listed, or as further modified, so that 65 the materials may be used as an ETL, an HTL, a hole blocking layer, an electron blocking layer, or an exciton blocking layer.

In such cases, the compounds may be selected, and/or modified, so as to improve the electron and/or hole conductivity of

The carbene-carbon atom that is bound to the metal atom may in some cases be conjugated with a quaternized N-alkyl unit, which in combination with the carbene-carbon atom may be drawn as a valid zwitter-ion resonance structure, with the carbene-carbon atom and the quaternized nitrogen atom being part of a heterocyclic aromatic ring, such as described in Take-aki Koizumi et al., "Terpyridine-Analogous (N,N,C)-Tridentate Ligands; Synthesis, Structures, and Electrochemical Properties of Ruthenium (II) Complexes Bearing Triden-Pyridinium and Pyridinylidene Organometallics, Vol 22, pp. 970-975 (2003), wherein the nitrogen atom is, for example, in the para position relative to the carbene-carbon atom. Thus, insofar as a carbene may be properly characterized as having a valid zwitter-ion resonance structure, such a ligand is represented, for example, by the ligands that include the B19 unit as part of the ligand.

One of the unifying features of the preferred representative embodiments that are specifically disclosed herein is that they all have as a core part of their chemical structure a cyclometallated, five-member, ring, which includes a metal atom bound to two carbon atoms within the ring, wherein one of the metal-carbon bonds is a metal-carbene bond and the other is a metal-mono-anionic carbon bond. Such structures are analogous to the metal-ppy-based complexes that are typically used in phosphorescent OLEDs. Such metal-ppy-based chemical structures also have a cyclometallated, five-member, ring as a core part of their chemical structure, except that the metal is bound to a single carbon atom, via a metal-monoanionic carbon bond, and to a nitrogen atom instead of a carbene carbon. Because of the close structural analogy between the carbene-based complexes disclosed herein and metal-ppy-based complexes, it is believed herein that selection of the specifically preferred AxBy complexes may be based on considerations similar to those used to selected the preferred metal-ppy-based complexes. For example, since iridium and platinum are the most commonly preferred metals of the phosphorescent metal-ppy-based complexes, due to the very high spin-orbit coupling between the metal atom and the carbon atom, these same two metals are the most preferred metals for use in combination with the carbene-based ligands, but with iridium being more highly preferred. Similarly, it is believed that the methods and materials that have proven useful for achieving the desired characteristics for metal-ppybased complexes, such as emission color, thermal stability, ease of chemical synthesis, solubility, sublimation temperature, HOMO and LUMO energy levels, and/or reduction of the room temperature losses in quantum efficiency due to quenching of the phosphorescence that may be observed at 77K, may also be applied to selecting the preferred metalcarbene complexes.

It is also believed that the presence of the metal-carbene bond, with its unique chemical characteristics, will lead to further particular benefits and advantages that are unique to metal-carbene complexes, and that may not be readily predicted based on their metal-ppy-based analogues.

TABLE 1

| _ |         |     |     |     |     |           |  |
|---|---------|-----|-----|-----|-----|-----------|--|
|   | Cpd No. | Ra1 | Ra2 | Ra3 | Rb1 | Rb2       |  |
| _ | 1-1     | Me  | Н   | Н   | Н   | Н         |  |
|   | 1-2     | Me  | H   | H   | Me  | $_{ m H}$ |  |
| 5 | 1-3     | Me  | H   | H   | H   | Me        |  |
|   | 1-4     | Me  | H   | H   | Ph  | H         |  |

| 31                | 30                |
|-------------------|-------------------|
| TABLE 1-continued | TABLE 2-continued |

|                                                                                                                                                                                                                       |                                                                         | TABLE                                               | 1-continued                                  | l                                                    |                                                |                 | TABLE 2-continued                                                                                                                                                                                                                                                                                                    |                                                 |                                               |                                          |                                             |                                          |             |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------|------------------------------------------------------|------------------------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------|------------------------------------------|---------------------------------------------|------------------------------------------|-------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cpd No.                                                                                                                                                                                                               | Ra1                                                                     | Ra2                                                 | Ra3                                          | Rb1                                                  | Rb2                                            | _               | Cpd No.                                                                                                                                                                                                                                                                                                              | Ra1                                             | Ra2                                           | Ra3                                      | Rb                                          | 1 Rb                                     | 2           | Rb3                                                   | Rb4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Cpd No.  1-5 1-6 1-7 1-8 1-9 1-10 1-11 1-12 1-13 1-14 1-15 1-16 1-17 1-18 1-19 1-20 1-21 1-22 1-23 1-24 1-25 1-26 1-27 1-28 1-29 1-30 1-31 1-32 1-34 1-35 1-36 1-37 1-38 1-39 1-40 1-41 1-42 1-43 1-44 1-45 1-46 1-47 | Ral  Me Ph                          | Ra2  H H H H H H H H H H H H H H H H H H            | Ra3  H H H H H H H H H H H H H H H H H H     | Rb1  H H H Me H H H Me H H H H H H H H H H           | Rb2  Ph H H Me H H H H H H H H H H H H H H H H | 15<br>20<br>25  | 2-25<br>2-26<br>2-27<br>2-28<br>2-29<br>2-30<br>2-31<br>2-32<br>2-33<br>2-34<br>2-35<br>2-36<br>2-37<br>2-40<br>2-41<br>2-42<br>2-43<br>2-44<br>2-45<br>2-47<br>2-48<br>2-49<br>2-50<br>2-51<br>2-52<br>2-53<br>2-54<br>2-55<br>2-56<br>2-57<br>2-58<br>2-59<br>2-61<br>2-62<br>2-65<br>2-66<br>2-67<br>2-68<br>2-69 | Me Me Me Ph | Ra2  Me H H H H | H H H H H H H H H H H H H H H H H H H    | HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH      | Ph H H H H H H H H H H H H H H H H H H H | e e e       | Rb3  H Ph H H H H H H H H H H H H H H H H H H         | Rb4         Н         Н         Н         Н         Н         Н         Н         Н         Н         Н         Н         Н         Н         Н         Н         Н         Н         Н         Н         Н         Н         Н         Н         Н         Н         Н         Н         Н         Н         Н         Н         Н         Н         Н         Н         Н         Н         Н         Н         Н         Н         Н         Н         Н         Н         Н         Н         Н         Н         Н         Н         Н         Н         Н         Н |
| 1-49<br>1-50                                                                                                                                                                                                          | Ph<br>Ph                                                                | H<br>H<br>TA                                        | Ph<br>Ph                                     | Ph<br>H                                              | H<br>Ph                                        | 40<br>-<br>_ 45 | 2-70<br>2-71<br>2-72<br>2-73<br>2-74<br>2-75<br>2-76                                                                                                                                                                                                                                                                 | Ph<br>Ph<br>Ph<br>Me<br>Me<br>Me<br>Me          | Ph<br>Ph<br>Ph<br>H<br>H<br>H<br>H            | H<br>H<br>H<br>Ph<br>Ph<br>Ph            | H<br>H<br>H<br>H<br>Me<br>H                 | Ph<br>H<br>H<br>H<br>H<br>M<br>M         |             | H<br>Ph<br>H<br>H<br>H<br>M<br>Me                     | H<br>H<br>Ph<br>H<br>H<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Cpd No. Ra                                                                                                                                                                                                            | a1 Ra                                                                   | 2 Ra3                                               | Rb1 Rb2                                      | Rb3                                                  | Rb4                                            | _ '             | 2-76<br>2-77<br>2-78                                                                                                                                                                                                                                                                                                 | Me<br>Me                                        | H<br>H                                        | Ph<br>Ph                                 | H<br>Ph                                     | H<br>H                                   |             | H<br>H                                                | Me<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2-1 M<br>2-2 M<br>2-3 M<br>2-4 M<br>2-5 M<br>2-6 M<br>2-7 M<br>2-8 M<br>2-9 M<br>2-10 Pt<br>2-11 Pt<br>2-12 Pt<br>2-13 Pt<br>2-14 Pt                                                                                  | e H e H e H e H e H e H e H h H e H e H e H e H e H e H h H h H h H h H | H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H | H H Me H H H H H H H H H H H H H H H H H H H | H<br>H<br>Me<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H | H H H H H H H H H H H H H H H H H H H          | 50              | 2-79<br>2-80<br>2-81<br>2-82<br>2-83<br>2-84<br>2-85<br>2-86<br>2-87<br>2-88<br>2-89<br>2-90                                                                                                                                                                                                                         | Me Me Me Ph Ph Ph Ph Ph Ph                      | H<br>H<br>H<br>H<br>H<br>H<br>H<br>H          | Ph P | H<br>H<br>H<br>Me<br>H<br>H<br>H<br>Ph<br>H | Ph<br>H<br>H<br>H                        | e           | H<br>Ph<br>H<br>H<br>H<br>H<br>Me<br>H<br>H<br>H<br>H | H H Ph H H H H H H H H Me H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2-15 Ph<br>2-16 Ph<br>2-17 Ph<br>2-18 Ph                                                                                                                                                                              | 1 H<br>1 H<br>1 H<br>1 H                                                | H<br>H<br>H<br>H                                    | Ph H<br>H Ph<br>H H<br>H H                   | H<br>H<br>Ph<br>H                                    | H<br>H<br>H<br>Ph                              | 60              |                                                                                                                                                                                                                                                                                                                      |                                                 |                                               | TA                                       | ABLE                                        | 3                                        |             |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2-19 M<br>2-20 M<br>2-21 M                                                                                                                                                                                            | e Mo                                                                    | H                                                   | H Н<br>Ме Н<br>Н Ме                          | H<br>H<br>H                                          | H<br>H<br>H                                    |                 | Cpd<br>No. I                                                                                                                                                                                                                                                                                                         | Ra1 Ra2                                         | 2 Ra3                                         | Rb1                                      | Rb2                                         | Rb3                                      | Rb          | 4 Rb5                                                 | Rb6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2-21 M<br>2-22 M<br>2-23 M<br>2-24 M                                                                                                                                                                                  | e Me                                                                    | H<br>H                                              | H H<br>H H<br>Ph H                           | Me<br>H<br>H                                         | H<br>Me<br>H                                   | 65              | 3-2 N                                                                                                                                                                                                                                                                                                                | Me H<br>Me H<br>Me H                            | H<br>H<br>H                                   | H<br>Me<br>H                             | H<br>H<br>Me                                | H<br>H<br>H                              | H<br>H<br>H | H<br>H<br>H                                           | H<br>H<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| Η  | Η | Η  | Η  | Η  | Me |    |     |     |     |     |     |     |     |     |     |     |
|----|---|----|----|----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Η  | Η | Ph | Η  | Η  | Η  |    |     |     |     |     |     |     |     |     |     |     |
| H  | H | H  | Ph | H  | H  |    |     |     |     |     |     |     |     |     |     |     |
| Η  | Η | Η  | Η  | Ph | H  | 60 |     |     |     |     | TA  | BLE | 3   |     |     |     |
| Η  | Η | Η  | Η  | Η  | Ph |    |     |     |     |     |     |     |     |     |     |     |
| Me | Η | H  | Η  | H  | H  |    | Cpd |     |     |     |     |     |     |     |     |     |
| Me | Η | Me | Η  | Η  | Η  |    | Ño. | Ra1 | Ra2 | Ra3 | Rb1 | Rb2 | Rb3 | Rb4 | Rb5 | Rb6 |
| Me | Η | H  | Me | H  | H  |    |     |     |     |     |     |     |     |     |     |     |
| Me | Η | H  | Η  | Me | H  |    | 3-1 | Me  | Η   | Η   | Η   | Η   | Η   | Η   | Η   | H   |
| Me | Η | Η  | Η  | Η  | Me | 65 | 3-2 | Me  | Η   | Η   | Me  | Η   | Η   | Η   | Η   | H   |
| Me | Η | Ph | Η  | H  | H  |    | 3-3 | Me  | Η   | Η   | Η   | Me  | Η   | Η   | Η   | H   |

**59**TABLE 3-continued

**60** TABLE 3-continued

| Cpd<br>No.   | Ra1      | Ra2      | Ra3      | Rb1       | Rb2     | Rb3     | Rb4     | Rb5     | Rb6     |            | Cpd<br>No.     | Ra1      | Ra2      | Ra3      | Rb1     | Rb2     | Rb3     | Rb4     | Rb5     | Rb6     |
|--------------|----------|----------|----------|-----------|---------|---------|---------|---------|---------|------------|----------------|----------|----------|----------|---------|---------|---------|---------|---------|---------|
| 3-4          | Me       | Н        | Н        | Н         | Н       | Me      | Н       | Н       | Н       | <b>-</b> 5 | 3-68           | Ph       | Н        | Me       | Н       | Me      | Н       | Н       | Н       | Н       |
| 3-5          | Me       | H        | H        | H         | Η       | H       | Me      | H       | H       |            | 3-69           | Ph       | H        | Me       | H       | H       | Me      | Η       | H       | H       |
| 3-6<br>3-7   | Me<br>Me | H<br>H   | H<br>H   | H<br>H    | H<br>H  | H<br>H  | H<br>H  | Me<br>H | H<br>Me |            | 3-70<br>3-71   | Ph<br>Ph | H<br>H   | Me<br>Me | H<br>H  | H<br>H  | H<br>H  | Me<br>H | H<br>Me | H<br>H  |
| 3-8          | Me       | H        | H        | Ph        | H       | Н       | Н       | H       | Н       |            | 3-71           | Ph       | H        | Me       | H       | H       | H       | H       | H       | Me      |
| 3-9          | Me       | Η        | Η        | Η         | Ph      | Н       | Η       | Η       | H       |            | 3-73           | Ph       | Η        | Me       | Ph      | Η       | Η       | Η       | Η       | Н       |
| 3-10         | Me       | H        | Η        | Η         | Η       | Ph      | H       | Η       | H       | 10         | 3-74           | Ph       | Η        | Me       | Η       | Ph      | H       | Η       | Η       | H       |
| 3-11<br>3-12 | Me<br>Me | H        | H<br>H   | H<br>H    | H       | H<br>H  | Ph<br>H | H<br>Ph | H       |            | 3-75<br>3-76   | Ph<br>Ph | H        | Me       | H<br>H  | H       | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  |
| 3-12         | Me       | H<br>H   | Н        | Н         | H<br>H  | Н       | Н       | Pn<br>H | H<br>Ph |            | 3-70<br>3-77   | Ph<br>Ph | H<br>H   | Me<br>Me | Н       | H<br>H  | Н       | Pn<br>H | н<br>Ph | H<br>H  |
| 3-14         | Ph       | H        | Н        | Н         | Н       | Н       | Н       | H       | Н       |            | 3-78           | Ph       | H        | Me       | Н       | Н       | Н       | Н       | Н       | Ph      |
| 3-15         | Ph       | H        | Η        | Me        | Η       | Н       | Η       | H       | H       |            | 3-79           | Me       | Ph       | Η        | Η       | Η       | Η       | Η       | Η       | H       |
| 3-16         | Ph       | Н        | Н        | H         | Me      | Н       | H       | H       | H       | 15         | 3-80           | Me       | Ph       | Н        | Me      | Н       | Н       | H       | H       | H       |
| 3-17<br>3-18 | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H    | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  |            | 3-81<br>3-82   | Me<br>Me | Ph<br>Ph | H<br>H   | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  |
| 3-19         | Ph       | H        | H        | H         | Н       | Н       | Н       | Me      | H       |            | 3-82           | Me       | Ph       | H        | H       | H       | Н       | Me      | Н       | H       |
| 3-20         | Ph       | Н        | Н        | Н         | Н       | Н       | Н       | H       | Me      |            | 3-84           | Me       | Ph       | Н        | Н       | Н       | Н       | Н       | Me      | H       |
| 3-21         | Ph       | H        | Η        | Ph        | H       | H       | H       | Η       | H       |            | 3-85           | Me       | Ph       | Η        | Η       | Η       | H       | H       | H       | Me      |
| 3-22         | Ph       | H        | H        | H         | Ph      | H       | H       | H       | H       | 20         | 3-86           | Me       | Ph       | H        | Ph      | H       | H       | H       | H       | H       |
| 3-23<br>3-24 | Ph<br>Ph | H<br>H   | H<br>H   | $_{ m H}$ | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  |            | 3-87<br>3-88   | Me<br>Me | Ph<br>Ph | H<br>H   | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  |
| 3-25         | Ph       | Н        | Н        | Н         | Н       | Н       | Н       | Ph      | H       |            | 3-89           | Me       | Ph       | Н        | Н       | Н       | Н       | Ph      | Н       | Н       |
| 3-26         | Ph       | H        | Η        | Η         | Η       | Н       | Η       | H       | Ph      |            | 3-90           | Me       | Ph       | Η        | Η       | Η       | Η       | Η       | Ph      | H       |
| 3-27         | Me       | Me       | H        | Н         | H       | H       | H       | H       | H       |            | 3-91           | Me       | Ph       | H        | H       | H       | H       | H       | H       | Ph      |
| 3-28<br>3-29 | Me<br>Me | Me<br>Me | H<br>H   | Me<br>H   | H<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  | 25         | 3-92<br>3-93   | Ph<br>Ph | Ph<br>Ph | H<br>H   | H<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 3-30         | Me       | Me       | H        | H         | Н       | Me      | Н       | H       | H       | 23         | 3-94           | Ph       | Ph       | H        | H       | Me      | Н       | Н       | Н       | H       |
| 3-31         | Me       | Me       | Η        | Η         | Η       | Н       | Me      | Η       | H       |            | 3-95           | Ph       | Ph       | Η        | Η       | Η       | Me      | Η       | Н       | H       |
| 3-32         | Me       | Me       | Η        | Η         | Н       | Н       | Н       | Me      | H       |            | 3-96           | Ph       | Ph       | Η        | Η       | Η       | Н       | Me      | Н       | H       |
| 3-33<br>3-34 | Me<br>Me | Me<br>Me | H<br>H   | H<br>Ph   | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H |            | 3-97<br>3-98   | Ph<br>Ph | Ph<br>Ph | H<br>H   | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H | H<br>Me |
| 3-35         | Me       | Me       | H        | H         | Ph      | Н       | Н       | H       | H       | 30         | 3-99           | Ph       | Ph       | H        | Ph      | H       | H       | H       | H       | H       |
| 3-36         | Me       | Me       | Н        | Н         | Н       | Ph      | Н       | Η       | H       | 50         | 3-100          | Ph       | Ph       | Н        | Н       | Ph      | Η       | Η       | Н       | H       |
| 3-37         | Me       | Me       | Η        | Η         | Η       | Н       | Ph      | Η       | H       |            | 3-101          | Ph       | Ph       | Η        | Η       | Η       | Ph      | Η       | Н       | H       |
| 3-38<br>3-39 | Me<br>Me | Me<br>Me | H<br>H   | H<br>H    | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph |            | 3-102<br>3-103 |          | Ph<br>Ph | H<br>H   | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  |
| 3-40         | Ph       | Me       | H        | H         | Н       | Н       | Н       | H       | Н       |            | 3-103          |          | Ph       | H        | H       | H       | Н       | Н       | Н       | Ph      |
| 3-41         | Ph       | Me       | Η        | Me        | Н       | Н       | Н       | Η       | Н       | 35         | 3-105          |          | Н        | Ph       | Н       | Н       | Н       | Н       | Н       | Н       |
| 3-42         | Ph       | Me       | Η        | Η         | Me      | Н       | Н       | Η       | H       | 33         | 3-106          |          | Η        | Ph       | Me      | Η       | Η       | Η       | Н       | H       |
| 3-43<br>3-44 | Ph<br>Ph | Me<br>Me | H<br>H   | H<br>H    | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  |            | 3-107<br>3-108 |          | H<br>H   | Ph<br>Ph | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  |
| 3-45         | Ph       | Me       | Н        | Н         | Н       | Н       | H       | Ме      | Н       |            | 3-108          | Me       | Н        | Ph       | Н       | Н       | H       | Me      | Н       | Н       |
| 3-46         | Ph       | Me       | Н        | Н         | Н       | Н       | Н       | Н       | Me      |            | 3-110          |          | Н        | Ph       | Н       | Н       | Н       | Н       | Me      | H       |
| 3-47         | Ph       | Me       | Η        | Ph        | Η       | Η       | Η       | Η       | H       | 40         | 3-111          |          | Η        | Ph       | Η       | Η       | Η       | Η       | Η       | Me      |
| 3-48<br>3-49 | Ph<br>Ph | Me<br>Me | H<br>H   | H<br>H    | Ph<br>H | H<br>Ph | H<br>H  | Н       | H<br>H  | 70         | 3-112<br>3-113 |          | H<br>H   | Ph<br>Ph | Ph      | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 3-49         | Ph       | Me       | Н        | Н         | Н       | Н       | п<br>Ph | H<br>H  | Н       |            | 3-113          |          | Н        | Ph       | H<br>H  | Н       | л<br>Ph | Н       | Н       | Н       |
| 3-51         | Ph       | Me       | Н        | Н         | Н       | Н       | Н       | Ph      | H       |            | 3-115          |          | Н        | Ph       | Н       | Н       | Н       | Ph      | Н       | H       |
| 3-52         | Ph       | Me       | Η        | Η         | Η       | Η       | Η       | Η       | Ph      |            | 3-116          |          | Η        | Ph       | Η       | Η       | Η       | Η       | Ph      | Н       |
| 3-53<br>3-54 | Me       | H        | Me       | H         | Н       | Н       | Н       | H       | H       | 45         | 3-117<br>3-118 |          | H        | Ph<br>Ph | H       | H       | Н       | Н       | Н       | Ph      |
| 3-55         | Me<br>Me | H<br>H   | Me<br>Me | Me<br>H   | H<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  | 73         | 3-119          | Ph       | H<br>H   | Ph       | H<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 3-56         | Me       | H        | Me       | Н         | Н       | Me      | Н       | Н       | H       |            | 3-120          |          | Н        | Ph       | Н       | Me      | Н       | Н       | Н       | Н       |
| 3-57         | Me       | H        | Me       | Η         | Η       | H       | Me      | Η       | H       |            | 3-121          |          | Η        | Ph       | Η       | Η       | Me      | Η       | H       | H       |
| 3-58         | Me       | H        | Me<br>M- | H         | H       | H       | H       | Me      | H<br>M- |            | 3-122          |          | H        | Ph       | H       | H       | H       | Me      | H<br>M- | H       |
| 3-59<br>3-60 | Me<br>Me | H<br>H   | Me<br>Me | H<br>Ph   | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H | 50         | 3-123<br>3-124 |          | H<br>H   | Ph<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H | H<br>Me |
| 3-61         | Me       | H        | Me       | H         | Ph      | Н       | H       | H       | H       | 30         | 3-124          |          | H        | Ph       | Ph      | H       | H       | H       | H       | H       |
| 3-62         | Me       | H        | Me       | H         | Η       | Ph      | H       | Η       | H       |            | 3-126          | Ph       | H        | Ph       | Η       | Ph      | H       | H       | H       | H       |
| 3-63         | Me       | H        | Me       | H         | H       | H       | Ph      | H       | H       |            | 3-127          |          | H        | Ph       | H       | H       | Ph      | H       | Н       | H       |
| 3-64<br>3-65 | Me<br>Me | H<br>H   | Me<br>Me | H<br>H    | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph |            | 3-128<br>3-129 | Ph<br>Ph | H<br>H   | Ph<br>Ph | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  |
| 3-66         | Ph       | Н        | Me       | Н         | Н       | Н       | Н       | Н       | Рп<br>Н | 55         | 3-129          |          | Н        | Ph<br>Ph | Н       | Н       | Н       | Н       | РП<br>Н | н<br>Ph |
| 3-67         | Ph       | Н        | Me       | Me        | Н       | Н       | Н       | Н       | H       | 55         |                |          |          |          |         |         |         |         |         |         |

TABLE 4

| Cpd No. | Ra1 | Ra2 | Ra3 | Rb1 | Rb2 | Rb3 | Rb4 | Rb5 | Rb6 | Rb7 |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 4-2     | Me  | Н   | Н   | Me  | Н   | Н   | Н   | Н   | Н   | Me  |
| 4-3     | Me  | H   | H   | H   | Me  | H   | H   | H   | H   | Me  |
| 4-4     | Me  | Η   | Η   | Н   | Η   | Me  | Η   | Η   | Η   | Me  |
| 4-5     | Me  | Η   | Η   | Н   | Η   | Н   | Me  | Η   | Η   | Me  |
| 4-6     | Me  | Η   | H   | H   | H   | H   | H   | Me  | H   | Me  |
| 4-7     | Me  | H   | H   | H   | H   | H   | H   | H   | Me  | Me  |

TABLE 4-continued

|              |          |          | 1.2      | ADLL    | 4-conti | nucu    |           |         |         |          |
|--------------|----------|----------|----------|---------|---------|---------|-----------|---------|---------|----------|
| Cpd No.      | Ra1      | Ra2      | Ra3      | Rb1     | Rb2     | Rb3     | Rb4       | Rb5     | Rb6     | Rb7      |
| 4-8          | Me       | Н        | Н        | Ph      | Н       | Н       | Н         | Н       | Н       | Me       |
| 4-9          | Me       | Н        | Н        | Н       | Ph      | Н       | Н         | Н       | Н       | Me       |
| 4-10         | Me       | H        | Η        | Η       | Η       | Ph      | H         | Η       | Η       | Me       |
| 4-11         | Me       | H        | H        | H       | H       | H       | Ph        | H       | H       | Me       |
| 4-12<br>4-13 | Me<br>Me | H<br>H   | H<br>H   | H<br>H  | H<br>H  | H<br>H  | H<br>H    | Ph<br>H | H<br>Ph | Me<br>Me |
| 4-14         | Ph       | Н        | Н        | Н       | Н       | Н       | Н         | Н       | Н       | Me       |
| 4-15         | Ph       | Н        | Η        | Me      | Н       | Н       | Η         | Η       | Η       | Me       |
| 4-16         | Ph       | H        | H        | H       | Me      | Н       | H         | H       | H       | Me       |
| 4-17<br>4-18 | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H  | H<br>H  | Me<br>H | H<br>Me   | H<br>H  | H<br>H  | Me<br>Me |
| 4-19         | Ph       | H        | H        | H       | Н       | Н       | Н         | Me      | H       | Me       |
| 4-20         | Ph       | Н        | Η        | H       | Н       | Н       | Η         | Η       | Me      | Me       |
| 4-21         | Ph       | H        | H        | Ph      | H       | H       | H         | H       | H       | Me       |
| 4-22<br>4-23 | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H  | Ph<br>H | H<br>Ph | H<br>H    | H<br>H  | H<br>H  | Me<br>Me |
| 4-24         | Ph       | H        | H        | H       | Н       | Н       | Ph        | Н       | H       | Me       |
| 4-25         | Ph       | H        | H        | H       | Н       | H       | H         | Ph      | H       | Me       |
| 4-26         | Ph       | H        | H        | H       | H       | Н       | H         | H       | Ph      | Me       |
| 4-27<br>4-28 | Me<br>Me | Me<br>Me | H<br>H   | H<br>Me | H<br>H  | H<br>H  | H<br>H    | H<br>H  | H<br>H  | Me<br>Me |
| 4-29         | Me       | Me       | H        | Н       | Me      | Н       | Н         | Н       | Н       | Me       |
| 4-30         | Me       | Me       | Η        | H       | Н       | Me      | Η         | Η       | Η       | Me       |
| 4-31         | Me       | Me       | Н        | H       | Н       | Н       | Me        | Н       | Н       | Me       |
| 4-32<br>4-33 | Me<br>Me | Me<br>Me | H<br>H   | H<br>H  | H<br>H  | H<br>H  | H<br>H    | Me<br>H | H<br>Me | Me<br>Me |
| 4-34         | Me       | Me       | H        | Ph      | Н       | Н       | H         | Н       | H       | Me       |
| 4-35         | Me       | Me       | Η        | H       | Ph      | Η       | Η         | Η       | Η       | Me       |
| 4-36         | Me       | Me       | Н        | H       | H       | Ph      | H         | Н       | Н       | Me       |
| 4-37<br>4-38 | Me<br>Me | Me<br>Me | H<br>H   | H<br>H  | H<br>H  | H<br>H  | Ph<br>H   | H<br>Ph | H<br>H  | Me<br>Me |
| 4-39         | Me       | Me       | Н        | Н       | Н       | Н       | Н         | Н       | Ph      | Me       |
| 4-40         | Ph       | Me       | Η        | Н       | Н       | Н       | Н         | Н       | Н       | Me       |
| 4-41         | Ph       | Me       | Η        | Me      | Н       | Η       | Η         | Η       | Η       | Me       |
| 4-42<br>4-43 | Ph<br>Ph | Me<br>Me | H<br>H   | H<br>H  | Me<br>H | H<br>Me | H<br>H    | H<br>H  | H<br>H  | Me<br>Me |
| 4-43         | Ph       | Me       | Н        | Н       | Н       | H       | Me        | Н       | Н       | Me       |
| 4-45         | Ph       | Me       | Н        | Н       | Н       | Н       | Н         | Me      | Н       | Me       |
| 4-46         | Ph       | Me       | Η        | H       | H       | Η       | Η         | Н       | Me      | Me       |
| 4-47<br>4-48 | Ph<br>Ph | Me<br>Me | H<br>H   | Ph<br>H | H<br>Ph | H<br>H  | H<br>H    | H<br>H  | H<br>H  | Me<br>Me |
| 4-49         | Ph       | Me       | H        | H       | Н       | Ph      | H         | Н       | H       | Me       |
| 4-50         | Ph       | Me       | Η        | H       | Η       | H       | Ph        | H       | H       | Me       |
| 4-51         | Ph       | Me       | Н        | H       | Н       | Н       | Н         | Ph      | H       | Me       |
| 4-52<br>4-53 | Ph<br>Me | Me<br>H  | H<br>Me  | H<br>H  | H<br>H  | H<br>H  | H<br>H    | H<br>H  | Ph<br>H | Me<br>Me |
| 4-54         | Me       | H        | Me       | Me      | Н       | Н       | Н         | Н       | Н       | Me       |
| 4-55         | Me       | Η        | Me       | H       | Me      | Η       | Η         | Η       | Η       | Me       |
| 4-56         | Me       | H        | Me       | H       | Н       | Me      | Н         | Н       | Н       | Me       |
| 4-57<br>4-58 | Me<br>Me | H<br>H   | Me<br>Me | H<br>H  | H<br>H  | H<br>H  | Me<br>H   | H<br>Me | H<br>H  | Me<br>Me |
| 4-59         | Me       | H        | Me       | Н       | Н       | Н       | Н         | Н       | Me      | Me       |
| 4-60         | Me       | Η        | Me       | Ph      | Н       | Η       | Η         | Η       | Η       | Me       |
| 4-61         | Me       | H        | Me       | H       | Ph      | H       | H         | H       | Н       | Me       |
| 4-62<br>4-63 | Me<br>Me | H<br>H   | Me<br>Me | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph   | H<br>H  | H<br>H  | Me<br>Me |
| 4-64         | Me       | Н        | Me       | Н       | Н       | Н       | Н         | Ph      | Н       | Me       |
| 4-65         | Me       | Н        | Me       | H       | Н       | Н       | Η         | Η       | Ph      | Me       |
| 4-66         | Ph       | H        | Me       | H<br>Mo | H<br>H  | H       | H         | H       | H       | Me       |
| 4-67<br>4-68 | Ph<br>Ph | H<br>H   | Me<br>Me | Me<br>H | н<br>Ме | H<br>H  | $_{ m H}$ | H<br>H  | H<br>H  | Me<br>Me |
| 4-69         | Ph       | H        | Me       | Н       | Н       | Me      | Н         | Н       | H       | Me       |
| 4-70         | Ph       | Η        | Me       | H       | Н       | Η       | Me        | Η       | Η       | Me       |
| 4-71         | Ph       | H        | Me       | H       | H       | H       | H         | Me      | Н       | Me       |
| 4-72<br>4-73 | Ph<br>Ph | H<br>H   | Me<br>Me | H<br>Ph | H<br>H  | H<br>H  | H<br>H    | H<br>H  | Me<br>H | Me<br>Me |
| 4-74         | Ph       | H        | Me       | Н       | Ph      | Н       | Н         | H       | H       | Me       |
| 4-75         | Ph       | H        | Me       | H       | Н       | Ph      | Η         | Η       | Η       | Me       |
| 4-76         | Ph       | H        | Me       | Н       | H       | H       | Ph        | H       | H       | Me       |
| 4-77<br>4-78 | Ph<br>Ph | H<br>H   | Me<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H    | Ph<br>H | H<br>Ph | Me<br>Me |
| 4-78<br>4-79 | Me       | Ph       | H        | Н       | H       | Н       | H         | H       | Н       | Me       |
| 4-80         | Me       | Ph       | Η        | Me      | Н       | Η       | Η         | Η       | Η       | Me       |
| 4-81         | Me       | Ph       | H        | H       | Me      | Н       | H         | H       | H       | Me       |
| 4-82<br>4-83 | Me<br>Me | Ph<br>Ph | H<br>H   | H<br>H  | H<br>H  | Me<br>H | H<br>Me   | H<br>H  | H<br>H  | Me<br>Me |
| 4-84         | Me       | Ph       | Н        | Н       | Н       | Н       | Н         | Me      | Н       | Me       |
| 4-85         | Me       | Ph       | H        | Н       | Н       | Н       | H         | H       | Me      | Me       |
|              |          |          |          |         |         |         |           |         |         |          |

**63** TABLE 4-continued

|         |     |     | 17  | ABLE 4  | +-conu | nuea |     |     |     |     |
|---------|-----|-----|-----|---------|--------|------|-----|-----|-----|-----|
| Cpd No. | Ra1 | Ra2 | Ra3 | Rb1     | Rb2    | Rb3  | Rb4 | Rb5 | Rb6 | Rb7 |
| 4-86    | Me  | Ph  | Н   | Ph      | Н      | Н    | Н   | Н   | Н   | Me  |
| 4-87    | Me  | Ph  | Η   | Η       | Ph     | Η    | Н   | Н   | Н   | Me  |
| 4-88    | Me  | Ph  | H   | H       | H      | Ph   | H   | H   | Η   | Me  |
| 4-89    | Me  | Ph  | Н   | H       | H      | Н    | Ph  | Н   | Н   | Me  |
| 4-90    | Me  | Ph  | Η   | Η       | Н      | Η    | Н   | Ph  | Н   | Me  |
| 4-91    | Me  | Ph  | H   | H       | H      | Η    | H   | H   | Ph  | Me  |
| 4-92    | Ph  | Ph  | H   | Η       | H      | Η    | H   | H   | Η   | Me  |
| 4-93    | Ph  | Ph  | Η   | Me      | H      | Н    | H   | H   | H   | Me  |
| 4-94    | Ph  | Ph  | H   | H       | Me     | Η    | H   | H   | Η   | Me  |
| 4-95    | Ph  | Ph  | H   | H       | H      | Me   | H   | H   | H   | Me  |
| 4-96    | Ph  | Ph  | Η   | H       | H      | Н    | Me  | H   | H   | Me  |
| 4-97    | Ph  | Ph  | H   | H       | H      | Н    | H   | Me  | Н   | Me  |
| 4-98    | Ph  | Ph  | H   | H       | H      | Η    | H   | H   | Me  | Me  |
| 4-99    | Ph  | Ph  | Η   | Ph      | H      | Η    | Η   | Η   | Η   | Me  |
| 4-100   | Ph  | Ph  | H   | H       | Ph     | Η    | H   | H   | Η   | Me  |
| 4-101   | Ph  | Ph  | H   | Η       | Η      | Ph   | H   | H   | H   | Me  |
| 4-102   | Ph  | Ph  | Η   | H       | H      | Η    | Ph  | Η   | Η   | Me  |
| 4-103   | Ph  | Ph  | H   | H       | H      | H    | H   | Ph  | H   | Me  |
| 4-104   | Ph  | Ph  | H   | H       | H      | Η    | H   | H   | Ph  | Me  |
| 4-105   | Me  | Η   | Ph  | H       | H      | Η    | Η   | H   | Η   | Me  |
| 4-106   | Me  | H   | Ph  | Me      | Η      | Η    | H   | H   | H   | Me  |
| 4-107   | Me  | Η   | Ph  | Η       | Me     | Η    | Η   | Η   | Η   | Me  |
| 4-108   | Me  | Η   | Ph  | H       | H      | Me   | Η   | H   | Η   | Me  |
| 4-109   | Me  | H   | Ph  | Η       | Η      | Η    | Me  | H   | H   | Me  |
| 4-110   | Me  | Η   | Ph  | Η       | Η      | Η    | Η   | Me  | Η   | Me  |
| 4-111   | Me  | Η   | Ph  | H       | H      | H    | H   | H   | Me  | Me  |
| 4-112   | Me  | H   | Ph  | Ph      | Η      | Η    | H   | H   | H   | Me  |
| 4-113   | Me  | Η   | Ph  | Η       | Ph     | Η    | Η   | Η   | Η   | Me  |
| 4-114   | Me  | Η   | Ph  | H       | H      | Ph   | H   | H   | H   | Me  |
| 4-115   | Me  | H   | Ph  | Η       | Η      | Η    | Ph  | H   | H   | Me  |
| 4-116   | Me  | Η   | Ph  | Η       | Η      | Η    | Η   | Ph  | Η   | Me  |
| 4-117   | Me  | Η   | Ph  | H       | H      | Н    | H   | H   | Ph  | Me  |
| 4-118   | Ph  | Η   | Ph  | H       | H      | Η    | H   | H   | Η   | Me  |
| 4-119   | Ph  | Н   | Ph  | Me      | H      | Н    | Н   | Н   | Н   | Me  |
| 4-120   | Ph  | Н   | Ph  | Н       | Me     | Н    | Н   | Н   | Н   | Me  |
| 4-121   | Ph  | Н   | Ph  | Н       | Н      | Me   | Н   | Н   | Н   | Me  |
| 4-122   | Ph  | H   | Ph  | Н       | Н      | Н    | Me  | Н   | Н   | Me  |
| 4-123   | Ph  | Н   | Ph  | Н       | Н      | Н    | Н   | Me  | Н   | Me  |
| 4-124   | Ph  | Н   | Ph  | Н       | Н      | Н    | Н   | Н   | Me  | Me  |
| 4-124   | Ph  | Н   | Ph  | п<br>Ph | Н      | Н    | Н   | Н   | H   | Me  |
|         |     |     |     |         |        |      |     |     |     |     |
| 4-126   | Ph  | H   | Ph  | H       | Ph     | H    | H   | H   | H   | Me  |
| 4-127   | Ph  | Н   | Ph  | Н       | Н      | Ph   | H   | Н   | Н   | Me  |
| 4-128   | Ph  | H   | Ph  | H       | H      | Н    | Ph  | Н   | Н   | Me  |
| 4-129   | Ph  | Η   | Ph  | H       | Η      | Η    | Η   | Ph  | Н   | Me  |
| 4-130   | Ph  | Н   | Ph  | Н       | Н      | Н    | Η   | Η   | Ph  | Me  |

TABLE 5

| Cpd No. | Ra1 | Ra2 | Ra3 | Rb1 | Rb2 | Rb3 | Rb4 | Rb5 | Rb6 | Rb7 | Rb8 |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 5-1     | Me  | Н   | Н   | Н   | Н   | Н   | Н   | Н   | Н   | Н   | Н   |
| 5-2     | Me  | Η   | Η   | Me  | Η   | Η   | Η   | Η   | Η   | Η   | H   |
| 5-3     | Me  | Η   | Η   | Η   | Me  | Η   | Η   | Η   | Η   | Η   | Η   |
| 5-4     | Me  | Η   | Η   | Η   | Η   | Me  | Η   | Η   | Η   | Η   | H   |
| 5-5     | Me  | Η   | Η   | Η   | Η   | Η   | Me  | Η   | Η   | Η   | H   |
| 5-6     | Me  | Η   | Η   | Η   | Η   | Η   | Η   | Me  | Η   | Η   | Η   |
| 5-7     | Me  | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Me  | Η   | H   |
| 5-8     | Me  | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Me  | H   |
| 5-9     | Me  | Η   | Η   | Η   | Η   | Η   | H   | Η   | H   | Η   | Me  |
| 5-10    | Me  | Η   | Η   | Ph  | Η   | Η   | Η   | Η   | Η   | Η   | H   |
| 5-11    | Me  | Η   | Η   | Η   | Ph  | Η   | H   | H   | H   | H   | H   |
| 5-12    | Me  | Η   | Η   | Η   | H   | Ph  | H   | Η   | Η   | H   | H   |
| 5-13    | Me  | Η   | Η   | Η   | Η   | Η   | Ph  | Η   | Η   | Η   | H   |
| 5-14    | Me  | Η   | Η   | Η   | Η   | Η   | H   | Ph  | H   | H   | H   |
| 5-15    | Me  | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Ph  | Η   | H   |
| 5-16    | Me  | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Ph  | H   |
| 5-17    | Me  | Η   | Η   | Η   | Η   | Η   | H   | H   | H   | H   | Ph  |
| 5-18    | Ph  | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Η   |
| 5-19    | Ph  | Η   | Η   | Me  | Η   | Η   | Η   | Η   | Η   | Η   | H   |
| 5-20    | Ph  | H   | H   | H   | Me  | H   | H   | H   | H   | H   | H   |
| 5-21    | Ph  | Η   | Η   | Η   | Η   | Me  | Η   | Η   | Η   | Η   | H   |
| 5-22    | Ph  | H   | H   | H   | H   | H   | Me  | H   | H   | H   | H   |
| 5-23    | Ph  | H   | H   | H   | H   | H   | H   | Me  | H   | H   | H   |
| 5-24    | Ph  | Η   | Η   | Η   | Η   | Н   | Η   | Η   | Me  | Η   | H   |
| 5-25    | Ph  | Η   | H   | Η   | Η   | Η   | Η   | H   | H   | Me  | H   |

TABLE 5-continued

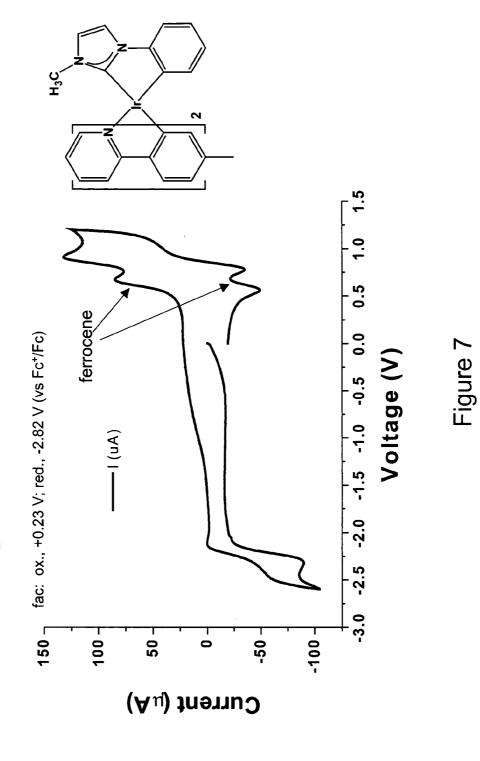

|              |          |          |          | IADI    | JL J-(  | Ontin   | ucu     |         |         |         |         |
|--------------|----------|----------|----------|---------|---------|---------|---------|---------|---------|---------|---------|
| Cpd No.      | Ra1      | Ra2      | Ra3      | Rb1     | Rb2     | Rb3     | Rb4     | Rb5     | Rb6     | Rb7     | Rb8     |
| 5-26         | Ph       | Н        | Н        | Н       | Н       | Н       | Н       | Н       | Н       | Н       | Me      |
| 5-27         | Ph       | H        | Η        | Ph      | H       | H       | H       | H       | Η       | Н       | H       |
| 5-28         | Ph       | H        | Η        | Η       | Ph      | H       | Η       | Η       | Η       | Η       | Η       |
| 5-29         | Ph       | H        | H        | H       | Н       | Ph      | H       | H       | H       | H       | H       |
| 5-30<br>5-31 | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  |
| 5-32         | Ph       | Н        | H        | Н       | Н       | Н       | Н       | Н       | Ph      | Н       | Н       |
| 5-33         | Ph       | Н        | Н        | Н       | Н       | Н       | Н       | Н       | Н       | Ph      | Н       |
| 5-34         | Ph       | H        | Η        | H       | Η       | H       | H       | H       | Η       | H       | Ph      |
| 5-35         | Me       | Me       | Η        | H       | Η       | Η       | Η       | H       | Η       | H       | H       |
| 5-36         | Me       | Me       | H        | Me      | Н       | Н       | H       | H       | H       | Н       | H       |
| 5-37<br>5-38 | Me<br>Me | Me<br>Me | H<br>H   | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 5-39         | Me       | Me       | H        | H       | Н       | H       | Me      | H       | H       | H       | H       |
| 5-40         | Me       | Me       | Н        | Н       | Н       | Н       | Н       | Me      | Н       | Н       | Н       |
| 5-41         | Me       | Me       | Η        | H       | Η       | Η       | Η       | H       | Me      | H       | H       |
| 5-42         | Me       | Me       | H        | H       | Η       | H       | H       | H       | H       | Me      | H       |
| 5-43         | Me       | Me       | H        | H       | H       | H       | H       | H       | H       | Н       | Me      |
| 5-44<br>5-45 | Me<br>Me | Me<br>Me | H<br>H   | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 5-46         | Me       | Me       | H        | Н       | Н       | Ph      | Н       | Н       | H       | Н       | Н       |
| 5-47         | Me       | Me       | Η        | Н       | Н       | Н       | Ph      | H       | Н       | H       | H       |
| 5-48         | Me       | Me       | Η        | H       | Η       | Η       | H       | Ph      | Η       | Η       | Η       |
| 5-49         | Me       | Me       | Η        | H       | H       | H       | H       | H       | Ph      | H       | H       |
| 5-50         | Me<br>M- | Me       | H        | H       | H       | H       | H       | H       | H       | Ph      | H       |
| 5-51<br>5-52 | Me<br>Ph | Me<br>Me | H<br>H   | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph<br>H |
| 5-52         | Ph       | Me       | H        | Me      | Н       | Н       | Н       | H       | H       | H       | H       |
| 5-54         | Ph       | Me       | Н        | Н       | Me      | Н       | Н       | Н       | Н       | Н       | Н       |
| 5-55         | Ph       | Me       | Η        | H       | Η       | Me      | H       | H       | Η       | H       | H       |
| 5-56         | Ph       | Me       | Η        | H       | H       | H       | Me      | H       | Η       | H       | H       |
| 5-57         | Ph       | Me       | H        | H       | H       | H       | H       | Me      | H       | H       | H       |
| 5-58<br>5-59 | Ph<br>Ph | Me<br>Me | H<br>H   | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H | H<br>Me | H<br>H  |
| 5-60         | Ph       | Me       | H        | Н       | Н       | Н       | Н       | H       | H       | Н       | Me      |
| 5-61         | Ph       | Me       | Η        | Ph      | Н       | Н       | Н       | Н       | Н       | Н       | Н       |
| 5-62         | Ph       | Me       | Η        | H       | Ph      | Η       | Η       | Η       | Η       | Н       | H       |
| 5-63         | Ph       | Me       | H        | H       | H       | Ph      | H       | Н       | Н       | Н       | Н       |
| 5-64<br>5-65 | Ph<br>Ph | Me<br>Me | H<br>H   | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  |
| 5-66         | Ph       | Me       | H        | H       | Н       | Н       | Н       | Н       | Ph      | H       | Н       |
| 5-67         | Ph       | Me       | Н        | Н       | Н       | Н       | Н       | Н       | Н       | Ph      | Н       |
| 5-68         | Ph       | Me       | Η        | H       | Η       | H       | H       | H       | Η       | H       | Ph      |
| 5-69         | Me       | H        | Me       | Н       | H       | H       | H       | H       | Η       | H       | H       |
| 5-70         | Me<br>M- | H        | Me       | Me      | H<br>M- | H       | H       | H       | H       | H       | H       |
| 5-71<br>5-72 | Me<br>Me | H<br>H   | Me<br>Me | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 5-73         | Me       | H        | Me       | Н       | Н       | Н       | Me      | Н       | H       | Н       | Н       |
| 5-74         | Me       | H        | Me       | H       | H       | H       | H       | Me      | Η       | Н       | Н       |
| 5-75         | Me       | Η        | Me       | Η       | Η       | Η       | Η       | Η       | Me      | Η       | Η       |
| 5-76         | Me       | H        | Me       | H       | Н       | H       | H       | H       | H       | Me      | Н       |
| 5-77<br>5-78 | Me<br>Me | H<br>H   | Me<br>Me | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H |
| 5-79         | Me       | Н        | Me       | Н       | Ph      | Н       | Н       | Н       | Н       | Н       | Н       |
| 5-80         | Me       | H        | Me       | H       | Н       | Ph      | H       | H       | Н       | H       | Н       |
| 5-81         | Me       | Η        | Me       | H       | Η       | Η       | Ph      | H       | Η       | H       | H       |
| 5-82         | Me       | H        | Me       | H       | H       | H       | H       | Ph      | Н       | Н       | Н       |
| 5-83<br>5-84 | Me<br>Me | H<br>H   | Me<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  |
| 5-85         | Me       | Н        | Me       | Н       | Н       | Н       | Н       | Н       | Н       | Н       | Ph      |
| 5-86         | Ph       | H        | Me       | H       | Н       | Н       | Н       | H       | Н       | H       | Н       |
| 5-87         | Ph       | H        | Me       | Me      | H       | H       | H       | Н       | Η       | H       | Н       |
| 5-88         | Ph       | H        | Me       | H       | Me      | Η       | Η       | H       | Η       | H       | H       |
| 5-89         | Ph       | H        | Me       | H       | H       | Me      | Н       | H       | H       | H       | H       |
| 5-90<br>5-91 | Ph<br>Ph | H<br>H   | Me<br>Me | H<br>H  | H<br>H  | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  |
| 5-92         | Ph       | H        | Me       | Н       | Н       | Н       | Н       | Н       | Me      | H       | H       |
| 5-93         | Ph       | H        | Me       | Н       | Н       | Н       | Н       | Н       | Н       | Me      | Н       |
| 5-94         | Ph       | H        | Me       | H       | H       | H       | H       | H       | Η       | H       | Me      |
| 5-95         | Ph       | H        | Me       | Ph      | H       | H       | H       | H       | H       | H       | H       |
| 5-96         | Ph       | H        | Me       | H       | Ph      | H       | H       | H       | H       | H       | H       |
| 5-97<br>5-98 | Ph<br>Ph | H<br>H   | Me<br>Me | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 5-99         | Ph       | Н        | Me       | Н       | Н       | Н       | Н       | н<br>Ph | Н       | Н       | Н       |
| 5-100        | Ph       | H        | Me       | Н       | Н       | Н       | Н       | Н       | Ph      | Н       | Н       |
| 5-101        | Ph       | Η        | Me       | Η       | Η       | Η       | Η       | Η       | Η       | Ph      | Η       |
| 5-102        | Ph       | H        | Me       | H       | Н       | Н       | H       | Н       | Н       | Н       | Ph      |
| 5-103        | Me       | Ph       | Н        | Н       | Н       | Н       | Н       | Н       | Н       | Н       | Н       |
|              |          |          |          |         |         |         |         |         |         |         |         |

TABLE 5-continued

|                |          |          |          | IAB     | LE 5-   | contin  | iuea    |         |         |         |         |
|----------------|----------|----------|----------|---------|---------|---------|---------|---------|---------|---------|---------|
| Cpd No.        | Ra1      | Ra2      | Ra3      | Rb1     | Rb2     | Rb3     | Rb4     | Rb5     | Rb6     | Rb7     | Rb8     |
| 5-104          | Me       | Ph       | Н        | Me      | Н       | Н       | Н       | Н       | Н       | Н       | Н       |
| 5-105          | Me       | Ph       | H        | H       | Me      | H       | H       | H       | H       | H       | H       |
| 5-106          | Me       | Ph       | H        | Η       | Η       | Me      | Η       | Η       | Н       | H       | H       |
| 5-107          | Me       | Ph       | Η        | Η       | Η       | Η       | Me      | Η       | Н       | Η       | Η       |
| 5-108          | Me       | Ph       | Η        | H       | Η       | Η       | H       | Me      | Н       | H       | H       |
| 5-109          | Me       | Ph       | Н        | H       | H       | H       | Н       | Н       | Me      | Н       | H       |
| 5-110          | Me       | Ph       | H        | H       | H       | H       | H       | H       | H       | Me      | Н       |
| 5-111<br>5-112 | Me<br>Me | Ph<br>Ph | H<br>H   | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H |
| 5-112          | Me       | Ph       | H        | Н       | Ph      | H       | Н       | H       | H       | H       | Н       |
| 5-114          | Me       | Ph       | Н        | Н       | Н       | Ph      | Н       | Н       | Н       | Н       | Н       |
| 5-115          | Me       | Ph       | H        | H       | H       | Н       | Ph      | H       | H       | H       | H       |
| 5-116          | Me       | Ph       | H        | H       | H       | H       | H       | Ph      | H       | H       | H       |
| 5-117          | Me       | Ph       | H        | H       | Η       | H       | Η       | Η       | Ph      | H       | H       |
| 5-118          | Me       | Ph       | H        | Η       | Η       | Η       | Η       | Η       | Н       | Ph      | H       |
| 5-119          | Me       | Ph       | Η        | Η       | Η       | Η       | Η       | Η       | Η       | H       | Ph      |
| 5-120          | Ph       | Ph       | Н        | Н       | H       | H       | H       | Н       | H       | H       | H       |
| 5-121          | Ph       | Ph       | H        | Me      | Н       | H       | Н       | H       | Н       | H       | H       |
| 5-122          | Ph       | Ph       | H        | H       | Me      | H<br>Ma | H       | H       | H       | H       | H       |
| 5-123<br>5-124 | Ph<br>Ph | Ph<br>Ph | H<br>H   | H<br>H  | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 5-125          | Ph       | Ph       | Н        | Н       | Н       | Н       | Н       | Me      | Н       | H       | Н       |
| 5-126          | Ph       | Ph       | Н        | Н       | Н       | Н       | Н       | Н       | Me      | Н       | Н       |
| 5-127          | Ph       | Ph       | Н        | Н       | Н       | Н       | Н       | Н       | Н       | Me      | Н       |
| 5-128          | Ph       | Ph       | H        | Η       | Η       | Η       | Η       | Η       | Н       | H       | Me      |
| 5-129          | Ph       | Ph       | H        | Ph      | H       | H       | H       | H       | H       | H       | H       |
| 5-130          | Ph       | Ph       | H        | Η       | Ph      | Η       | Η       | Η       | Η       | H       | H       |
| 5-131          | Ph       | Ph       | Η        | Η       | Η       | Ph      | Η       | Η       | Η       | Η       | Η       |
| 5-132          | Ph       | Ph       | Н        | H       | H       | H       | Ph      | H       | Н       | Н       | H       |
| 5-133          | Ph       | Ph       | Н        | H       | Н       | Н       | Н       | Ph      | H       | Н       | H       |
| 5-134          | Ph       | Ph       | H        | H       | H<br>H  | H       | H       | H       | Ph<br>H | H       | H       |
| 5-135<br>5-136 | Ph<br>Ph | Ph<br>Ph | H<br>H   | H<br>H  | Н       | H<br>H  | H<br>H  | H<br>H  | Н       | Ph<br>H | H<br>Ph |
| 5-137          | Me       | Н        | Ph       | Н       | Н       | Н       | Н       | Н       | Н       | Н       | Н       |
| 5-138          | Me       | Н        | Ph       | Me      | Н       | Н       | Н       | Н       | Н       | Н       | Н       |
| 5-139          | Me       | Н        | Ph       | H       | Me      | Н       | Н       | Н       | Н       | Н       | Н       |
| 5-140          | Me       | H        | Ph       | H       | H       | Me      | H       | H       | Н       | H       | H       |
| 5-141          | Me       | Η        | Ph       | Η       | Η       | Η       | Me      | H       | Η       | H       | Η       |
| 5-142          | Me       | Η        | Ph       | Η       | Η       | Η       | Η       | Me      | Η       | H       | Η       |
| 5-143          | Me       | H        | Ph       | Η       | H       | H       | H       | H       | Me      | Н       | H       |
| 5-144          | Me       | Н        | Ph       | Н       | Н       | Н       | Н       | Н       | Н       | Me      | Н       |
| 5-145<br>5-146 | Me<br>Me | H<br>H   | Ph<br>Ph | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H |
| 5-147          | Me       | Н        | Ph       | Н       | Ph      | H       | Н       | H       | H       | H       | Н       |
| 5-148          | Me       | Н        | Ph       | Н       | Н       | Ph      | Н       | H       | Н       | Н       | Н       |
| 5-149          | Me       | Н        | Ph       | Н       | Н       | Н       | Ph      | Н       | Н       | Н       | Н       |
| 5-150          | Me       | Н        | Ph       | Н       | Н       | Н       | Н       | Ph      | Н       | Н       | H       |
| 5-151          | Me       | Η        | Ph       | Η       | Η       | Η       | Η       | Η       | Ph      | Η       | H       |
| 5-152          | Me       | Η        | Ph       | Η       | Η       | Η       | Η       | Н       | Н       | Ph      | H       |
| 5-153          | Me       | H        | Ph       | H       | H       | H       | H       | H       | H       | H       | Ph      |
| 5-154          | Ph       | Н        | Ph       | Н       | H       | H       | Н       | Н       | Н       | Н       | H       |
| 5-155<br>5-156 | Ph<br>Ph | H<br>H   | Ph<br>Ph | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 5-157          | Ph       | Н        | Ph       | Н       | Н       | Мe      | Н       | Н       | Н       | Н       | Н       |
| 5-158          | Ph       | Н        | Ph       | Н       | Н       | Н       | Me      | Н       | Н       | Н       | Н       |
| 5-159          | Ph       | Н        | Ph       | Н       | Н       | Н       | Н       | Me      | Н       | H       | Н       |
| 5-160          | Ph       | H        | Ph       | Н       | H       | H       | Н       | Н       | Me      | Н       | H       |
| 5-161          | Ph       | Н        | Ph       | Н       | Н       | Н       | Н       | Н       | Н       | Me      | H       |
| 5-162          | Ph       | Η        | Ph       | Η       | Η       | Η       | Η       | Η       | Η       | Η       | Me      |
| 5-163          | Ph       | Η        | Ph       | Ph      | Η       | Η       | Η       | Η       | Н       | Η       | H       |
| 5-164          | Ph       | Η        | Ph       | Η       | Ph      | Н       | Н       | Н       | Н       | Η       | H       |
| 5-165          | Ph       | H        | Ph       | H       | H       | Ph      | H       | H       | Н       | H       | Н       |
| 5-166          | Ph       | H        | Ph       | H       | H       | H       | Ph      | H       | H       | H       | H       |
| 5-167<br>5-168 | Ph<br>Ph | H<br>H   | Ph<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  |
| 5-169          | Ph       | Н        | Ph       | Н       | Н       | Н       | Н       | Н       | rn<br>H | н<br>Ph | H<br>H  |
| 5-170          | Ph       | H        | Ph       | H       | H       | H       | H       | H       | H       | Н       | Ph      |
|                |          |          |          |         |         |         |         |         |         |         |         |

|            |     |     | TABLE | Ε 6 |     |     | 60 |            |     | TAB | LE 6 <b>-c</b> c | ntinued |     |     |
|------------|-----|-----|-------|-----|-----|-----|----|------------|-----|-----|------------------|---------|-----|-----|
| Cpd<br>No. | Ra1 | Ra2 | Ra3   | Ra4 | Rb1 | Rb2 |    | Cpd<br>No. | Ra1 | Ra2 | Ra3              | Ra4     | Rb1 | Rb2 |
| 6-1        | Me  | Н   | Н     | Н   | Н   | Н   | 65 | 6-3        | Me  | Н   | Н                | Н       | Н   | Me  |
| 6-2        | Me  | H   | Н     | Н   | Me  | H   |    | 6-4        | Me  | H   | H                | H       | Ph  | H   |

E-chem of fac-(tpy)<sub>2</sub>lr(1-Ph-3-Me-imid) in DMF w/0.1M Bu<sub>4</sub>N<sup>+</sup>PF<sub>6</sub>-



**70** 

TABLE 7-continued

|              |          |     | IAB.     | LE 6-c   | ontinu   | ea      |     | TABLE 7-continued |            |              |          |          |          |          |         |         |         |         |
|--------------|----------|-----|----------|----------|----------|---------|-----|-------------------|------------|--------------|----------|----------|----------|----------|---------|---------|---------|---------|
| Cpd<br>No.   | Ra1      | ]   | Ra2      | Ra3      | Ra-      | l Ri    | 01  | Rb2               | _          | Cpd No.      | Ra1      | Ra2      | Ra3      | Ra4      | Rb1     | Rb2     | Rb3     | Rb4     |
|              |          |     |          |          |          |         |     |                   | <b>-</b> 5 | 7-4          | Me       | H        | Н        | Н        | H       | Н       | Me      | H       |
| 6-5<br>6-6   | Me<br>Ph |     | H<br>H   | H<br>H   | H<br>H   | H<br>H  |     | Ph<br>H           | ,          | 7-5<br>7-6   | Me<br>Me | H<br>H   | H<br>H   | H<br>H   | H<br>Ph | H<br>H  | H<br>H  | Me<br>H |
| 6-7          | Ph       |     | H        | Н        | Н        | M       | e   | H                 |            | 7-7          | Me       | Н        | Н        | Н        | Н       | Ph      | Н       | Н       |
| 6-8          | Ph       |     | H        | Н        | Н        | Н       | _   | Me                |            | 7-8          | Me       | H        | Н        | Н        | Н       | H       | Ph      | H       |
| 6-9          | Ph       | 1   | Н        | H        | H        | Ph      | ı   | H                 |            | 7-9          | Me       | H        | Η        | Η        | H       | H       | H       | Ph      |
| 6-10         | Ph       | 1   | H        | Η        | Η        | Н       |     | Ph                |            | 7-10         | Ph       | Η        | Η        | Η        | Н       | Η       | H       | Н       |
| 6-11         | Me       |     | Me       | H        | H        | Н       |     | H                 | 10         | 7-11         | Ph       | H        | Η        | Η        | Me      | Н       | H       | H       |
| 6-12         | Me       |     | Me       | H        | Н        | M       | e   | H                 |            | 7-12         | Ph       | H        | H        | H        | H       | Me      | H       | H       |
| 6-13         | Me       |     | Ме<br>Ме | H<br>H   | H<br>H   | H<br>Pł |     | Me<br>H           |            | 7-13<br>7-14 | Ph<br>Ph | H<br>H   | H        | H        | H<br>H  | H<br>H  | Me<br>H | H<br>Me |
| 6-14<br>6-15 | Me<br>Me |     | Me       | Н        | Н        | H       | ı   | п<br>Ph           |            | 7-14         | Ph       | Н        | H<br>H   | H<br>H   | л<br>Ph | Н       | н<br>Н  | H       |
| 6-16         | Ph       |     | Me       | Н        | Н        | Н       |     | H                 |            | 7-16         | Ph       | Н        | Н        | Н        | Н       | Ph      | Н       | H       |
| 6-17         | Ph       |     | Me       | H        | H        | M       | e   | H                 | 15         | 7-17         | Ph       | H        | H        | H        | H       | Н       | Ph      | H       |
| 6-18         | Ph       | ]   | Me       | Η        | H        | Н       |     | Me                | 13         | 7-18         | Ph       | H        | H        | H        | H       | Η       | H       | Ph      |
| 6-19         | Ph       |     | Me       | H        | Η        | Pł      | ı   | H                 |            | 7-19         | Me       | Me       | Η        | H        | H       | Η       | H       | H       |
| 6-20         | Ph       |     | Me       | Н        | H        | H       |     | Ph                |            | 7-20         | Me       | Me       | Н        | Н        | Me      | Н       | H       | H       |
| 6-21         | Me       |     | H        | Me       | Н        | Н       | _   | H                 |            | 7-21         | Me       | Me       | H        | H        | H       | Me      | H       | H       |
| 6-22<br>6-23 | Me<br>Me |     | H<br>H   | Me<br>Me | H<br>H   | M<br>H  | e   | H<br>Me           |            | 7-22<br>7-23 | Me<br>Me | Me<br>Me | H<br>H   | H<br>H   | H<br>H  | H<br>H  | Me<br>H | H<br>Me |
| 6-24         | Me       |     | п<br>Н   | Me       | Н        | Ph      |     | H                 | 20         | 7-23<br>7-24 | Me       | Me       | Н        | Н        | Ph      | Н       | Н       | H       |
| 6-25         | Me       |     | H        | Me       | H        | Н       |     | Ph                |            | 7-25         | Me       | Me       | Н        | H        | Н       | Ph      | H       | H       |
| 6-26         | Ph       |     | H        | Me       | Н        | Н       |     | Н                 |            | 7-26         | Me       | Me       | Η        | Н        | Н       | Н       | Ph      | Н       |
| 6-27         | Ph       |     | H        | Me       | H        | M       | e   | H                 |            | 7-27         | Me       | Me       | H        | H        | Н       | H       | H       | Ph      |
| 6-28         | Ph       | ]   | Н        | Me       | Η        | Н       |     | Me                |            | 7-28         | Ph       | Me       | Η        | Η        | Η       | Η       | H       | H       |
| 6-29         | Ph       |     | H        | Me       | Η        | Ph      | ı   | H                 |            | 7-29         | Ph       | Me       | Η        | H        | Me      | Η       | H       | H       |
| 6-30         | Ph       |     | H        | Me       | Н        | Н       |     | Ph                | 25         | 7-30         | Ph       | Me       | H        | H        | Н       | Me      | Н       | H       |
| 6-31         | Me       |     | H        | H        | Me       |         |     | H                 |            | 7-31         | Ph       | Me       | H        | H        | H       | H       | Me      | Н       |
| 6-32<br>6-33 | Me       |     | H<br>H   | H<br>H   | Me<br>Me |         | e   | H<br>Me           |            | 7-32<br>7-33 | Ph<br>Ph | Me<br>Me | H<br>H   | H<br>H   | H<br>Ph | H<br>H  | H<br>H  | Me<br>H |
| 6-34         | Me<br>Me |     | Н        | Н        | Me       |         |     | H                 |            | 7-33<br>7-34 | Ph       | Me       | Н        | Н        | Н       | п<br>Ph | Н       | Н       |
| 6-35         | Me       |     | H        | H        | Me       |         |     | Ph                |            | 7-35         | Ph       | Me       | H        | H        | Н       | H       | Ph      | H       |
| 6-36         | Ph       |     | H        | Н        | Me       |         |     | Н                 | 30         | 7-36         | Ph       | Me       | Н        | H        | Н       | H       | Н       | Ph      |
| 6-37         | Ph       | 1   | Н        | Н        | Me       | M       | e   | H                 |            | 7-37         | Me       | Η        | Me       | Η        |         |         |         |         |
| 6-38         | Ph       | ]   | H        | Η        | Me       | Н       |     | Me                |            | 7-38         | Me       | Η        | Me       | H        | Me      | Η       | H       | H       |
| 6-39         | Ph       |     | H        | H        | Me       |         | l   | H                 |            | 7-39         | Me       | H        | Me       | H        | H       | Me      | Н       | H       |
| 6-40         | Ph       |     | H        | H        | Me       |         |     | Ph                |            | 7-40         | Me       | H        | Me       | H        | H       | H       | Me      | H       |
| 6-41         | Me       |     | Ph       | H        | Н        | Н       |     | H                 |            | 7-41         | Me       | H        | Me       | H        | H       | H       | H       | Me      |
| 6-42<br>6-43 | Me<br>Me |     | Ph<br>Ph | H<br>H   | H<br>H   | M<br>H  | е   | H<br>Me           | 35         | 7-42<br>7-43 | Me<br>Me | H<br>H   | Me<br>Me | H<br>H   | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  |
| 6-44         | Me       |     | Ph       | Н        | Н        | Ph      | 1   | Н                 |            | 7-43<br>7-44 | Me       | Н        | Me       | H        | Н       | Н       | Ph      | H       |
| 6-45         | Me       |     | Ph       | Н        | Н        | Н       |     | Ph                |            | 7-45         | Me       | Н        | Me       | H        | Н       | Н       | Н       | Ph      |
| 6-46         | Ph       |     | Ph       | Н        | Н        | Н       |     | Н                 |            | 7-46         | Ph       | Н        | Me       | Н        | Н       | Н       | H       | H       |
| 6-47         | Ph       | 1   | Ph       | Η        | Η        | M       | e   | H                 |            | 7-47         | Ph       | Η        | Me       | Η        | Me      | Η       | H       | H       |
| 6-48         | Ph       |     | Ph       | Η        | Н        | Н       |     | Me                | 40         | 7-48         | Ph       | Η        | Me       | Η        | Η       | Me      | Η       | H       |
| 6-49         | Ph       |     | Ph       | Н        | Н        | Pł      | ı   | H                 | 40         | 7-49         | Ph       | H        | Me       | Η        | Н       | Н       | Me      | Н       |
| 6-50         | Ph       |     | Ph       | H        | Н        | H       |     | Ph                |            | 7-50         | Ph       | H        | Me       | H        | H       | H       | H       | Me      |
| 6-51         | Me<br>Me |     | H<br>H   | Ph<br>Ph | H<br>H   | H<br>M  |     | H<br>H            |            | 7-51<br>7-52 | Ph<br>Ph | H<br>H   | Me<br>Me | H<br>H   | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  |
| 6-52<br>6-53 | Me       |     | H        | Ph       | Н        | H       | C   | Me                |            | 7-52         | Ph       | Н        | Me       | H        | Н       | Н       | Ph      | H       |
| 6-54         | Me       |     | H        | Ph       | Н        | Ph      | ı   | Н                 |            | 7-54         | Ph       | Н        | Me       | H        | Н       | H       | Н       | Ph      |
| 6-55         | Me       |     | H        | Ph       | Н        | Н       |     | Ph                | 45         | 7-55         | Me       | H        | Н        | Me       |         |         |         |         |
| 6-56         | Ph       | ]   | Н        | Ph       | Н        | Н       |     | H                 |            | 7-56         | Me       | H        | H        | Me       | Me      | H       | H       | H       |
| 6-57         | Ph       | 1   | Н        | Ph       | Η        | M       | e   | H                 |            | 7-57         | Me       | Η        | Η        | Me       | Η       | Me      | Η       | H       |
| 6-58         | Ph       | ]   | H        | Ph       | Η        | Н       |     | Me                |            | 7-58         | Me       | Η        | Η        | Me       | Η       | Η       | Me      | H       |
| 6-59         | Ph       |     | H        | Ph       | Η        | Pł      | l   | H                 |            | 7-59         | Me       | H        | H        | Me       | H       | H       | H       | Me      |
| 6-60         | Ph       |     | H        | Ph       | H        | Н       |     | Ph                |            | 7-60<br>7-61 | Me<br>Me | Н        | H<br>H   | Me       | Ph      | H       | Н       | H<br>H  |
| 6-61         | Me       |     | H        | Н        | Ph       | Н       |     | H                 | 50         | 7-61<br>7-62 | Me       | H<br>H   | Н        | Me<br>Me | H<br>H  | Ph<br>H | H<br>Ph | Н       |
| 6-62         | Me       |     | H        | H        | Ph       | M       | e   | Н                 |            | 7-62<br>7-63 | Me       | Н        | Н        | Me       | Н       | Н       | H<br>H  | н<br>Ph |
| 6-63         | Me       |     | H        | Н        | Ph       | H       |     | Me                |            | 7-64         | Ph       | Н        | Н        | Me       | Н       | H       | Н       | H       |
| 6-64         | Me       |     | H<br>u   | Н        | Ph       | Ph      | l   | H                 |            | 7-65         | Ph       | H        | H        | Me       | Me      | H       | H       | H       |
| 6-65         | Me       |     | H<br>u   | Н        | Ph       | Н       |     | Ph<br>u           |            | 7-66         | Ph       | Η        | Η        | Me       | H       | Me      | H       | H       |
| 6-66<br>6-67 | Ph<br>Ph |     | H<br>H   | H<br>H   | Ph<br>Ph | H<br>M  |     | H<br>H            | 55         | 7-67         | Ph       | Η        | Η        | Me       | Н       | Η       | Me      | Н       |
| 6-68         | Pn<br>Ph |     | н<br>Н   | Н        | Ph<br>Ph | M<br>H  | ·   | н<br>Ме           |            | 7-68         | Ph       | Η        | Η        | Me       | H       | Н       | Н       | Me      |
| 6-69         | Ph       |     | п<br>Н   | Н        | Ph       | л<br>Ph | 1   | Н                 |            | 7-69         | Ph       | H        | H        | Me       | Ph      | H       | H       | H       |
| 6-70         | Ph       |     | н<br>Н   | Н        | Ph       | H       |     | н<br>Ph           |            | 7-70         | Ph       | H        | H        | Me       | H       | Ph      | Н       | H       |
| - 0 70       | 111      |     | **       | -11      | 1 11     | 11      |     | * *1              | _          | 7-71<br>7-72 | Ph<br>Ph | H<br>H   | H<br>H   | Me<br>Me | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph |
|              |          |     |          |          |          |         |     |                   |            | 7-72<br>7-73 | Pn<br>Me | н<br>Ph  | Н        | Н        | Н       | Н       | H<br>H  | Pn<br>H |
|              |          |     |          |          |          |         |     |                   | 60         | 7-74         | Me       | Ph       | H        | H        | Me      | Н       | H       | H       |
|              |          |     |          | TABL     | E 7      |         |     |                   |            | 7-75         | Me       | Ph       | H        | H        | Н       | Me      | Н       | H       |
|              |          |     |          | שענייי   | _ /      |         |     |                   | _          | 7-76         | Me       | Ph       | Η        | Η        | Н       | H       | Me      | H       |
| Cpd No.      | Ra1      | Ra2 | Ra3      | Ra4      | Rb1      | Rb2     | Rb3 | Rb4               |            | 7-77         | Me       | Ph       | Η        | Η        | H       | Η       | H       | Me      |
|              |          |     |          |          |          |         |     |                   | _          | 7-78         | Me       | Ph       | H        | H        | Ph      | H       | H       | H       |
| 7-1          |          | H   | H        | H        | Н        | H       | H   | H                 | 45         | 7-79         | Me       | Ph       | H        | H        | H       | Ph      | H       | H       |
| 7-2          | Me       | Η   | Η        | Η        | Me       | Η       | Η   | H                 | 65         | 7-80         | Me       | Ph       | Η        | Η        | Η       | Η       | Ph      | Η       |

**71**TABLE 7-continued

**72** TABLE 7-continued

| Cpd No. | Ra1 | Ra2 | Ra3 | Ra4 | Rb1 | Rb2 | Rb3 | Rb4 |     | Cpd No. | Ra1 | Ra2 | Ra3 | Ra4 | Rb1 | Rb2 | Rb3 | Rb4 |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|---------|-----|-----|-----|-----|-----|-----|-----|-----|
| 7-82    | Ph  | Ph  | Н   | Н   | Н   | Н   | Н   | Н   |     | 7-105   | Ph  | Н   | Ph  | Н   | Ph  | Н   | Н   | Н   |
| 7-83    | Ph  | Ph  | H   | Н   | Me  | H   | Η   | H   | 5   | 7-106   | Ph  | Η   | Ph  | H   | Η   | Ph  | Η   | Η   |
| 7-84    | Ph  | Ph  | H   | Н   | H   | Me  | Η   | H   |     | 7-107   | Ph  | Н   | Ph  | Η   | H   | H   | Ph  | Η   |
| 7-85    | Ph  | Ph  | H   | Н   | H   | H   | Me  | H   |     | 7-108   | Ph  | H   | Ph  | Η   | Н   | H   | H   | Ph  |
| 7-86    | Ph  | Ph  | H   | H   | H   | H   | H   | Me  |     | 7-109   | Me  | H   | H   | Ph  | H   | H   | H   | H   |
| 7-87    | Ph  | Ph  | Η   | Η   | Ph  | Η   | Η   | Η   |     | 7-110   | Me  | Η   | Η   | Ph  | Me  | Η   | Η   | Η   |
| 7-88    | Ph  | Ph  | Η   | Η   | Η   | Ph  | Η   | Η   |     | 7-111   | Me  | Η   | Η   | Ph  | Η   | Me  | Η   | Η   |
| 7-89    | Ph  | Ph  | Η   | Η   | Η   | H   | Ph  | Η   | 10  | 7-112   | Me  | Η   | Η   | Ph  | Η   | H   | Me  | Η   |
| 7-90    | Ph  | Ph  | Η   | H   | H   | H   | Η   | Ph  |     | 7-113   | Me  | Η   | Η   | Ph  | Η   | H   | Η   | Me  |
| 7-91    | Me  | Η   | Ph  | Η   | Η   | H   | H   | H   |     | 7-114   | Me  | Η   | Η   | Ph  | Ph  | H   | Η   | Η   |
| 7-92    | Me  | Η   | Ph  | Η   | Me  | H   | Η   | H   |     | 7-115   | Me  | Η   | Η   | Ph  | Η   | Ph  | Η   | Η   |
| 7-93    | Me  | Η   | Ph  | Η   | Η   | Me  | Η   | Η   |     | 7-116   | Me  | Η   | Η   | Ph  | Η   | Η   | Ph  | Η   |
| 7-94    | Me  | Η   | Ph  | Η   | Η   | Η   | Me  | H   |     | 7-117   | Me  | Η   | Η   | Ph  | Η   | H   | Η   | Ph  |
| 7-95    | Me  | Η   | Ph  | Η   | Η   | Η   | Η   | Me  | 1.5 | 7-118   | Ph  | Η   | Η   | Ph  | Η   | Η   | Η   | Η   |
| 7-96    | Me  | Η   | Ph  | H   | Ph  | H   | H   | H   |     | 7-119   | Ph  | H   | H   | Ph  | Me  | Н   | H   | Η   |
| 7-97    | Me  | H   | Ph  | H   | H   | Ph  | H   | H   |     | 7-120   | Ph  | H   | H   | Ph  | Η   | Me  | Η   | H   |
| 7-98    | Me  | H   | Ph  | H   | H   | H   | Ph  | H   |     | 7-121   | Ph  | H   | H   | Ph  | H   | H   | Me  | Н   |
| 7-99    | Me  | Н   | Ph  | Н   | Н   | Н   | H   | Ph  |     | 7-122   | Ph  | H   | Н   | Ph  | H   | H   | H   | Me  |
| 7-100   | Ph  | Н   | Ph  | H   | Н   | Н   | H   | Н   |     | 7-123   | Ph  | H   | Н   | Ph  | Ph  | H   | H   | Н   |
| 7-101   | Ph  | H   | Ph  | H   | Me  | Н   | H   | H   | 20  | 7-124   | Ph  | H   | H   | Ph  | H   | Ph  | H   | H   |
| 7-102   | Ph  | H   | Ph  | Н   | Н   | Me  | H   | H   | 20  | 7-125   | Ph  | Н   | H   | Ph  | Н   | H   | Ph  | H   |
| 7-103   | Ph  | H   | Ph  | Н   | H   | H   | Me  | Н   |     | 7-126   | Ph  | Η   | Η   | Ph  | Н   | H   | Η   | Ph  |
| 7-104   | Ph  | H   | Ph  | H   | H   | H   | H   | Me  |     |         |     |     |     |     |     |     |     |     |

TABLE 8

|              |     |     |     | 17.11. | LE 8 |     |     |     |     |     |
|--------------|-----|-----|-----|--------|------|-----|-----|-----|-----|-----|
| Cpd No.      | Ra1 | Ra2 | Ra3 | Ra4    | Rb1  | Rb2 | Rb3 | Rb4 | Rb5 | Rb6 |
| 8-1          | Me  | Н   | Н   | H      | Н    | Н   | Н   | Н   | Н   | Н   |
| 8-2          | Me  | Η   | H   | Η      | Me   | H   | Η   | Η   | Η   | Η   |
| 8-3          | Me  | Η   | H   | H      | Н    | Me  | Η   | Η   | Η   | H   |
| 8-4          | Me  | Η   | H   | H      | Н    | H   | Me  | Η   | Η   | H   |
| 8-5          | Me  | Η   | Η   | Η      | Η    | Η   | Η   | Me  | Η   | Η   |
| 8-6          | Me  | Η   | H   | H      | Н    | H   | Η   | Η   | Me  | H   |
| 8-7          | Me  | Η   | H   | Η      | Η    | Η   | Η   | Η   | Η   | Me  |
| 8-8          | Me  | Η   | Η   | Η      | Ph   | Η   | Η   | Η   | Η   | Η   |
| 8-9          | Me  | Η   | H   | H      | Н    | Ph  | Η   | Η   | Η   | H   |
| 8-10         | Me  | Η   | H   | Η      | Η    | H   | Ph  | Η   | Η   | Η   |
| 8-11         | Me  | Η   | H   | H      | Н    | H   | Η   | Ph  | Η   | H   |
| 8-12         | Me  | Η   | H   | H      | Н    | H   | Η   | Η   | Ph  | H   |
| 8-13         | Me  | Η   | H   | Η      | Η    | Η   | Η   | Η   | Η   | Ph  |
| 8-14         | Ph  | Н   | H   | H      | Н    | H   | Η   | Η   | Η   | H   |
| 8-15         | Ph  | Η   | H   | H      | Me   | H   | Η   | Η   | Η   | Η   |
| 8-16         | Ph  | Η   | H   | Η      | Η    | Me  | H   | Η   | Η   | Η   |
| 8-17         | Ph  | Η   | H   | H      | Н    | H   | Me  | Η   | Η   | H   |
| 8-18         | Ph  | Η   | H   | H      | Η    | H   | Η   | Me  | Η   | Η   |
| 8-19         | Ph  | Н   | Η   | Η      | Н    | Н   | Η   | Η   | Me  | H   |
| 8-20         | Ph  | Η   | H   | Η      | Н    | Η   | Η   | Η   | Η   | Me  |
| 8-21         | Ph  | Η   | H   | H      | Ph   | H   | Η   | Η   | Η   | Η   |
| 8-22         | Ph  | Η   | H   | Η      | Н    | Ph  | Η   | Η   | Η   | H   |
| 8-23         | Ph  | Η   | H   | Η      | Н    | Η   | Ph  | Η   | Η   | H   |
| 8-24         | Ph  | Η   | H   | H      | Η    | H   | Η   | Ph  | Η   | Η   |
| 8-25         | Ph  | Η   | H   | Η      | Н    | Н   | Η   | Η   | Ph  | H   |
| 8-26         | Ph  | H   | H   | H      | H    | H   | H   | Η   | Η   | Ph  |
| 8-27         | Me  | Me  | Η   | Η      | Η    | Η   | Η   | Η   | Η   | Η   |
| 8-28         | Me  | Me  | Η   | Η      | Me   | H   | Η   | Η   | Η   | Η   |
| 8-29         | Me  | Me  | Η   | H      | Η    | Me  | Η   | Η   | H   | H   |
| 8-30         | Me  | Me  | Η   | Η      | Η    | Η   | Me  | Η   | Η   | Η   |
| 8-31         | Me  | Me  | Н   | Η      | Н    | Η   | Η   | Me  | Η   | Η   |
| 8-32         | Me  | Me  | Η   | Η      | Η    | Η   | Η   | Η   | Me  | H   |
| 8-33         | Me  | Me  | H   | Η      | Η    | H   | Η   | H   | H   | Me  |
| 8-34         | Me  | Me  | Η   | H      | Ph   | Η   | Η   | Η   | Η   | H   |
| 8-35         | Me  | Me  | H   | Η      | Η    | Ph  | Η   | Η   | Η   | H   |
| 8-36         | Me  | Me  | H   | H      | Η    | Η   | Ph  | Η   | Η   | H   |
| 8-37         | Me  | Me  | H   | Η      | Η    | H   | Η   | Ph  | Η   | Η   |
| 8-38         | Me  | Me  | Η   | Η      | Η    | Η   | Η   | Η   | Ph  | Η   |
| 8-39         | Me  | Me  | H   | H      | H    | H   | H   | H   | H   | Ph  |
| 8-40         | Ph  | Me  | Η   | Η      | Н    | Η   | Η   | Η   | Η   | Η   |
| 8-41         | Ph  | Me  | H   | H      | Me   | H   | H   | H   | H   | H   |
| 8-42         | Ph  | Me  | Н   | Н      | Н    | Me  | Н   | H   | H   | Н   |
| 8-43         | Ph  | Me  | Н   | Н      | Н    | Н   | Me  | Н   | Н   | Н   |
| 8-44         | Ph  | Me  | Н   | Н      | Н    | Н   | Н   | Me  | Н   | Н   |
| 8-45         | Ph  | Me  | Н   | H      | Н    | Н   | Н   | Н   | Me  | H   |
| 8-46         | Ph  | Me  | Н   | H      | Н    | Н   | Н   | Н   | H   | Me  |
| 8-40<br>8-47 |     |     |     |        |      |     |     |     |     |     |
|              | Ph  | Me  | H   | Н      | Ph   | Н   | H   | H   | H   | H   |
| 8-48         | Ph  | Me  | Н   | H      | Н    | Ph  | Η   | Η   | Η   | H   |

73
TABLE 8-continued

| Cpd No.        | Ra1      | Ra2      | Ra3      | Ra4      | Rb1     | Rb2     | Rb3     | Rb4     | Rb5    | Rb6     |
|----------------|----------|----------|----------|----------|---------|---------|---------|---------|--------|---------|
| 8-49           | Ph       | Me       | Н        | Н        | Н       | Н       | Ph      | Н       | Н      | Н       |
| 8-50           | Ph       | Me       | H        | Н        | Н       | H       | Н       | Ph      | H      | H       |
| 8-51           | Ph       | Me       | H        | H        | H       | H       | H       | H       | Ph     | H       |
| 8-52<br>8-53   | Ph<br>Me | Me<br>H  | H<br>Me  | H<br>H   | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H | Ph<br>H |
| 8-54           | Me       | H        | Me       | Н        | Me      | H       | H       | H       | H      | Н       |
| 8-55           | Me       | Н        | Me       | Н        | Н       | Me      | Н       | Н       | Н      | Н       |
| 8-56           | Me       | Н        | Me       | Н        | Η       | H       | Me      | H       | H      | Η       |
| 8-57           | Me       | Η        | Me       | Н        | Η       | Η       | H       | Me      | Η      | Η       |
| 8-58           | Me       | H        | Me       | Н        | H       | H       | H       | H       | Me     | Н       |
| 8-59<br>8-60   | Me<br>Me | H<br>H   | Me<br>Me | H<br>H   | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H | Me<br>H |
| 8-61           | Me       | Н        | Me       | Н        | Н       | Ph      | Н       | Н       | Н      | H       |
| 8-62           | Me       | Н        | Me       | Н        | Η       | Н       | Ph      | H       | Н      | Н       |
| 8-63           | Me       | Η        | Me       | Н        | Η       | Η       | Η       | Ph      | Η      | H       |
| 8-64           | Me       | H        | Me       | Н        | Н       | H       | H       | H       | Ph     | H       |
| 8-65<br>8-66   | Me<br>Ph | H<br>H   | Me<br>Me | H<br>H   | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H | Ph<br>H |
| 8-67           | Ph       | Н        | Me       | Н        | Мe      | Н       | Н       | Н       | Н      | Н       |
| 8-68           | Ph       | H        | Me       | H        | Н       | Me      | H       | H       | H      | H       |
| 8-69           | Ph       | H        | Me       | Н        | Η       | H       | Me      | H       | H      | H       |
| 8-70           | Ph       | Η        | Me       | Η        | Η       | Η       | Η       | Me      | Η      | Η       |
| 8-71           | Ph       | H        | Me       | H        | H       | H       | H       | H       | Me     | Н       |
| 8-72<br>8-73   | Ph       | H        | Me       | H        | H       | H       | H       | H       | H      | Me      |
| 8-73<br>8-74   | Ph<br>Ph | H<br>H   | Me<br>Me | H<br>H   | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H | H<br>H  |
| 8-75           | Ph       | Н        | Me       | Н        | Н       | Н       | Ph      | Н       | Н      | Н       |
| 8-76           | Ph       | H        | Me       | H        | Н       | H       | Н       | Ph      | H      | H       |
| 8-77           | Ph       | H        | Me       | H        | Η       | Η       | Η       | Η       | Ph     | H       |
| 8-78           | Ph       | H        | Me       | Н        | Η       | H       | H       | H       | Η      | Ph      |
| 8-79           | Me       | H        | H        | Me       | H<br>M- | H       | H       | H       | H      | H       |
| 8-80<br>8-81   | Me<br>Me | H<br>H   | H<br>H   | Me<br>Me | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H | H<br>H  |
| 8-82           | Me       | Н        | H        | Me       | Н       | Н       | Me      | Н       | Н      | Н       |
| 8-83           | Me       | H        | H        | Me       | Н       | H       | H       | Me      | H      | H       |
| 8-84           | Me       | Η        | Η        | Me       | Η       | Η       | Η       | Η       | Me     | Η       |
| 8-85           | Me       | H        | H        | Me       | Η       | H       | H       | H       | H      | Me      |
| 8-86           | Me       | H<br>H   | H<br>H   | Me       | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H | H<br>H  |
| 8-87<br>8-88   | Me<br>Me | Н        | Н        | Me<br>Me | Н       | Н       | л<br>Ph | Н       | Н      | Н       |
| 8-89           | Me       | H        | H        | Me       | Н       | Н       | Н       | Ph      | Н      | Н       |
| 8-90           | Me       | Н        | H        | Me       | Η       | Η       | H       | Н       | Ph     | Н       |
| 8-91           | Me       | Η        | Η        | Me       | Η       | Η       | H       | Η       | H      | Ph      |
| 8-92           | Ph       | H        | H        | Me       | Н       | H       | H       | H       | H      | H       |
| 8-93<br>8-94   | Ph<br>Ph | H<br>H   | H<br>H   | Me<br>Me | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H | H<br>H  |
| 8-95           | Ph       | H        | H        | Me       | Н       | Н       | Me      | Н       | Н      | Н       |
| 8-96           | Ph       | H        | H        | Me       | Н       | Н       | Н       | Me      | H      | Н       |
| 8-97           | Ph       | Η        | H        | Me       | Η       | Η       | H       | Η       | Me     | Η       |
| 8-98           | Ph       | H        | H        | Me       | H       | H       | H       | H       | H      | Me      |
| 8-99           | Ph       | H<br>H   | H<br>H   | Me       | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H | H<br>H  |
| 8-100<br>8-101 | Ph<br>Ph | Н        | Н        | Me<br>Me | Н       | Н       | л<br>Ph | Н       | Н      | Н       |
| 8-102          | Ph       | Н        | Н        | Me       | Н       | Н       | Н       | Ph      | Н      | Н       |
| 8-103          | Ph       | Н        | H        | Me       | Η       | Η       | H       | H       | Ph     | Η       |
| 8-104          | Ph       | H        | H        | Me       | Η       | Η       | H       | Η       | Η      | Ph      |
| 8-105          | Me       | Ph       | H        | Н        | Н       | H       | H       | Н       | Н      | H       |
| 8-106<br>8-107 | Me<br>Me | Ph<br>Ph | H<br>H   | H<br>H   | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H | H<br>H  |
| 8-107          | Me       | Ph       | H        | Н        | H       | H       | Me      | H       | Н      | H       |
| 8-109          | Me       | Ph       | H        | H        | Н       | Н       | Н       | Me      | Н      | H       |
| 8-110          | Me       | Ph       | H        | Н        | Η       | H       | H       | H       | Me     | Н       |
| 8-111          | Me       | Ph       | Η        | Η        | Η       | Η       | H       | H       | H      | Me      |
| 8-112          | Me       | Ph       | H        | H        | Ph      | H       | H       | H       | H      | H       |
| 8-113<br>8-114 | Me<br>Me | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H | H<br>H  |
| 8-115          | Me       | Ph       | Н        | Н        | Н       | Н       | Н       | л<br>Ph | Н      | Н       |
| 8-116          | Me       | Ph       | H        | Н        | Н       | Н       | Н       | Н       | Ph     | Н       |
| 8-117          | Me       | Ph       | H        | Н        | Η       | Η       | Η       | Н       | Н      | Ph      |
| 8-118          | Ph       | Ph       | H        | Н        | Н       | H       | Н       | Н       | Н      | Н       |
| 8-119          | Ph       | Ph       | H        | H        | Me      | H       | H       | H       | H      | H       |
| 8-120<br>8-121 | Ph<br>Ph | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H | H<br>H  |
| 8-121          | Ph       | Ph       | Н        | Н        | Н       | Н       | H       | н<br>Ме | Н      | Н       |
| 8-123          | Ph       | Ph       | H        | H        | Н       | Н       | Н       | Н       | Me     | Н       |
| 8-124          | Ph       | Ph       | H        | H        | H       | H       | H       | H       | H      | Me      |
| 8-125          | Ph       | Ph       | H        | Н        | Ph      | Η       | Η       | Η       | Н      | Η       |
| 8-126          | Ph       | Ph       | H        | Η        | Η       | Ph      | Η       | Н       | H      | Η       |

75
TABLE 8-continued

|         |     |     |          | DLL 0    |     |     |         |     |     |     |
|---------|-----|-----|----------|----------|-----|-----|---------|-----|-----|-----|
| Cpd No. | Ra1 | Ra2 | Ra3      | Ra4      | Rb1 | Rb2 | Rb3     | Rb4 | Rb5 | Rb6 |
| 8-127   | Ph  | Ph  | Н        | Н        | Н   | Н   | Ph      | Н   | Н   | Н   |
| 8-128   | Ph  | Ph  | H        | Η        | Η   | Η   | H       | Ph  | Η   | H   |
| 8-129   | Ph  | Ph  | H        | H        | Η   | Η   | Η       | Η   | Ph  | H   |
| 8-130   | Ph  | Ph  | Η        | Η        | Η   | Η   | Η       | Η   | Η   | Ph  |
| 8-131   | Me  | H   | Ph       | H        | Η   | Η   | H       | H   | Н   | Н   |
| 8-132   | Me  | H   | Ph       | H        | Me  | Η   | Η       | Η   | Н   | Н   |
| 8-133   | Me  | H   | Ph       | H        | Н   | Me  | Н       | Н   | Н   | Н   |
| 8-134   | Me  | H   | Ph       | H        | Η   | Η   | Me      | H   | Н   | Н   |
| 8-135   | Me  | H   | Ph       | H        | Н   | H   | Н       | Me  | Н   | Н   |
| 8-136   | Me  | H   | Ph       | H        | H   | H   | H       | H   | Me  | Н   |
| 8-137   | Me  | H   | Ph       | H        | H   | H   | Н       | H   | Н   | Me  |
| 8-138   | Me  | H   | Ph       | H        | Ph  | Н   | H       | Н   | Н   | Н   |
| 8-139   | Me  | H   | Ph       | H        | Н   | Ph  | Н       | H   | Н   | Н   |
| 8-140   | Me  | H   | Ph       | H        | Н   | Н   | Ph      | Н   | Н   | Н   |
| 8-141   | Me  | H   | Ph       | Н        | Н   | Н   | Н       | Ph  | Н   | Н   |
| 8-142   | Me  | H   | Ph       | Н        | Н   | Н   | Н       | Н   | Ph  | Н   |
| 8-143   | Me  | H   | Ph       | H        | H   | H   | H       | H   | Н   | Ph  |
| 8-144   | Ph  | H   | Ph       | Н        | Н   | Н   | H       | H   | Н   | Н   |
| 8-145   | Ph  | H   | Ph       | H        | Me  | Н   | H       | H   | H   | Н   |
| 8-146   | Ph  | H   | Ph       | H        | Н   | Me  | Н       | Н   | Н   | H   |
| 8-147   | Ph  | H   | Ph       | Н        | Н   | Н   | Me      | Н   | Н   | H   |
| 8-148   | Ph  | H   | Ph       | H        | Н   | Н   | Н       | Me  | Н   | H   |
| 8-149   | Ph  | H   | Ph       | H        | Н   | Н   | Н       | Н   | Me  | Н   |
| 8-150   | Ph  | Н   | Ph       | Н        | Н   | Н   | Н       | Н   | H   | Me  |
| 8-151   | Ph  | H   | Ph       | H        | Ph  | Н   | Н       | H   | H   | Н   |
| 8-152   | Ph  | Н   | Ph       | Н        | Н   | Ph  | Н       | Н   | Н   | Н   |
| 8-153   | Ph  | Н   | Ph       | Н        | Н   | Н   | г<br>Ph | Н   | Н   | Н   |
|         |     | Н   | Ph<br>Ph | Н        | Н   |     |         |     |     | Н   |
| 8-154   | Ph  |     |          | Н        | Н   | H   | H       | Ph  | H   |     |
| 8-155   | Ph  | H   | Ph       | H<br>H   | Н   | Н   | H       | H   | Ph  | H   |
| 8-156   | Ph  | H   | Ph       | н<br>Ph  |     | Н   | H       | H   | H   | Ph  |
| 8-157   | Me  | H   | H        |          | Н   | H   | H       | H   | H   | H   |
| 8-158   | Me  | H   | H        | Ph       | Me  | Н   | H       | H   | H   | H   |
| 8-159   | Me  | H   | H        | Ph       | Н   | Me  | Н       | Н   | H   | H   |
| 8-160   | Me  | H   | H        | Ph       | H   | H   | Me      | Н   | H   | H   |
| 8-161   | Me  | H   | H        | Ph       | Н   | Н   | Н       | Me  | Н   | H   |
| 8-162   | Me  | H   | H        | Ph       | H   | H   | H       | H   | Me  | Н   |
| 8-163   | Me  | H   | H        | Ph       | H   | Н   | Н       | Н   | Н   | Me  |
| 8-164   | Me  | H   | H        | Ph       | Ph  | H   | Н       | Н   | Н   | H   |
| 8-165   | Me  | H   | H        | Ph       | H   | Ph  | H       | H   | H   | H   |
| 8-166   | Me  | H   | H        | Ph       | Н   | Н   | Ph      | H   | H   | H   |
| 8-167   | Me  | Н   | H        | Ph       | Н   | Н   | Н       | Ph  | H   | H   |
| 8-168   | Me  | H   | H        | Ph       | H   | H   | H       | H   | Ph  | H   |
| 8-169   | Me  | H   | H        | Ph       | H   | H   | H       | H   | H   | Ph  |
| 8-170   | Ph  | H   | H        | Ph       | Н   | H   | H       | H   | H   | H   |
| 8-171   | Ph  | H   | H        | Ph       | Me  | Η   | H       | H   | Η   | H   |
| 8-172   | Ph  | Η   | Η        | Ph       | H   | Me  | Η       | Η   | Η   | H   |
| 8-173   | Ph  | Η   | Η        | Ph       | Η   | Η   | Me      | Η   | Η   | Н   |
| 8-174   | Ph  | Η   | H        | Ph       | Η   | Η   | H       | Me  | H   | H   |
| 8-175   | Ph  | Η   | H        | Ph       | Н   | Н   | H       | Η   | Me  | Н   |
| 8-176   | Ph  | H   | H        | Ph       | H   | H   | Н       | H   | Н   | Me  |
| 8-177   | Ph  | Н   | H        | Ph       | Ph  | Н   | Н       | Н   | Н   | Н   |
| 8-178   | Ph  | H   | H        | Ph       | Н   | Ph  | Н       | Н   | Н   | Н   |
| 8-179   | Ph  | H   | H        | Ph       | Н   | Н   | Ph      | Н   | Н   | Н   |
| 8-179   | Ph  | Н   | Н        | Ph       | Н   | Н   | Н       | Ph  | Н   | H   |
|         |     | Н   |          | Ph<br>Ph | Н   |     |         |     |     |     |
| 8-181   | Ph  |     | H        |          |     | H   | H       | H   | Ph  | H   |
| 8-182   | Ph  | Η   | Η        | Ph       | Η   | Н   | Η       | Н   | Η   | Ph  |

TABLE 9

| Cpd No. | Ra1 | Ra2 | Ra3 | Ra4 | Rb1 | Rb2 | Rb3 | Rb4 | Rb5 | Rb6 | Rb7 |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 9-1     | Me  | Н   | Н   | Н   | Н   | Н   | Н   | Н   | Н   | Н   | Me  |
| 9-2     | Me  | Η   | Η   | Η   | Me  | Η   | Η   | Η   | Η   | Η   | Me  |
| 9-3     | Me  | H   | H   | H   | H   | Me  | Η   | H   | H   | Η   | Me  |
| 9-4     | Me  | H   | H   | Н   | Η   | Н   | Me  | H   | Η   | Η   | Me  |
| 9-5     | Me  | H   | H   | H   | H   | Н   | Н   | Me  | Η   | Η   | Me  |
| 9-6     | Me  | H   | Η   | H   | H   | H   | H   | Η   | Me  | Η   | Me  |
| 9-7     | Me  | Η   | Η   | H   | H   | Н   | Η   | Η   | Η   | Me  | Me  |
| 9-8     | Me  | H   | H   | H   | Ph  | Н   | Н   | Η   | Η   | Η   | Me  |
| 9-9     | Me  | H   | H   | H   | H   | Ph  | H   | Η   | Η   | Η   | Me  |
| 9-10    | Me  | Η   | Η   | H   | H   | Н   | Ph  | Η   | Η   | Η   | Me  |
| 9-11    | Me  | H   | H   | H   | H   | H   | H   | Ph  | H   | H   | Me  |
| 9-12    | Me  | H   | H   | H   | H   | Η   | H   | H   | Ph  | Η   | Me  |
| 9-13    | Me  | Η   | Η   | H   | H   | Н   | Η   | Η   | Η   | Ph  | Me  |
| 9-14    | Ph  | Η   | Н   | Н   | Η   | Н   | Н   | Н   | Н   | H   | Me  |

TABLE 9-continued

| Cpd No.      | Ra1      | Ra2      | Ra3      | Ra4      | Rb1     | Rb2     | Rb3     | Rb4     | Rb5     | Rb6     | Rb7      |
|--------------|----------|----------|----------|----------|---------|---------|---------|---------|---------|---------|----------|
| 9-15         | Ph       | Н        | Н        | Н        | Me      | Н       | Η       | Η       | Η       | Н       | Me       |
| 9-16<br>9-17 | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H   | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  | Me<br>Me |
| 9-17         | Ph       | Н        | Н        | Н        | Н       | Н       | H       | Mе      | Н       | Н       | Me       |
| 9-19         | Ph       | H        | H        | H        | H       | H       | H       | H       | Me      | Н       | Me       |
| 9-20         | Ph       | H        | H        | H        | H       | H       | H       | H       | H       | Me      | Me       |
| 9-21<br>9-22 | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H   | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>Me |
| 9-23         | Ph       | H        | H        | Н        | Н       | Н       | Ph      | H       | Н       | Н       | Me       |
| 9-24         | Ph       | Η        | H        | H        | H       | H       | H       | Ph      | Н       | H       | Me       |
| 9-25<br>9-26 | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H   | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | Me<br>Me |
| 9-27         | Me       | Me       | H        | Н        | H       | Н       | H       | H       | H       | Н       | Me       |
| 9-28         | Me       | Me       | Η        | Η        | Me      | Η       | Η       | Η       | Η       | Η       | Me       |
| 9-29         | Me       | Me       | H        | H        | H       | Me      | H       | H       | H       | H       | Me       |
| 9-30<br>9-31 | Me<br>Me | Me<br>Me | H<br>H   | H<br>H   | H<br>H  | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  | Me<br>Me |
| 9-32         | Me       | Me       | H        | H        | Н       | Н       | Н       | Н       | Me      | Н       | Me       |
| 9-33         | Me       | Me       | H        | H        | H       | H       | H       | H       | Н       | Me      | Me       |
| 9-34<br>9-35 | Me<br>Me | Me<br>Me | H<br>H   | H<br>H   | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>Me |
| 9-36         | Me       | Me       | H        | H        | H       | Н       | Ph      | H       | H       | H       | Me       |
| 9-37         | Me       | Me       | Η        | H        | H       | Н       | H       | Ph      | H       | Н       | Me       |
| 9-38<br>9-39 | Me<br>Me | Me<br>Me | H<br>H   | H<br>H   | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | Me<br>Me |
| 9-40         | Ph       | Me       | H        | Н        | Н       | Н       | Н       | H       | Н       | Н       | Me       |
| 9-41         | Ph       | Me       | Η        | Η        | Me      | Η       | Η       | Η       | Η       | Η       | Me       |
| 9-42<br>9-43 | Ph<br>Ph | Me       | H<br>H   | H<br>H   | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  | Me       |
| 9-44         | Ph       | Me<br>Me | H        | H        | H       | Н       | H       | Me      | Н       | H       | Me<br>Me |
| 9-45         | Ph       | Me       | Η        | H        | Η       | Η       | Η       | Η       | Me      | Η       | Me       |
| 9-46         | Ph       | Me       | H        | H        | H       | H       | H       | H       | H       | Me      | Me       |
| 9-47<br>9-48 | Ph<br>Ph | Me<br>Me | H<br>H   | H<br>H   | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>Me |
| 9-49         | Ph       | Me       | H        | H        | Н       | Н       | Ph      | Н       | H       | Н       | Me       |
| 9-50         | Ph       | Me       | H        | H        | H       | H       | H       | Ph      | H       | H       | Me       |
| 9-51<br>9-52 | Ph<br>Ph | Me<br>Me | H<br>H   | H<br>H   | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | Me<br>Me |
| 9-53         | Me       | H        | Me       | H        | H       | H       | Н       | H       | H       | Н       | Me       |
| 9-54         | Me       | H        | Me       | H        | Me      | Н       | H       | H       | Н       | Н       | Me       |
| 9-55<br>9-56 | Me<br>Me | H<br>H   | Me<br>Me | H<br>H   | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  | Me<br>Me |
| 9-57         | Me       | Н        | Me       | Н        | Н       | Н       | Н       | Me      | Н       | Н       | Me       |
| 9-58         | Me       | H        | Me       | Н        | Н       | Н       | H       | H       | Me      | Н       | Me       |
| 9-59<br>9-60 | Me<br>Me | H<br>H   | Me<br>Me | H<br>H   | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H | Me<br>Me |
| 9-61         | Me       | Н        | Me       | Н        | Н       | Ph      | Н       | Н       | Н       | Н       | Me       |
| 9-62         | Me       | Η        | Me       | Н        | Н       | Н       | Ph      | H       | Н       | Н       | Me       |
| 9-63<br>9-64 | Me<br>Me | H<br>H   | Me<br>Me | H<br>H   | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | Me<br>Me |
| 9-65         | Me       | H        | Me       | Н        | Н       | Н       | Н       | H       | Н       | Ph      | Me       |
| 9-66         | Ph       | Η        | Me       | Η        | Η       | Η       | Η       | Η       | Н       | Н       | Me       |
| 9-67<br>9-68 | Ph<br>Ph | H<br>H   | Me<br>Me | H<br>H   | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>Me |
| 9-69         | Ph       | H        | Me       | Н        | Н       | Н       | Me      | H       | Н       | Н       | Me       |
| 9-70         | Ph       | H        | Me       | Η        | Η       | Η       | Η       | Me      | Η       | Η       | Me       |
| 9-71<br>9-72 | Ph<br>Ph | H<br>H   | Me<br>Me | H<br>H   | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H | H<br>Me | Me       |
| 9-72         | Ph       | Н        | Me       | Н        | п<br>Ph | Н       | Н       | Н       | Н       | H       | Me<br>Me |
| 9-74         | Ph       | H        | Me       | H        | H       | Ph      | Η       | H       | H       | H       | Me       |
| 9-75         | Ph       | H        | Me       | H        | H       | H       | Ph      | H       | H       | H       | Me       |
| 9-76<br>9-77 | Ph<br>Ph | H<br>H   | Me<br>Me | H<br>H   | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | Me<br>Me |
| 9-78         | Ph       | Η        | Me       | Н        | Н       | Н       | Η       | H       | Н       | Ph      | Me       |
| 9-79         | Me       | Η        | Η        | Me       | Н       | Η       | Н       | Η       | Н       | Н       | Me       |
| 9-80<br>9-81 | Me<br>Me | H<br>H   | H<br>H   | Me<br>Me | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>Me |
| 9-82         | Me       | H        | H        | Me       | Н       | Н       | Me      | H       | Н       | Н       | Me       |
| 9-83         | Me       | Η        | Η        | Me       | Η       | Η       | H       | Me      | Н       | Н       | Me       |
| 9-84<br>9-85 | Me<br>Me | H<br>H   | H<br>H   | Me<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H | H<br>Me | Me<br>Me |
| 9-85<br>9-86 | Me<br>Me | H<br>H   | H<br>H   | Me<br>Me | н<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | ме<br>Н | Me<br>Me |
| 9-87         | Me       | Η        | Η        | Me       | Η       | Ph      | Η       | Η       | Η       | Η       | Me       |
| 9-88         | Me       | H        | H        | Me       | Н       | Н       | Ph      | H       | H       | H       | Me       |
| 9-89<br>9-90 | Me<br>Me | H<br>H   | H<br>H   | Me<br>Me | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | Me<br>Me |
| 9-91         | Me       | H        | H        | Me       | Н       | Н       | Н       | Н       | Н       | Ph      | Me       |
| 9-92         | Ph       | H        | H        | Me       | H       | H       | H       | H       | H       | H       | Me       |

TABLE 9-continued

|                |          |          |          | IADI     | _E 9 <b>-</b> ( | contin  | ueu     |         |         |         |          |
|----------------|----------|----------|----------|----------|-----------------|---------|---------|---------|---------|---------|----------|
| Cpd No.        | Ra1      | Ra2      | Ra3      | Ra4      | Rb1             | Rb2     | Rb3     | Rb4     | Rb5     | Rb6     | Rb7      |
| 9-93           | Ph       | Н        | Н        | Me       | Me              | Н       | Н       | Н       | Н       | Н       | Me       |
| 9-94           | Ph       | H        | H        | Me       | Н               | Me      | H       | H       | H       | H       | Me       |
| 9-95           | Ph       | H        | H        | Me       | Η               | Η       | Me      | H       | Η       | Η       | Me       |
| 9-96           | Ph       | H        | H        | Me       | Η               | H       | Η       | Me      | Η       | Η       | Me       |
| 9-97           | Ph       | H        | H        | Me       | Н               | Н       | Н       | H       | Me      | Н       | Me       |
| 9-98<br>9-99   | Ph<br>Ph | H<br>H   | H<br>H   | Me<br>Me | H<br>Ph         | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H | Me<br>Me |
| 9-99           | Ph       | Н        | Н        | Me       | Н               | Ph      | Н       | Н       | Н       | Н       | Me       |
| 9-101          | Ph       | H        | H        | Me       | Н               | Н       | Ph      | H       | H       | H       | Me       |
| 9-102          | Ph       | H        | H        | Me       | H               | H       | H       | Ph      | H       | H       | Me       |
| 9-103          | Ph       | Η        | H        | Me       | H               | H       | Η       | H       | Ph      | H       | Me       |
| 9-104          | Ph       | H        | H        | Me       | H               | H       | H       | H       | H       | Ph      | Me       |
| 9-105<br>9-106 | Me<br>Me | Ph<br>Ph | H<br>H   | H<br>H   | H<br>Me         | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>Me |
| 9-100          | Me       | Ph       | Н        | Н        | H               | Мe      | Н       | Н       | Н       | Н       | Me       |
| 9-108          | Me       | Ph       | Н        | Н        | Н               | Н       | Me      | H       | Н       | H       | Me       |
| 9-109          | Me       | Ph       | H        | H        | Η               | H       | H       | Me      | H       | H       | Me       |
| 9-110          | Me       | Ph       | H        | Η        | Η               | H       | Η       | H       | Me      | Η       | Me       |
| 9-111          | Me       | Ph       | H        | H        | H               | H       | Н       | H       | H       | Me      | Me       |
| 9-112<br>9-113 | Me<br>Me | Ph<br>Ph | H<br>H   | H<br>H   | Ph<br>H         | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>Me |
| 9-113          | Me       | Ph       | Н        | Н        | Н               | Н       | п<br>Ph | Н       | Н       | Н       | Me       |
| 9-115          | Me       | Ph       | Н        | Н        | Н               | Н       | Н       | Ph      | Н       | Н       | Me       |
| 9-116          | Me       | Ph       | H        | H        | H               | H       | H       | H       | Ph      | H       | Me       |
| 9-117          | Me       | Ph       | Η        | Η        | Η               | Η       | Η       | Η       | Η       | Ph      | Me       |
| 9-118          | Ph       | Ph       | H        | H        | Η               | H       | H       | H       | H       | H       | Me       |
| 9-119          | Ph       | Ph       | H        | H        | Me              | H       | H       | H       | H       | H       | Me       |
| 9-120<br>9-121 | Ph<br>Ph | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H          | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  | Me<br>Me |
| 9-122          | Ph       | Ph       | H        | Н        | H               | Н       | Н       | Me      | H       | H       | Me       |
| 9-123          | Ph       | Ph       | H        | H        | H               | H       | H       | Н       | Me      | H       | Me       |
| 9-124          | Ph       | Ph       | H        | Η        | Η               | H       | H       | H       | H       | Me      | Me       |
| 9-125          | Ph       | Ph       | Η        | Η        | Ph              | Н       | Η       | Η       | Η       | Н       | Me       |
| 9-126          | Ph       | Ph       | H        | H        | H               | Ph      | H       | H       | H       | H       | Me       |
| 9-127<br>9-128 | Ph<br>Ph | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H          | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | Me<br>Me |
| 9-129          | Ph       | Ph       | H        | Н        | Н               | H       | Н       | Н       | Ph      | H       | Me       |
| 9-130          | Ph       | Ph       | H        | H        | Н               | Н       | Н       | Н       | Н       | Ph      | Me       |
| 9-131          | Me       | H        | Ph       | H        | Η               | H       | H       | H       | H       | H       | Me       |
| 9-132          | Me       | H        | Ph       | Η        | Me              | H       | Η       | H       | H       | H       | Me       |
| 9-133          | Me       | Н        | Ph       | H        | Н               | Me      | Н       | H       | Н       | Н       | Me       |
| 9-134<br>9-135 | Me<br>Me | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H          | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  | Me<br>Me |
| 9-136          | Me       | H        | Ph       | Н        | H               | Н       | Н       | Н       | Me      | H       | Me       |
| 9-137          | Me       | H        | Ph       | H        | Η               | H       | Н       | H       | H       | Me      | Me       |
| 9-138          | Me       | H        | Ph       | Η        | Ph              | H       | H       | H       | H       | H       | Me       |
| 9-139          | Me       | H        | Ph       | H        | Η               | Ph      | H       | H       | H       | H       | Me       |
| 9-140<br>9-141 | Me       | H        | Ph<br>Ph | H        | H               | H       | Ph      | H       | H       | H       | Me       |
| 9-141          | Me<br>Me | H<br>H   | Ph       | H<br>H   | H<br>H          | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | Me<br>Me |
| 9-143          | Me       | H        | Ph       | Н        | Н               | Н       | Н       | Н       | Н       | Ph      | Me       |
| 9-144          | Ph       | H        | Ph       | H        | Η               | H       | H       | H       | H       | H       | Me       |
| 9-145          | Ph       | Η        | Ph       | Η        | Me              | Η       | Η       | Η       | H       | Η       | Me       |
| 9-146          | Ph       | H        | Ph       | H        | H               | Me      | H       | H       | H       | H       | Me       |
| 9-147<br>9-148 | Ph<br>Ph | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H          | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  | Me<br>Me |
| 9-149          | Ph       | H        | Ph       | Н        | Н               | Н       | Н       | Н       | Me      | Н       | Me       |
| 9-150          | Ph       | H        | Ph       | H        | Н               | H       | H       | H       | H       | Me      | Me       |
| 9-151          | Ph       | H        | Ph       | Η        | Ph              | Η       | Η       | H       | H       | H       | Me       |
| 9-152          | Ph       | H        | Ph       | Η        | Η               | Ph      | H       | H       | H       | H       | Me       |
| 9-153          | Ph       | H        | Ph       | Н        | Н               | Н       | Ph      | H       | H       | Н       | Me       |
| 9-154<br>9-155 | Ph<br>Ph | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H          | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | Me<br>Me |
| 9-156          | Ph       | Н        | Ph       | Н        | Н               | Н       | Н       | H       | Н       | Ph      | Me       |
| 9-157          | Me       | Н        | Н        | Ph       | Н               | Н       | Н       | Н       | H       | Н       | Me       |
| 9-158          | Me       | H        | H        | Ph       | Me              | H       | H       | H       | H       | H       | Me       |
| 9-159          | Me       | H        | H        | Ph       | Η               | Me      | Η       | H       | H       | H       | Me       |
| 9-160<br>9-161 | Me       | H        | H        | Ph       | H               | H       | Me      | H       | H       | H       | Me       |
| 9-161          | Me<br>Me | H<br>H   | H<br>H   | Ph<br>Ph | H<br>H          | H<br>H  | H<br>H  | Me<br>H | H<br>Me | H<br>H  | Me<br>Me |
| 9-163          | Me       | Н        | Н        | Ph       | Н               | Н       | Н       | Н       | H       | П<br>Ме | Me       |
| 9-164          | Me       | H        | H        | Ph       | Ph              | Н       | H       | H       | H       | Н       | Me       |
| 9-165          | Me       | Η        | Η        | Ph       | Η               | Ph      | Η       | Η       | Η       | Η       | Me       |
| 9-166          | Me       | H        | H        | Ph       | Н               | Н       | Ph      | H       | H       | Н       | Me       |
| 9-167          | Me       | H        | H        | Ph       | H               | H       | H       | Ph      | H       | H       | Me       |
| 9-168<br>9-169 | Me<br>Me | H<br>H   | H<br>H   | Ph<br>Ph | H<br>H          | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | Me<br>Me |
| 9-169          | Ph       | Н        | Н        | Ph<br>Ph | Н               | Н       | Н       | Н       | Н       | Pn<br>H | Me       |
| 2 110          | 1 11     | 11       | **       | 111      | **              | **      | **      | **      | 1.1     | **      | 1410     |

**81** TABLE 9-continued

| Cpd No. | Ra1 | Ra2 | Ra3 | Ra4 | Rb1 | Rb2 | Rb3 | Rb4 | Rb5 | Rb6 | Rb7 |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 9-171   | Ph  | Н   | Н   | Ph  | Me  | Н   | Н   | Н   | Н   | Н   | Me  |
| 9-172   | Ph  | H   | H   | Ph  | H   | Me  | Η   | H   | H   | H   | Me  |
| 9-173   | Ph  | H   | H   | Ph  | H   | H   | Me  | H   | Η   | Н   | Me  |
| 9-174   | Ph  | H   | H   | Ph  | H   | H   | H   | Me  | H   | H   | Me  |
| 9-175   | Ph  | H   | Η   | Ph  | H   | H   | H   | Η   | Me  | H   | Me  |
| 9-176   | Ph  | H   | H   | Ph  | H   | H   | H   | H   | H   | Me  | Me  |
| 9-177   | Ph  | H   | H   | Ph  | Ph  | H   | H   | H   | H   | H   | Me  |
| 9-178   | Ph  | H   | Η   | Ph  | H   | Ph  | Η   | Η   | Η   | Н   | Me  |
| 9-179   | Ph  | H   | H   | Ph  | H   | Η   | Ph  | Η   | Η   | Н   | Me  |
| 9-180   | Ph  | H   | Η   | Ph  | H   | Η   | Η   | Ph  | Η   | Н   | Me  |
| 9-181   | Ph  | H   | H   | Ph  | H   | Η   | Η   | Η   | Ph  | Н   | Me  |
| 9-182   | Ph  | Η   | Η   | Ph  | Η   | Η   | Η   | Н   | Н   | Ph  | Me  |

TABLE 10

| Cpd No. | Ra1 | Ra2    | Ra3 | Ra4 | Rb1     | Rb2 | Rb3 | Rb4 | Rb5 | Rb6 | Rb7    | Rb8 |
|---------|-----|--------|-----|-----|---------|-----|-----|-----|-----|-----|--------|-----|
| 10-1    | Me  | Н      | Н   | Н   | Н       | Н   | Н   | Н   | Н   | Н   | TT     | Н   |
|         |     | Н      | Н   | Н   | п<br>Ме | Н   | Н   | Н   | Н   | Н   | H<br>H | Н   |
| 10-2    | Me  |        |     | Н   | Н       |     |     | Н   | Н   |     | Н      | Н   |
| 10-3    | Me  | H<br>H | H   |     | Н       | Me  | Н   | Н   | Н   | H   | Н      | Н   |
| 10-4    | Me  |        | H   | H   |         | H   | Me  |     |     | H   |        |     |
| 10-5    | Me  | H      | H   | H   | H       | H   | Н   | Me  | Н   | H   | H      | H   |
| 10-6    | Me  | H      | H   | H   | H       | H   | Н   | H   | Me  | Н   | H      | H   |
| 10-7    | Me  | H      | H   | H   | H       | H   | H   | H   | H   | Me  | Н      | H   |
| 10-8    | Me  | H      | H   | H   | Н       | H   | Н   | H   | Н   | Н   | Me     | Н   |
| 10-9    | Me  | H      | H   | H   | H       | H   | Н   | H   | H   | Н   | H      | Me  |
| 10-10   | Me  | H      | H   | H   | Ph      | H   | H   | H   | H   | H   | H      | H   |
| 10-11   | Me  | H      | H   | H   | H       | Ph  | H   | H   | H   | Н   | H      | H   |
| 10-12   | Me  | H      | H   | H   | H       | H   | Ph  | H   | H   | H   | H      | H   |
| 10-13   | Me  | H      | H   | H   | H       | H   | H   | Ph  | H   | H   | H      | H   |
| 10-14   | Me  | H      | Н   | Н   | Н       | Н   | Н   | Н   | Ph  | H   | Н      | Н   |
| 10-15   | Me  | H      | H   | H   | H       | H   | Н   | H   | H   | Ph  | H      | H   |
| 10-16   | Me  | H      | H   | H   | H       | Н   | Н   | Н   | Н   | Н   | Ph     | H   |
| 10-17   | Me  | H      | H   | Η   | Η       | Н   | Н   | H   | H   | H   | Η      | Ph  |
| 10-18   | Ph  | H      | H   | H   | Η       | H   | H   | H   | H   | H   | Η      | H   |
| 10-19   | Ph  | H      | H   | Η   | Me      | Η   | Η   | H   | H   | H   | Η      | H   |
| 10-20   | Ph  | Η      | Η   | Η   | Η       | Me  | Η   | Η   | Η   | H   | Η      | Η   |
| 10-21   | Ph  | Η      | Η   | Η   | Η       | Η   | Me  | Η   | Η   | Η   | Η      | H   |
| 10-22   | Ph  | H      | H   | Η   | Η       | H   | H   | Me  | H   | H   | H      | H   |
| 10-23   | Ph  | Η      | Η   | Η   | Η       | Η   | Η   | Η   | Me  | Η   | Η      | H   |
| 10-24   | Ph  | Η      | Н   | Η   | Η       | Η   | H   | H   | H   | Me  | Η      | H   |
| 10-25   | Ph  | H      | Η   | Η   | Η       | Η   | Η   | H   | H   | H   | Me     | Η   |
| 10-26   | Ph  | Η      | Η   | Η   | H       | Η   | Η   | Η   | Η   | Η   | Η      | Me  |
| 10-27   | Ph  | Η      | Η   | Η   | Ph      | Η   | Η   | H   | H   | Η   | Η      | Η   |
| 10-28   | Ph  | Η      | Η   | Η   | Η       | Ph  | Η   | Η   | Η   | Η   | Η      | Η   |
| 10-29   | Ph  | Η      | Η   | Η   | Η       | Η   | Ph  | H   | H   | Η   | Η      | H   |
| 10-30   | Ph  | Η      | Η   | Η   | Η       | Η   | Η   | Ph  | H   | Η   | Η      | Η   |
| 10-31   | Ph  | Η      | Η   | Η   | Η       | Η   | Η   | Η   | Ph  | Η   | Η      | Η   |
| 10-32   | Ph  | Η      | Η   | Η   | Η       | Η   | Η   | Η   | Η   | Ph  | Η      | Η   |
| 10-33   | Ph  | Η      | Η   | Η   | Η       | Η   | Η   | H   | H   | Η   | Ph     | Η   |
| 10-34   | Ph  | Η      | Η   | Η   | Η       | Η   | Η   | Η   | Η   | Η   | Η      | Ph  |
| 10-35   | Me  | Me     | Η   | Η   | Η       | Η   | Η   | Η   | Η   | Η   | Η      | Η   |
| 10-36   | Me  | Me     | Η   | Η   | Me      | Η   | Η   | H   | H   | Η   | Η      | H   |
| 10-37   | Me  | Me     | Η   | Η   | Η       | Me  | Η   | Η   | H   | Η   | Η      | Η   |
| 10-38   | Me  | Me     | Η   | Η   | Η       | Η   | Me  | H   | Н   | Η   | Η      | Н   |
| 10-39   | Me  | Me     | Η   | Η   | Η       | Η   | Η   | Me  | H   | Η   | Η      | H   |
| 10-40   | Me  | Me     | Η   | Η   | Η       | Η   | Η   | H   | Me  | Η   | Η      | Η   |
| 10-41   | Me  | Me     | Η   | Η   | Η       | Η   | Η   | Η   | Η   | Me  | Η      | Н   |
| 10-42   | Me  | Me     | Η   | Η   | H       | Η   | Η   | Η   | Η   | Η   | Me     | H   |
| 10-43   | Me  | Me     | Η   | Η   | Η       | Η   | Η   | Η   | Η   | Η   | Η      | Me  |
| 10-44   | Me  | Me     | Η   | Η   | Ph      | Η   | Η   | H   | H   | Η   | Η      | H   |
| 10-45   | Me  | Me     | Η   | Η   | Η       | Ph  | Η   | H   | H   | H   | Η      | Η   |
| 10-46   | Me  | Me     | Η   | Η   | Η       | Η   | Ph  | H   | Η   | Η   | Η      | Η   |
| 10-47   | Me  | Me     | Η   | Η   | Η       | Η   | Η   | Ph  | H   | H   | Η      | H   |
| 10-48   | Me  | Me     | Η   | Η   | Η       | Η   | Η   | H   | Ph  | H   | Η      | H   |
| 10-49   | Me  | Me     | Η   | Η   | Η       | Η   | Η   | H   | Η   | Ph  | Η      | Н   |
| 10-50   | Me  | Me     | Η   | Η   | Η       | Η   | Η   | H   | H   | H   | Ph     | H   |
| 10-51   | Me  | Me     | Η   | Η   | Η       | Η   | Η   | Η   | Η   | Η   | Η      | Ph  |
| 10-52   | Ph  | Me     | Η   | Η   | Η       | Η   | Η   | H   | H   | H   | Η      | Η   |
| 10-53   | Ph  | Me     | Η   | Η   | Me      | H   | H   | H   | H   | H   | Η      | H   |
| 10-54   | Ph  | Me     | Η   | Η   | Η       | Me  | H   | H   | H   | H   | Η      | H   |
| 10-55   | Ph  | Me     | Η   | Η   | Η       | H   | Me  | H   | H   | H   | Η      | H   |
| 10-56   | Ph  | Me     | Η   | Η   | Η       | Η   | Η   | Me  | H   | H   | Η      | H   |
| 10-57   | Ph  | Me     | Η   | Η   | Η       | Η   | Η   | H   | Me  | H   | Η      | H   |
| 10-58   | Ph  | Me     | H   | Η   | Η       | Η   | Η   | H   | H   | Me  | Η      | H   |
|         |     |        |     |     |         |     |     |     |     |     |        |     |

83

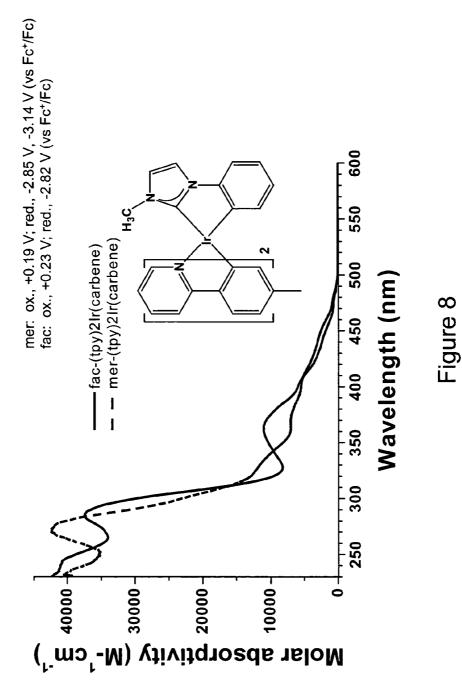
TABLE 10-continued

| Cpd No.          | Ra1      | Ra2      | Ra3      | Ra4      | Rb1     | Rb2     | Rb3     | Rb4     | Rb5       | Rb6     | Rb7     | Rb8     |
|------------------|----------|----------|----------|----------|---------|---------|---------|---------|-----------|---------|---------|---------|
| 10-59            | Ph       | Me       | Н        | Н        | Н       | Н       | Н       | Н       | Н         | Н       | Me      | Н       |
| 10-60            | Ph       | Me       | H        | Н        | H       | H       | H       | H       | H         | Н       | Н       | Me      |
| 10-61<br>10-62   | Ph<br>Ph | Me<br>Me | H<br>H   | H<br>H   | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H    | H<br>H  | H<br>H  | H<br>H  |
| 10-63            | Ph       | Me       | H        | Н        | Н       | Н       | Ph      | H       | H         | H       | H       | H       |
| 10-64            | Ph       | Me       | H        | H        | Н       | H       | Н       | Ph      | H         | H       | H       | H       |
| 10-65            | Ph       | Me       | Η        | Η        | Η       | Η       | Η       | Η       | Ph        | Η       | Η       | H       |
| 10-66            | Ph       | Me       | H        | H        | Η       | H       | Η       | Η       | Η         | Ph      | Η       | H       |
| 10-67            | Ph       | Me       | H        | H        | H       | H       | H       | H       | H         | H       | Ph      | H       |
| 10-68<br>10-69   | Ph<br>Me | Me<br>H  | H<br>Me  | H<br>H   | H<br>H  | H<br>H  | H<br>H  | H<br>H  | $_{ m H}$ | H<br>H  | H<br>H  | Ph<br>H |
| 10-09            | Me       | H        | Me       | Н        | Me      | Н       | H       | H       | H         | H       | H       | H       |
| 10-71            | Me       | H        | Me       | Н        | Н       | Me      | Н       | H       | Н         | H       | Н       | Н       |
| 10-72            | Me       | H        | Me       | H        | Η       | H       | Me      | H       | Η         | H       | H       | Η       |
| 10-73            | Me       | Η        | Me       | Η        | Η       | Η       | Η       | Me      | Η         | Η       | Η       | H       |
| 10-74            | Me       | H        | Me       | H        | H       | H       | Н       | H       | Me        | Н       | H       | H       |
| 10-75<br>10-76   | Me<br>Me | H<br>H   | Me<br>Me | H<br>H   | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H    | Me<br>H | H<br>Me | H<br>H  |
| 10-70            | Me       | Н        | Me       | Н        | Н       | Н       | H       | H       | H         | H       | Н       | Me      |
| 10-78            | Me       | H        | Me       | Н        | Ph      | Η       | Н       | Н       | Η         | H       | H       | Η       |
| 10-79            | Me       | H        | Me       | Η        | Н       | Ph      | Η       | H       | Η         | H       | Η       | Η       |
| 10-80            | Me       | H        | Me       | Η        | Н       | H       | Ph      | H       | Η         | Η       | Η       | H       |
| 10-81<br>10-82   | Me       | H        | Me       | H        | H<br>H  | H<br>H  | H       | Ph      | H<br>Ph   | H<br>H  | H       | H       |
| 10-82            | Me<br>Me | H<br>H   | Me<br>Me | H<br>H   | Н       | Н       | H<br>H  | H<br>H  | Н         | п<br>Ph | H<br>H  | H<br>H  |
| 10-84            | Me       | Н        | Me       | Н        | Н       | Н       | Н       | Н       | Н         | Н       | Ph      | H       |
| 10-85            | Me       | H        | Me       | H        | Н       | H       | H       | H       | Η         | H       | H       | Ph      |
| 10-86            | Ph       | Η        | Me       | Η        | Η       | Η       | Η       | Η       | Η         | H       | Η       | Η       |
| 10-87            | Ph       | H        | Me       | H        | Me      | H       | H       | H       | H         | H       | H       | H       |
| 10-88<br>10-89   | Ph<br>Ph | H<br>H   | Me<br>Me | H<br>H   | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H    | H<br>H  | H<br>H  | H<br>H  |
| 10-99            | Ph       | Н        | Me       | Н        | Н       | Н       | H       | Мe      | Н         | Н       | Н       | Н       |
| 10-91            | Ph       | H        | Me       | Н        | Н       | Н       | Н       | Н       | Me        | Н       | Н       | H       |
| 10-92            | Ph       | Η        | Me       | Η        | Η       | Η       | Η       | Η       | Η         | Me      | Η       | Η       |
| 10-93            | Ph       | H        | Me       | Н        | Η       | H       | H       | H       | Η         | H       | Me      | Н       |
| 10-94<br>10-95   | Ph<br>Ph | H<br>H   | Me       | H<br>H   | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H    | H<br>H  | H<br>H  | Me      |
| 10-95            | Ph       | Н        | Me<br>Me | Н        | rn<br>H | н<br>Ph | Н       | Н       | Н         | Н       | Н       | H<br>H  |
| 10-97            | Ph       | Н        | Me       | Н        | Н       | Н       | Ph      | Н       | Н         | Н       | Н       | H       |
| 10-98            | Ph       | H        | Me       | H        | Η       | H       | Η       | Ph      | Η         | Η       | Η       | H       |
| 10-99            | Ph       | Η        | Me       | Η        | Η       | Η       | Η       | Η       | Ph        | H       | Η       | Η       |
| 10-100           | Ph       | H        | Me       | Н        | H       | H       | H       | H       | H         | Ph      | H       | H       |
| 10-101<br>10-102 | Ph<br>Ph | H<br>H   | Me<br>Me | H<br>H   | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H    | H<br>H  | Ph<br>H | H<br>Ph |
| 10-103           | Me       | H        | Н        | Me       | Н       | Н       | Н       | Н       | Н         | Н       | Н       | Н       |
| 10-104           | Me       | H        | H        | Me       | Me      | H       | H       | H       | Η         | H       | H       | H       |
| 10-105           | Me       | H        | H        | Me       | Η       | Me      | Η       | H       | Η         | H       | H       | H       |
| 10-106           | Me       | H<br>H   | H<br>H   | Me       | H<br>H  | H<br>H  | Me      | H       | H         | H<br>H  | H<br>H  | H<br>H  |
| 10-107<br>10-108 | Me<br>Me | Н        | Н        | Me<br>Me | Н       | Н       | H<br>H  | Me<br>H | H<br>Me   | Н       | Н       | Н       |
| 10-109           | Me       | H        | H        | Me       | Н       | H       | H       | H       | Н         | Me      | H       | H       |
| 10-110           | Me       | H        | H        | Me       | Η       | H       | Η       | H       | Η         | H       | Me      | Η       |
| 10-111           | Me       | Η        | Η        | Me       | H       | Η       | Η       | Η       | Η         | Η       | Η       | Me      |
| 10-112           | Me<br>Me | H        | H<br>H   | Me       | Ph<br>H | Н       | H<br>H  | Н       | H<br>H    | Н       | H<br>H  | H<br>H  |
| 10-113<br>10-114 | Me       | H<br>H   | H        | Me<br>Me | Н       | Ph<br>H | Ph      | H<br>H  | H         | H<br>H  | H       | Н       |
| 10-115           | Me       | Н        | Н        | Me       | Н       | Н       | Н       | Ph      | Н         | Н       | Н       | Н       |
| 10-116           | Me       | H        | H        | Me       | Η       | H       | Η       | H       | Ph        | H       | H       | Η       |
| 10-117           | Me       | Η        | Η        | Me       | Η       | Н       | Н       | Η       | Η         | Ph      | H       | H       |
| 10-118           | Me       | H        | H        | Me       | H       | H       | H       | H       | H         | H       | Ph      | H       |
| 10-119<br>10-120 | Me<br>Ph | H<br>H   | H<br>H   | Me<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H    | H<br>H  | H<br>H  | Ph<br>H |
| 10-121           | Ph       | Н        | Н        | Me       | Me      | Н       | Н       | Н       | Н         | Н       | Н       | Н       |
| 10-122           | Ph       | H        | H        | Me       | Η       | Me      | H       | H       | Η         | H       | Η       | Η       |
| 10-123           | Ph       | Η        | Η        | Me       | Η       | Η       | Me      | Η       | Η         | Η       | Η       | Η       |
| 10-124           | Ph       | H        | H        | Me       | H       | H       | H       | Me      | H<br>M-   | H       | H       | H       |
| 10-125<br>10-126 | Ph<br>Ph | H<br>H   | H<br>H   | Me<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H   | H<br>Me | H<br>H  | H<br>H  |
| 10-120           | Ph       | H        | H        | Me       | Н       | H       | H       | H       | H         | H       | Me      | H       |
| 10-128           | Ph       | H        | H        | Me       | Н       | Н       | Н       | H       | H         | Н       | Н       | Me      |
| 10-129           | Ph       | Η        | Η        | Me       | Ph      | Η       | Η       | H       | Η         | Η       | Η       | Η       |
| 10-130           | Ph       | H        | H        | Me       | H       | Ph      | H       | H       | H         | H       | H       | H       |
| 10-131           | Ph<br>Ph | H        | H        | Me<br>Me | Н       | Н       | Ph      | H<br>Ph | Н         | H<br>H  | Н       | Н       |
| 10-132<br>10-133 | Ph<br>Ph | H<br>H   | H<br>H   | Me<br>Me | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph   | H<br>H  | H<br>H  | H<br>H  |
| 10-134           | Ph       | H        | H        | Me       | Н       | Н       | Н       | H       | Н         | Ph      | Н       | Н       |
| 10-135           | Ph       | Η        | Η        | Me       | Н       | Н       | Н       | Η       | Н         | Н       | Ph      | Н       |
| 10-136           | Ph       | Η        | Η        | Me       | Η       | H       | Η       | Η       | Η         | Η       | Η       | Ph      |

85

TABLE 10-continued

|                  |          |          |          | 111      | טבב     | 10-00.  | IIIIII  |         |         |         |         |         |
|------------------|----------|----------|----------|----------|---------|---------|---------|---------|---------|---------|---------|---------|
| Cpd No.          | Ra1      | Ra2      | Ra3      | Ra4      | Rb1     | Rb2     | Rb3     | Rb4     | Rb5     | Rb6     | Rb7     | Rb8     |
| 10-137           | Me       | Ph       | Н        | Н        | Н       | Н       | Н       | Н       | Н       | Н       | Н       | Н       |
| 10-138           | Me       | Ph       | Η        | Η        | Me      | Η       | Н       | Η       | Н       | Н       | Н       | H       |
| 10-139           | Me       | Ph       | H        | Н        | H       | Me      | Н       | H       | H       | H       | H       | H       |
| 10-140<br>10-141 | Me<br>Me | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H  | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 10-141           | Me       | Ph       | H        | Н        | Н       | Н       | Н       | Н       | Me      | Н       | Н       | H       |
| 10-143           | Me       | Ph       | Η        | Η        | Η       | Η       | Η       | Η       | Н       | Me      | Η       | H       |
| 10-144           | Me       | Ph       | Η        | Η        | Η       | Η       | H       | Η       | Н       | Н       | Me      | Η       |
| 10-145           | Me       | Ph       | H        | H        | H       | H       | H       | H       | H       | H       | H       | Me      |
| 10-146<br>10-147 | Me<br>Me | Ph<br>Ph | H<br>H   | H<br>H   | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 10-148           | Me       | Ph       | H        | Н        | Н       | Н       | Ph      | H       | H       | Н       | H       | H       |
| 10-149           | Me       | Ph       | H        | H        | H       | Η       | H       | Ph      | Н       | Н       | H       | H       |
| 10-150           | Me       | Ph       | H        | Н        | Н       | H       | H       | H       | Ph      | H       | H       | H       |
| 10-151<br>10-152 | Me<br>Me | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  |
| 10-153           | Me       | Ph       | H        | H        | H       | Н       | H       | H       | H       | H       | Н       | Ph      |
| 10-154           | Ph       | Ph       | Η        | H        | H       | Η       | H       | Η       | Η       | H       | H       | H       |
| 10-155           | Ph       | Ph       | H        | H        | Me      | Н       | H       | H       | H       | H       | H       | H       |
| 10-156<br>10-157 | Ph<br>Ph | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 10-158           | Ph       | Ph       | H        | H        | H       | H       | Н       | Me      | H       | H       | Н       | H       |
| 10-159           | Ph       | Ph       | Η        | Η        | Η       | Η       | Η       | Η       | Me      | Η       | Η       | Η       |
| 10-160           | Ph       | Ph       | H        | Н        | H       | H       | Н       | H       | H       | Me      | Н       | H       |
| 10-161<br>10-162 | Ph<br>Ph | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H | H<br>Me |
| 10-163           | Ph       | Ph       | H        | Н        | Ph      | Н       | Н       | H       | Н       | Н       | Н       | Н       |
| 10-164           | Ph       | Ph       | Η        | Η        | Η       | Ph      | Η       | Η       | Η       | Н       | Η       | Η       |
| 10-165           | Ph       | Ph       | H        | H        | H       | H       | Ph      | H       | H       | H       | H       | H       |
| 10-166<br>10-167 | Ph<br>Ph | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  |
| 10-168           | Ph       | Ph       | H        | Н        | Н       | Н       | Н       | Н       | Н       | Ph      | Н       | H       |
| 10-169           | Ph       | Ph       | Η        | H        | Η       | Н       | Η       | Н       | H       | Н       | Ph      | H       |
| 10-170           | Ph       | Ph       | H        | H        | H       | H       | H       | H       | H       | H       | H       | Ph      |
| 10-171<br>10-172 | Me<br>Me | H<br>H   | Ph<br>Ph | H<br>H   | H<br>Me | H<br>H  |
| 10-173           | Me       | H        | Ph       | Н        | Н       | Me      | Н       | H       | Н       | H       | Н       | H       |
| 10-174           | Me       | Η        | Ph       | Η        | Η       | Η       | Me      | H       | H       | H       | H       | H       |
| 10-175           | Me       | H        | Ph       | H        | H       | H       | H       | Me      | Н       | H       | H       | H       |
| 10-176<br>10-177 | Me<br>Me | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  |
| 10-178           | Me       | H        | Ph       | Н        | Н       | Н       | Н       | Н       | Н       | Н       | Me      | H       |
| 10-179           | Me       | Η        | Ph       | Η        | Η       | Η       | Η       | Η       | Η       | Η       | Η       | Me      |
| 10-180           | Me       | H        | Ph       | Н        | Ph      | H       | Н       | Н       | H       | Н       | Н       | H       |
| 10-181<br>10-182 | Me<br>Me | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 10-182           | Me       | H        | Ph       | Н        | Н       | Н       | Н       | Ph      | Н       | Н       | Н       | H       |
| 10-184           | Me       | Η        | Ph       | Η        | Н       | Η       | Н       | Н       | Ph      | Н       | Н       | H       |
| 10-185           | Me       | H        | Ph       | Н        | Н       | Н       | Н       | Н       | Н       | Ph      | H       | H       |
| 10-186<br>10-187 | Me<br>Me | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph |
| 10-188           | Ph       | Н        | Ph       | Н        | Н       | Н       | Н       | Н       | Н       | Н       | Н       | Н       |
| 10-189           | Ph       | Η        | Ph       | Η        | Me      | Η       | Η       | Η       | Η       | Н       | Η       | Η       |
| 10-190<br>10-191 | Ph       | H        | Ph       | H        | H       | Me      | H       | H       | H       | H       | H       | H       |
| 10-191           | Ph<br>Ph | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H  | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 10-193           | Ph       | Н        | Ph       | Н        | Н       | Н       | Н       | Н       | Me      | Н       | Н       | Н       |
| 10-194           | Ph       | Η        | Ph       | Н        | Н       | Н       | Η       | Н       | Н       | Me      | Н       | H       |
| 10-195<br>10-196 | Ph<br>Ph | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H | H<br>Me |
| 10-190           | Ph       | H        | Ph       | H        | Ph      | H       | H       | H       | H       | H       | H       | H       |
| 10-198           | Ph       | Н        | Ph       | Н        | Н       | Ph      | Н       | Н       | Н       | Н       | Н       | Н       |
| 10-199           | Ph       | Η        | Ph       | Н        | Η       | Н       | Ph      | H       | Н       | Н       | Н       | H       |
| 10-200<br>10-201 | Ph<br>Ph | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  |
| 10-201           | Ph       | Н        | Ph       | Н        | Н       | Н       | Н       | Н       | Н       | Ph      | Н       | Н       |
| 10-203           | Ph       | Η        | Ph       | Η        | Η       | Η       | Η       | Η       | Η       | Η       | Ph      | H       |
| 10-204           | Ph       | H        | Ph       | H        | H       | H       | H       | H       | H       | H       | H       | Ph      |
| 10-205<br>10-206 | Me<br>Me | H<br>H   | H<br>H   | Ph<br>Ph | H<br>Me | H<br>H  |
| 10-206           | Me       | Н        | Н        | Ph       | H       | Мe      | Н       | Н       | Н       | Н       | Н       | Н       |
| 10-208           | Me       | H        | H        | Ph       | H       | Н       | Me      | H       | Η       | Η       | Η       | H       |
| 10-209           | Me       | H        | H        | Ph       | H       | H       | H       | Me      | Н       | H       | H       | H       |
| 10-210<br>10-211 | Me<br>Me | H<br>H   | H<br>H   | Ph<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  |
| 10-211           | Me       | Н        | Н        | Ph       | Н       | Н       | Н       | Н       | Н       | H       | П<br>Ме | Н       |
| 10-213           | Me       | Н        | Н        | Ph       | Н       | Н       | Н       | Н       | Н       | Н       | Н       | Me      |
| 10-214           | Me       | Η        | Η        | Ph       | Ph      | Η       | Н       | Η       | Η       | Η       | Н       | Η       |


**87**TABLE 10-continued

| Cpd No. | Ra1 | Ra2 | Ra3 | Ra4 | Rb1 | Rb2 | Rb3 | Rb4 | Rb5 | Rb6 | Rb7 | Rb8 |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 10-215  | Me  | Н   | Н   | Ph  | Н   | Ph  | Н   | Н   | Н   | Н   | Н   | Н   |
| 10-216  | Me  | H   | Η   | Ph  | Η   | Η   | Ph  | H   | H   | H   | H   | Н   |
| 10-217  | Me  | H   | Η   | Ph  | Η   | Η   | Η   | Ph  | H   | Η   | Η   | Н   |
| 10-218  | Me  | Η   | Η   | Ph  | Η   | Η   | Η   | Η   | Ph  | Η   | Η   | H   |
| 10-219  | Me  | H   | Η   | Ph  | Η   | Η   | Η   | H   | H   | Ph  | H   | Н   |
| 10-220  | Me  | H   | Η   | Ph  | Η   | Η   | Η   | H   | H   | Η   | Ph  | Н   |
| 10-221  | Me  | H   | H   | Ph  | Η   | Η   | Η   | Η   | H   | Η   | Η   | Ph  |
| 10-222  | Ph  | Η   | Η   | Ph  | Η   | Η   | Η   | Η   | H   | Η   | Η   | H   |
| 10-223  | Ph  | H   | Η   | Ph  | Me  | Η   | Η   | H   | H   | Η   | Η   | Н   |
| 10-224  | Ph  | Η   | Η   | Ph  | Η   | Me  | Η   | Η   | H   | Η   | Η   | Η   |
| 10-225  | Ph  | Η   | Η   | Ph  | Η   | Η   | Me  | Η   | H   | Η   | Η   | H   |
| 10-226  | Ph  | H   | Η   | Ph  | Η   | Η   | Η   | Me  | H   | Η   | Η   | Н   |
| 10-227  | Ph  | Η   | Η   | Ph  | Η   | Η   | Η   | Η   | Me  | Η   | Η   | Η   |
| 10-228  | Ph  | Η   | Η   | Ph  | Η   | Η   | Η   | Η   | Η   | Me  | Η   | Η   |
| 10-229  | Ph  | Η   | Η   | Ph  | Η   | Η   | Η   | Η   | Η   | Η   | Me  | H   |
| 10-230  | Ph  | Η   | Η   | Ph  | Η   | Η   | Η   | Η   | Η   | Η   | Η   | Me  |
| 10-231  | Ph  | Η   | Η   | Ph  | Ph  | Η   | Η   | Η   | Η   | Η   | Η   | Η   |
| 10-232  | Ph  | Η   | Η   | Ph  | Η   | Ph  | Η   | Η   | H   | Η   | Η   | H   |
| 10-233  | Ph  | Η   | Η   | Ph  | Η   | Η   | Ph  | Η   | Η   | Η   | Η   | H   |
| 10-234  | Ph  | Η   | Η   | Ph  | Η   | Η   | Η   | Ph  | Η   | Η   | Η   | Η   |
| 10-235  | Ph  | Η   | H   | Ph  | Η   | Η   | Η   | Η   | Ph  | Η   | Η   | H   |
| 10-236  | Ph  | Η   | Η   | Ph  | Η   | Η   | Η   | Η   | Η   | Ph  | Η   | Η   |
| 10-237  | Ph  | Η   | Η   | Ph  | Η   | Η   | Η   | Η   | Η   | Η   | Ph  | Η   |
| 10-238  | Ph  | Η   | Η   | Ph  | Η   | Η   | Η   | Η   | Н   | Н   | Η   | Ph  |

TABLE 11 TABLE 11-continued

| Cpd No.          | Ra1      | Ra2      | Ra3    | Ra4    | Ra5    | Rb1     | Rb2     |    | Cpd No.        | Ra1      | Ra2      | Ra3      | Ra4    | Ra5    | Rb1     | Rb2     |
|------------------|----------|----------|--------|--------|--------|---------|---------|----|----------------|----------|----------|----------|--------|--------|---------|---------|
| 11-1             | Me       | Н        | Н      | Н      | Н      | Н       | Н       | _  | 11-47          | Ph       | Н        | Н        | Н      | Me     | Me      | Н       |
| 11-2             | Me       | Η        | H      | H      | H      | Me      | H       | 30 | 11-48          | Ph       | Η        | H        | H      | Me     | H       | Me      |
| 1-3              | Me       | H        | H      | H      | H      | H       | Me      |    | 11-49          | Ph       | H        | H        | H      | Me     | Ph      | H       |
| 1-4              | Me       | H        | H      | Н      | H      | Ph      | H       |    | 11-50          | Ph       | H        | H        | H      | Me     | Н       | Ph      |
| 11-5             | Me       | Н        | H      | Н      | H      | Н       | Ph      |    | 11-51          | Me       | Ph       | Н        | Н      | Н      | Н       | H       |
| 11-6             | Ph       | H        | H      | H      | H      | Н       | H       |    | 11-52          | Me       | Ph       | H        | H      | H      | Me      | H       |
| 11-7             | Ph       | H        | H      | H      | H      | Me      | Н       |    | 11-53          | Me       | Ph       | H        | H      | H      | H       | Me      |
| 11-8             | Ph       | H        | H      | H      | H      | H       | Me      | 35 | 11-54          | Me       | Ph       | H        | H      | H      | Ph      | H       |
| 11-9             | Ph       | H        | H      | H      | H      | Ph      | H       |    | 11-55          | Me       | Ph       | H        | H      | H      | H       | Ph      |
| 11-10            | Ph       | Н        | H      | Н      | H      | H       | Ph      |    | 11-56          | Ph       | Ph       | H        | H      | H      | Н       | H       |
| 11-11            | Me       | Me       | H<br>H | H<br>H | H      | Н       | H       |    | 11-57          | Ph<br>Ph | Ph<br>Ph | H<br>H   | H<br>H | H      | Me      | Н       |
| 11-12            | Me       | Me       | H<br>H | H<br>H | H      | Me<br>H | H       |    | 11-58          | Ph<br>Ph | Pn<br>Ph | Н        |        | H      | H<br>Ph | Me<br>H |
| 11-13            | Me       | Me       |        |        | H      |         | Me      |    | 11-59          |          |          |          | H      | H      |         |         |
| l 1-14<br>l 1-15 | Me       | Me<br>Me | H<br>H | H<br>H | H<br>H | Ph<br>H | H<br>Ph | 40 | 11-60          | Ph<br>Me | Ph<br>H  | H<br>Ph  | H<br>H | H<br>H | H<br>H  | Ph<br>H |
| 11-15<br>11-16   | Me<br>Ph | Me       | H<br>H | H<br>H | H<br>H | H<br>H  | Pn<br>H |    | 11-61<br>11-62 | Me<br>Me | Н        | Ph<br>Ph | H<br>H | H<br>H | н<br>Ме | Н       |
| 11-10            | Ph       | Me       | Н      | Н      | Н      | п<br>Ме | Н       |    |                |          |          |          |        |        |         |         |
| 11-17            | Ph       | Me       | Н      | Н      | Н      | H       | п<br>Ме |    | 11-63          | Me       | H        | Ph       | H      | H      | H       | Me      |
| 11-18            | Ph       | Me       | H      | H      | H      | Ph      | Н       |    | 11-64          | Me       | H        | Ph       | H      | H      | Ph      | H       |
| 1-20             | Ph       | Me       | H      | Н      | H      | H       | Ph      |    | 11-65          | Me       | H        | Ph       | Н      | H      | Н       | Ph      |
| 1-21             | Me       | Н        | Me     | Н      | Н      | Н       | Н       | 45 | 11-66          | Ph       | H        | Ph       | H      | H      | Н       | Н       |
| 1-22             | Me       | H        | Me     | Н      | Н      | Me      | H       |    | 11-67          | Ph       | H        | Ph       | H      | H      | Me      | Н       |
| 11-23            | Me       | H        | Me     | Н      | H      | Н       | Me      |    | 11-68          | Ph       | Η        | Ph       | H      | H      | H       | Me      |
| 11-24            | Me       | Н        | Me     | Н      | Н      | Ph      | Н       |    | 11-69          | Ph       | Η        | Ph       | Η      | Η      | Ph      | Η       |
| 11-25            | Me       | H        | Me     | Н      | H      | H       | Ph      |    | 11-70          | Ph       | Η        | Ph       | Η      | H      | H       | Ph      |
| 11-26            | Ph       | H        | Me     | H      | H      | H       | H       |    | 11-71          | Me       | H        | Η        | Ph     | H      | H       | Η       |
| 11-27            | Ph       | Н        | Me     | Н      | Н      | Me      | Н       | 50 | 11-72          | Me       | H        | H        | Ph     | H      | Me      | Η       |
| 11-28            | Ph       | Н        | Me     | Н      | H      | Н       | Me      |    | 11-73          | Me       | Η        | H        | Ph     | H      | H       | Me      |
| 11-29            | Ph       | Н        | Me     | Н      | H      | Ph      | Н       |    | 11-74          | Me       | Η        | Η        | Ph     | H      | Ph      | Η       |
| 1-30             | Ph       | H        | Me     | Н      | H      | H       | Ph      |    | 11-75          | Me       | Η        | Η        | Ph     | H      | Η       | Ph      |
| 11-31            | Me       | H        | H      | Me     | H      | H       | H       |    | 11-76          | Ph       | Η        | Η        | Ph     | H      | H       | Η       |
| 11-32            | Me       | H        | H      | Me     | H      | Me      | H       |    | 11-77          | Ph       | H        | H        | Ph     | H      | Me      | H       |
| 11-33            | Me       | Η        | Η      | Me     | H      | Н       | Me      | 55 | 11-78          | Ph       | H        | H        | Ph     | Н      | Η       | Me      |
| 1-34             | Me       | Η        | H      | Me     | H      | Ph      | H       |    | 11-79          | Ph       | H        | H        | Ph     | Н      | Ph      | H       |
| 1-35             | Me       | H        | H      | Me     | H      | H       | Ph      |    | 11-80          | Ph       | H        | H        | Ph     | Н      | Η       | Ph      |
| 11-36            | Ph       | H        | H      | Me     | H      | H       | H       |    | 11-81          | Me       | H        | H        | H      | Ph     | H       | H       |
| 11-37            | Ph       | Н        | H      | Me     | H      | Me      | H       |    | 11-82          | Me       | H        | H        | H      | Ph     | Me      | H       |
| 11-38            | Ph       | Н        | Н      | Me     | Н      | Н       | Me      |    | 11-83          | Me       | Н        | Н        | Н      | Ph     | Н       | Me      |
| 1-39             | Ph       | Н        | Н      | Me     | Н      | Ph      | Н       | 60 | 11-84          | Me       | Н        | Н        | Н      | Ph     | Ph      | Н       |
| 1-40             | Ph       | Н        | Н      | Me     | Н      | Н       | Ph      |    | 11-85          | Me       | Н        | Н        | Н      | Ph     | Н       | Ph      |
| 1-41             | Me       | Н        | H      | Н      | Me     | Н       | Н       |    | 11-86          | Ph       | Н        | Н        | Н      | Ph     | Н       | Н       |
| 11-42            | Me       | H        | H      | Н      | Me     | Me      | Н       |    | 11-87          | Ph       | Н        | H        | H      | Ph     | Me      | Н       |
| 11-43            | Me       | Н        | H      | Н      | Me     | Н       | Me      |    | 11-88          | Ph       | Н        | H        | Н      | Ph     | Н       | Me      |
| 11-43            | Me       | Н        | Н      | Н      | Me     | Ph      | H       |    | 11-89          | Ph       | H        | Н        | H      | Ph     | Ph      | Н       |
| 11-44            | Me       | Н        | Н      | Н      | Me     | Н       | г<br>Ph | 65 | 11-89          | Ph       | Н        | Н        | Н      | Ph     | Н       | п<br>Ph |
| 1-45             | Ph       | Н        | н<br>Н | Н      | Me     | Н       | Pn<br>H | 03 | 11-90          | ГП       | п        | п        | п      | ГII    | п       | ГП      |

Absorption of fac/mer-(tpy)<sub>2</sub>lr(1-Ph-3-Me-imid) in CH<sub>2</sub>Cl<sub>2</sub>



| 89       | 90                 |
|----------|--------------------|
| TABLE 12 | TABLE 12-continued |

| Cpd<br>No.     | Ra1      | Ra2      | Ra3      | Ra4      | Ra5      | Rb1     | Rb2     | Rb3     | Rb4     |    | Cpd<br>No.       | Ra1      | Ra2      | Ra3      | Ra4      | Ra5      | Rb1     | Rb2     | Rb3     | Rb4     |
|----------------|----------|----------|----------|----------|----------|---------|---------|---------|---------|----|------------------|----------|----------|----------|----------|----------|---------|---------|---------|---------|
| 12-1           | Me       | Н        | Н        | Н        | Н        | Н       | Н       | Н       | Н       | 5  | 12-78            | Me       | Н        | Н        | Н        | Me       | Ph      | Н       | Н       | H       |
| 12-1           | Me       | H        | H        | H        | Н        | Me      | H       | H       | H       | ,  | 12-78            | Me       | H        | H        | H        | Me       | H       | Ph      | H       | H       |
| 12-3           | Me       | Η        | Н        | Η        | Η        | Η       | Me      | Η       | Н       |    | 12-80            | Me       | Η        | Η        | Η        | Me       | Η       | Η       | Ph      | H       |
| 12-4           | Me       | Η        | Η        | Η        | Н        | Η       | Η       | Me      | H       |    | 12-81            | Me       | Η        | Η        | Η        | Me       | Н       | Н       | Η       | Ph      |
| 12-5           | Me       | H<br>H   | H<br>H   | H<br>H   | H<br>H   | H<br>Ph | H       | H<br>H  | Me      |    | 12-82<br>12-83   | Ph       | H        | H<br>H   | H        | Me<br>M- | H<br>M- | H<br>H  | H<br>H  | H       |
| 12-6<br>12-7   | Me<br>Me | Н        | Н        | Н        | Н        | H       | H<br>Ph | Н       | H<br>H  | 10 | 12-83            | Ph<br>Ph | H<br>H   | Н        | H<br>H   | Me<br>Me | Me<br>H | н<br>Ме | Н       | H<br>H  |
| 12-8           | Me       | H        | H        | H        | Н        | Н       | Н       | Ph      | H       | 10 | 12-85            | Ph       | H        | H        | H        | Me       | Н       | Н       | Me      | H       |
| 12-9           | Me       | Η        | Η        | Η        | Η        | Η       | Η       | Η       | Ph      |    | 12-86            | Ph       | Η        | Η        | Η        | Me       | Н       | Η       | Η       | Me      |
| 12-10          | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H   | H<br>H   | H<br>Ma | H<br>H  | H<br>H  | Н       |    | 12-87            | Ph       | Н        | H<br>H   | H<br>H   | Me       | Ph      | H<br>Ph | Н       | Н       |
| 12-11<br>12-12 | Ph       | Н        | Н        | Н        | Н        | Me<br>H | Mе      | Н       | H<br>H  |    | 12-88<br>12-89   | Ph<br>Ph | H<br>H   | Н        | Н        | Me<br>Me | H<br>H  | Н       | H<br>Ph | H<br>H  |
| 12-13          | Ph       | H        | H        | H        | H        | H       | Н       | Me      | H       | 15 | 12-90            | Ph       | H        | H        | H        | Me       | H       | H       | Н       | Ph      |
| 12-14          | Ph       | Η        | Η        | Η        | Η        | Н       | Н       | Η       | Me      | 13 | 12-91            | Me       | Ph       | Η        | Η        | Η        | Η       | Н       | Η       | H       |
| 12-15          | Ph       | H        | H<br>H   | H        | H        | Ph<br>H | H       | H       | H       |    | 12-92            | Me       | Ph       | H        | H        | H        | Me      | H       | H       | H<br>H  |
| 12-16<br>12-17 | Ph<br>Ph | H<br>H   | Н        | H<br>H   | H<br>H   | Н       | Ph<br>H | H<br>Ph | H<br>H  |    | 12-93<br>12-94   | Me<br>Me | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H   | H<br>H  | Me<br>H | H<br>Me | Н       |
| 12-18          | Ph       | H        | H        | H        | Н        | H       | H       | Н       | Ph      |    | 12-95            | Me       | Ph       | H        | H        | Н        | Н       | Н       | Н       | Me      |
| 12-19          | Me       | Me       | Η        | Η        | Η        | Η       | Η       | Η       | Н       | 20 | 12-96            | Me       | Ph       | Η        | Η        | Η        | Ph      | Н       | Η       | H       |
| 12-20<br>12-21 | Me       | Me       | H<br>H   | H        | H        | Me      | H       | H<br>H  | H       | 20 | 12-97<br>12-98   | Me       | Ph<br>Ph | H<br>H   | H        | H        | H       | Ph      | H<br>Ph | H       |
| 12-21          | Me<br>Me | Me<br>Me | Н        | H<br>H   | H<br>H   | H<br>H  | Me<br>H | п<br>Ме | H<br>H  |    | 12-98            | Me<br>Me | Ph       | Н        | H<br>H   | H<br>H   | H<br>H  | H<br>H  | Н       | H<br>Ph |
| 12-23          | Me       | Me       | Н        | Н        | Н        | Н       | Н       | Н       | Me      |    | 12-100           | Ph       | Ph       | Н        | Н        | Н        | Н       | Н       | Н       | Н       |
| 12-24          | Me       | Me       | Η        | Η        | Η        | Ph      | Η       | Η       | Н       |    | 12-101           | Ph       | Ph       | Η        | Η        | Η        | Me      | Η       | Η       | H       |
| 12-25          | Me       | Me       | H        | H        | H        | H       | Ph      | H       | H       | 25 | 12-102           | Ph       | Ph       | H        | H        | H        | H       | Me      | H<br>M- | H       |
| 12-26<br>12-27 | Me<br>Me | Me<br>Me | H<br>H   | H<br>H   | H<br>H   | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | 25 | 12-103<br>12-104 | Ph<br>Ph | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H   | H<br>H  | H<br>H  | Me<br>H | H<br>Me |
| 12-28          | Ph       | Me       | Н        | H        | Н        | Н       | Н       | Н       | Н       |    | 12-105           | Ph       | Ph       | Н        | Н        | Н        | Ph      | Н       | Н       | Н       |
| 12-29          | Ph       | Me       | H        | H        | Η        | Me      | H       | Η       | H       |    | 12-106           | Ph       | Ph       | H        | H        | Η        | H       | Ph      | H       | H       |
| 12-30          | Ph       | Me<br>M- | H        | H        | H        | H       | Me      | H<br>M- | H       |    | 12-107<br>12-108 | Ph       | Ph       | H        | H        | H        | H       | H       | Ph      | H       |
| 12-31<br>12-32 | Ph<br>Ph | Me<br>Me | H<br>H   | H<br>H   | H<br>H   | H<br>H  | H<br>H  | Me<br>H | H<br>Me | 30 | 12-108           | Ph<br>Me | Ph<br>H  | H<br>Ph  | H<br>H   | H<br>H   | H<br>H  | H<br>H  | H<br>H  | Ph<br>H |
| 12-33          | Ph       | Me       | Н        | Н        | Н        | Ph      | Н       | Н       | Н       | 30 | 12-110           | Me       | Н        | Ph       | Н        | Н        | Me      | Н       | Н       | H       |
| 12-34          | Ph       | Me       | Η        | Η        | Η        | Η       | Ph      | Η       | Н       |    | 12-111           | Me       | Η        | Ph       | Η        | Η        | Н       | Me      | Η       | H       |
| 12-35          | Ph       | Me<br>M- | H        | H        | H        | H       | H       | Ph      | H       |    | 12-112           | Me       | H        | Ph       | H        | H        | H       | H       | Me      | H<br>M- |
| 12-36<br>12-37 | Ph<br>Me | Me<br>H  | H<br>Me  | H<br>H   | H<br>H   | H<br>H  | H<br>H  | H<br>H  | Ph<br>H |    | 12-113<br>12-114 | Me<br>Me | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H   | H<br>Ph | H<br>H  | H<br>H  | Me<br>H |
| 12-38          | Me       | H        | Me       | Η        | Н        | Me      | Н       | H       | H       | 35 | 12 115           | Me       | H        | Ph       | H        | Н        | Н       | Ph      | H       | H       |
| 12-39          | Me       | Η        | Me       | Η        | Η        | Η       | Me      | Η       | H       | 33 | 12-116           | Me       | Η        | Ph       | Η        | Η        | Η       | Η       | Ph      | H       |
| 12-40<br>12-41 | Me<br>Me | H<br>H   | Me<br>Me | H<br>H   | H<br>H   | H<br>H  | H<br>H  | Me<br>H | H<br>Me |    | 12-117<br>12-118 | Me<br>Ph | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H  | H<br>H  | H<br>H  | Ph<br>H |
| 12-41          | Me       | H        | Me       | H        | Н        | Ph      | Н       | H       | Н       |    | 12-119           | Ph       | H        | Ph       | H        | H        | Me      | Н       | H       | H       |
| 12-43          | Me       | Н        | Me       | Η        | Н        | Н       | Ph      | Η       | Н       |    | 12-120           | Ph       | Н        | Ph       | Н        | Η        | Н       | Me      | Η       | Н       |
| 12-44          | Me       | H        | Me       | H        | H        | Н       | Н       | Ph      | H       | 40 | 12-121           | Ph       | H        | Ph       | H        | H        | H       | H       | Me      | H       |
| 12-45<br>12-46 | Me<br>Ph | H<br>H   | Me<br>Me | H<br>H   | H<br>H   | H<br>H  | H<br>H  | H<br>H  | Ph<br>H |    | 12-122<br>12-123 | Ph<br>Ph | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H   | H<br>Ph | H<br>H  | H<br>H  | Me<br>H |
| 12-47          | Ph       | H        | Me       | H        | H        | Me      | Н       | H       | Н       |    | 12-124           | Ph       | Н        | Ph       | H        | Н        | Н       | Ph      | Н       | H       |
| 12-48          | Ph       | Η        | Me       | Η        | Н        | Η       | Me      | Η       | Н       |    | 12-125           | Ph       | Η        | Ph       | Η        | Η        | Н       | Н       | Ph      | H       |
| 12-49          | Ph       | Н        | Me       | H        | H        | Н       | Н       | Me      | Н       |    | 12-126           | Ph       | H        | Ph       | H        | Н        | H       | Н       | Н       | Ph      |
| 12-50<br>12-51 | Ph<br>Ph | H<br>H   | Me<br>Me | H<br>H   | H<br>H   | H<br>Ph | H<br>H  | H<br>H  | Me<br>H | 45 | 12-127<br>12-128 | Me<br>Me | H<br>H   | H<br>H   | Ph<br>Ph | H<br>H   | H<br>Me | H<br>H  | H<br>H  | H<br>H  |
| 12-52          | Ph       | H        | Me       | H        | Н        | Н       | Ph      | H       | H       |    | 12-129           | Me       | H        | H        | Ph       | Н        | Н       | Me      | H       | H       |
| 12-53          | Ph       | Η        | Me       | Η        | Н        | Η       | Η       | Ph      | H       |    | 12-130           | Me       | Η        | Η        | Ph       | Η        | Н       | Н       | Me      | H       |
| 12-54          | Ph       | Н        | Me       | H<br>Ma  | Н        | Н       | Н       | Н       | Ph      |    | 12-131           | Me       | Н        | Н        | Ph       | Н        | H       | Н       | Н       | Mе      |
| 12-55<br>12-56 | Me<br>Me | H<br>H   | H<br>H   | Me<br>Me | H<br>H   | H<br>Me | H<br>H  | H<br>H  | H<br>H  |    | 12-132<br>12-133 | Me<br>Me | H<br>H   | H<br>H   | Ph<br>Ph | H<br>H   | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  |
| 12-57          | Me       | Н        | Η        | Me       | Н        | Η       | Me      | Η       | Н       | 50 | 12-134           | Me       | Η        | Н        | Ph       | Η        | Н       | Н       | Ph      | H       |
| 12-58          | Me       | Η        | Η        | Me       | Η        | Η       | Η       | Me      | Н       |    | 12-135           | Me       | Η        | Η        | Ph       | Η        | Η       | Η       | Η       | Ph      |
| 12-59<br>12-60 | Me<br>Me | H<br>H   | H<br>H   | Me<br>Me | H<br>H   | H<br>Ph | H<br>H  | H<br>H  | Me<br>H |    | 12-136<br>12-137 | Ph<br>Ph | H<br>H   | H<br>H   | Ph<br>Ph | H<br>H   | H<br>Me | H<br>H  | H<br>H  | H<br>H  |
| 12-61          | Me       | H        | H        | Me       | H        | Н       | Ph      | H       | H       |    | 12-137           | Ph       | Н        | H        | Ph       | H        | Н       | Me      | H       | H       |
| 12-62          | Me       | Н        | Н        | Me       | Н        | Н       | Н       | Ph      | Н       |    | 12-139           | Ph       | Н        | Н        | Ph       | Н        | Н       | Н       | Me      | H       |
| 12-63          | Me       | Η        | Η        | Me       | Η        | Η       | Η       | Η       | Ph      | 55 | 12-140           | Ph       | Η        | Η        | Ph       | Η        | Η       | Η       | Η       | Me      |
| 12-64<br>12-65 | Ph<br>Ph | H<br>H   | H<br>H   | Me<br>Me | H<br>H   | H<br>Me | H<br>H  | H<br>H  | H<br>H  |    | 12-141<br>12-142 | Ph<br>Ph | H<br>H   | H<br>H   | Ph<br>Ph | H<br>H   | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  |
| 12-65          | Ph<br>Ph | Н        | Н        | Me       | Н        | Н       | н<br>Ме | Н       | Н       |    | 12-142           | Ph<br>Ph | Н        | Н        | Ph<br>Ph | Н        | Н       | rn<br>H | н<br>Ph | H<br>H  |
| 12-67          | Ph       | Н        | Н        | Me       | Н        | Н       | Н       | Me      | Н       |    | 12-144           | Ph       | Н        | Н        | Ph       | Н        | Н       | Н       | Н       | Ph      |
| 12-68          | Ph       | H        | H        | Me       | H        | H       | Н       | H       | Me      |    | 12-145           | Me       | H        | H        | H        | Ph       | Н       | Н       | H       | H       |
| 12-69<br>12-70 | Ph<br>Ph | H<br>H   | H<br>H   | Me<br>Me | H<br>H   | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | 60 | 12-146<br>12-147 | Me<br>Me | H<br>H   | H<br>H   | H<br>H   | Ph<br>Ph | Me<br>H | H<br>Me | H<br>H  | H<br>H  |
| 12-70          | Ph<br>Ph | Н        | Н        | Me       | Н        | Н       | РП<br>Н | н<br>Ph | Н       |    | 12-147           | Me       | Н        | Н        | Н        | Ph<br>Ph | Н       | Н       | н<br>Ме | H<br>H  |
| 12-72          | Ph       | Н        | Н        | Me       | Н        | Н       | Н       | Н       | Ph      |    | 12-149           | Me       | Н        | Н        | Н        | Ph       | Н       | Н       | Н       | Me      |
| 12-73          | Me       | H        | H        | H        | Me       | Н       | Н       | H       | H       |    | 12-150           | Me       | H        | H        | H        | Ph       | Ph      | H       | H       | H       |
| 12-74<br>12-75 | Me<br>Me | H<br>H   | H<br>H   | H<br>H   | Me<br>Me | Me<br>H | H<br>Me | H<br>H  | H<br>H  |    | 12-151<br>12-152 | Me<br>Me | H<br>H   | H<br>H   | H<br>H   | Ph<br>Ph | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  |
| 12-75          | Me       | Н        | Н        | H        | Me       | Н       | Н       | Me      | H       | 65 | 12-152           | Me       | Н        | Н        | Н        | Ph       | Н       | Н       | Н       | Ph      |
| 12-77          | Me       | Н        | Н        | H        | Me       | Н       | Н       | Н       | Me      |    | 12-154           | Ph       | Н        | Н        | Н        | Ph       | Н       | Н       | Н       | Н       |
|                |          |          |          |          |          |         |         |         |         |    |                  |          |          |          |          |          |         |         |         |         |

TABLE 12-continued

92
TABLE 12-continued

| Cpd<br>No. | Ra1 | Ra2 | Ra3 | Ra4 | Ra5 | Rb1 | Rb2 | Rb3 | Rb4 |     | Cpd<br>No. | Ra1 | Ra2 | Ra3 | Ra4 | Ra5 | Rb1 | Rb2 | Rb3 | Rb4 |
|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 12 155     | DI. | TT  | TT  | TT  | DI. | 17. | тт  | тт  | TT  | - 5 | 12-159     | Ph  | H   | Η   | Η   | Ph  | Ph  | Н   | Н   | Η   |
| 12-155     | Pn  | Η   | Η   | Η   | Ph  | Me  | Н   | Η   | Η   |     | 12-160     | Ph  | Η   | Η   | Η   | Ph  | Η   | Ph  | Η   | Η   |
| 12-156     | Ph  | Η   | H   | H   | Ph  | H   | Me  | H   | Η   |     | 12-161     | Ph  | H   | Н   | H   | Ph  | H   | Н   | Ph  | H   |
| 12-157     | Ph  | Η   | Η   | Η   | Ph  | Η   | Η   | Me  | Η   |     | 12-162     | Ph  | H   | H   | H   | Ph  | H   | H   | H   | Ph  |
| 12-158     | Ph  | Η   | Η   | Η   | Ph  | Н   | Н   | Н   | Me  |     |            |     |     |     |     |     |     |     |     |     |

| т | 'A ' | DТ | $\mathbf{r}$ | 12 |
|---|------|----|--------------|----|
|   |      |    |              |    |

| TABLE 13       |          |          |        |        |        |         |        |        |         |         |         |
|----------------|----------|----------|--------|--------|--------|---------|--------|--------|---------|---------|---------|
| Cpd No.        | Ra1      | Ra2      | Ra3    | Ra4    | Ra5    | Rb1     | Rb2    | Rb3    | Rb4     | Rb5     | Rb6     |
| 13-1           | Me       | Н        | Н      | Н      | Н      | Н       | Н      | Н      | Н       | Н       | Н       |
| 13-2           | Me       | H        | H      | Η      | H      | Me      | Η      | H      | Η       | H       | H       |
| 13-3           | Me       | H        | H      | H      | H      | H       | Me     | Н      | H       | H       | H       |
| 13-4           | Me       | H        | H      | H      | H      | Н       | H      | Me     | Н       | H       | H       |
| 13-5<br>13-6   | Me<br>Me | H<br>H   | H<br>H | H<br>H | H<br>H | H<br>H  | H<br>H | H<br>H | Me<br>H | H<br>Me | H<br>H  |
| 13-0           | Me       | Н        | Н      | Н      | Н      | Н       | Н      | Н      | Н       | H       | Ме      |
| 13-8           | Me       | H        | H      | H      | H      | Ph      | H      | Н      | Н       | Н       | H       |
| 13-9           | Me       | Н        | Н      | Н      | H      | Н       | Ph     | Н      | Н       | H       | H       |
| 13-10          | Me       | Н        | H      | H      | H      | H       | Н      | Ph     | H       | H       | Н       |
| 13-11          | Me       | Η        | H      | Н      | Η      | Η       | Η      | Η      | Ph      | H       | Н       |
| 13-12          | Me       | H        | Η      | Η      | H      | Η       | Η      | Η      | Η       | Ph      | H       |
| 13-13          | Me       | Η        | Η      | Η      | Η      | Η       | Η      | Η      | Η       | H       | Ph      |
| 13-14          | Ph       | Η        | Η      | Η      | Η      | Η       | Η      | Η      | Η       | Η       | H       |
| 13-15          | Ph       | H        | H      | H      | H      | Me      | Η      | H      | H       | Η       | H       |
| 13-16          | Ph       | Н        | H      | Н      | Н      | Н       | Me     | Н      | Н       | Н       | Н       |
| 13-17          | Ph       | H        | H      | H      | H      | H       | Н      | Me     | Н       | H       | H       |
| 13-18          | Ph<br>Ph | H<br>H   | H<br>H | H<br>H | H<br>H | H<br>H  | H<br>H | H<br>H | Me<br>H | H<br>Me | H<br>H  |
| 13-19<br>13-20 | Ph       | Н        | Н      | Н      | Н      | Н       | Н      | Н      | Н       | H       | п<br>Ме |
| 13-20          | Ph       | Н        | Н      | Н      | Н      | Ph      | Н      | Н      | Н       | Н       | H       |
| 13-21          | Ph       | Н        | Н      | Н      | Н      | Н       | Ph     | Н      | Н       | Н       | Н       |
| 13-23          | Ph       | Н        | Н      | Н      | Н      | Н       | Н      | Ph     | H       | H       | Н       |
| 13-24          | Ph       | H        | H      | H      | Н      | Н       | Н      | Н      | Ph      | Н       | Н       |
| 13-25          | Ph       | Н        | Н      | Н      | Н      | Н       | Н      | Н      | H       | Ph      | Н       |
| 13-26          | Ph       | H        | H      | H      | H      | Η       | Η      | H      | H       | H       | Ph      |
| 13-27          | Me       | Me       | Η      | H      | H      | Η       | Η      | Η      | H       | Η       | H       |
| 13-28          | Me       | Me       | Η      | Η      | Η      | Me      | Η      | Η      | Η       | Η       | Η       |
| 13-29          | Me       | Me       | H      | Η      | H      | Η       | Me     | H      | Η       | H       | H       |
| 13-30          | Me       | Me       | Η      | Η      | Η      | Η       | Η      | Me     | Η       | Η       | Н       |
| 13-31          | Me       | Me       | H      | H      | H      | H       | H      | H      | Me      | Н       | H       |
| 13-32          | Me       | Me       | H      | H      | H      | Н       | Н      | H      | H       | Me      | H       |
| 13-33<br>13-34 | Me<br>Me | Me<br>Me | H<br>H | H<br>H | H<br>H | H<br>Ph | H<br>H | H<br>H | H<br>H  | H<br>H  | Me<br>H |
| 13-34          | Me       | Me       | H      | H      | H      | Н       | Ph     | H      | H       | H       | H       |
| 13-36          | Me       | Me       | Н      | Н      | Н      | Н       | Н      | Ph     | Н       | Н       | Н       |
| 13-37          | Me       | Me       | H      | H      | H      | H       | Н      | Н      | Ph      | H       | H       |
| 13-38          | Me       | Me       | H      | H      | Н      | H       | H      | Н      | H       | Ph      | H       |
| 13-39          | Me       | Me       | Η      | Η      | Η      | Η       | Η      | Η      | Н       | Η       | Ph      |
| 13-40          | Ph       | Me       | Η      | Η      | Η      | Η       | Η      | Η      | Η       | H       | Η       |
| 13-41          | Ph       | Me       | Η      | Η      | Η      | Me      | Η      | Η      | Η       | Η       | Η       |
| 13-42          | Ph       | Me       | H      | H      | H      | H       | Me     | Н      | Η       | Η       | H       |
| 13-43          | Ph       | Me       | H      | Н      | Н      | Н       | Н      | Me     | Н       | Н       | H       |
| 13-44<br>13-45 | Ph       | Me<br>M- | H<br>H | H<br>H | H<br>H | H<br>H  | H<br>H | H<br>H | Me<br>H | H<br>Me | Н       |
| 13-45          | Ph<br>Ph | Me<br>Me | Н      | Н      | Н      | Н       | Н      | Н      | Н       | Н       | H<br>Me |
| 13-47          | Ph       | Me       | H      | H      | H      | Ph      | H      | Н      | Н       | Н       | H       |
| 13-47          | Ph       | Me       | H      | H      | H      | Н       | Ph     | H      | H       | H       | H       |
| 13-49          | Ph       | Me       | Н      | Н      | Н      | Н       | Н      | Ph     | Н       | Н       | Н       |
| 13-50          | Ph       | Me       | Н      | H      | H      | Н       | H      | Н      | Ph      | H       | H       |
| 13-51          | Ph       | Me       | Η      | Η      | Η      | Η       | Η      | Η      | Η       | Ph      | H       |
| 13-52          | Ph       | Me       | Η      | H      | H      | H       | Η      | Η      | Η       | Η       | Ph      |
| 13-53          | Me       | Η        | Me     | Η      | Η      | Η       | Η      | Η      | Η       | Η       | Η       |
| 13-54          | Me       | Η        | Me     | Η      | Η      | Me      | Η      | Η      | Η       | Η       | H       |
| 13-55          | Me       | Η        | Me     | Η      | Η      | Η       | Me     | Н      | Η       | Η       | H       |
| 13-56          | Me       | Η        | Me     | Η      | Η      | Η       | Η      | Me     | Н       | Н       | Н       |
| 13-57          | Me       | H        | Me     | H      | Η      | H       | H      | Η      | Me      | Η       | H       |
| 13-58          | Me       | Η        | Me     | Η      | Н      | Η       | Η      | Н      | Н       | Me      | Н       |
| 13-59          | Me       | Н        | Me     | Η      | Н      | H       | Н      | Н      | Н       | Н       | Me      |
| 13-60          | Me       | Η        | Me     | Η      | Η      | Ph      | Η      | Η      | Η       | Η       | Н       |
| 13-61          | Me       | Η        | Me     | Η      | Η      | Η       | Ph     | Η      | Η       | Η       | Н       |
| 13-62          | Me       | Η        | Me     | Η      | Η      | Η       | Η      | Ph     | Н       | Η       | H       |
| 13-63          | Me       | Н        | Me     | Η      | Η      | Η       | Η      | Н      | Ph      | Н       | Н       |
| 13-64          | Me       | Η        | Me     | Η      | Η      | Η       | Η      | Η      | Η       | Ph      | Н       |
| 13-65          | Me       | Η        | Me     | Η      | Η      | Η       | Η      | Η      | Η       | Η       | Ph      |

93
TABLE 13-continued

|                  |          |          |          | IADI     | 13 تار   | -conti  | nucu    |         |                 |        |        |
|------------------|----------|----------|----------|----------|----------|---------|---------|---------|-----------------|--------|--------|
| Cpd No.          | Ra1      | Ra2      | Ra3      | Ra4      | Ra5      | Rb1     | Rb2     | Rb3     | Rb4             | Rb5    | Rb6    |
| 13-66            | Ph       | Н        | Me       | Н        | Н        | Н       | Н       | Н       | Н               | Н      | Н      |
| 13-67            | Ph       | Η        | Me       | Η        | Η        | Me      | Н       | Η       | Η               | Н      | H      |
| 13-68<br>13-69   | Ph<br>Ph | H<br>H   | Me<br>Me | H<br>H   | H<br>H   | H<br>H  | Me<br>H | H<br>Me | H<br>H          | H<br>H | H<br>H |
| 13-09            | Ph       | Н        | Me       | Н        | Н        | Н       | Н       | H       | н<br>Ме         | Н      | Н      |
| 13-71            | Ph       | H        | Me       | Н        | H        | H       | Н       | H       | Н               | Me     | Н      |
| 13-72            | Ph       | Η        | Me       | Η        | Η        | H       | H       | Η       | Η               | Η      | Me     |
| 13-73            | Ph       | Η        | Me       | Н        | Η        | Ph      | Н       | Η       | Η               | Н      | H      |
| 13-74<br>13-75   | Ph<br>Ph | H<br>H   | Me<br>Me | H<br>H   | H<br>H   | H<br>H  | Ph<br>H | H<br>Ph | H<br>H          | H<br>H | H<br>H |
| 13-75            | Ph       | H        | Me       | H        | H        | Н       | H       | Н       | Ph              | H      | Н      |
| 13-77            | Ph       | H        | Me       | Н        | H        | H       | H       | H       | Н               | Ph     | H      |
| 13-78            | Ph       | Η        | Me       | Η        | Η        | Η       | Η       | Η       | Η               | Н      | Ph     |
| 13-79            | Me       | H        | H        | Me       | Н        | Н       | H       | H       | H               | H      | H      |
| 13-80<br>13-81   | Me<br>Me | H<br>H   | H<br>H   | Me<br>Me | H<br>H   | Me<br>H | H<br>Me | H<br>H  | H<br>H          | H<br>H | H<br>H |
| 13-81            | Me       | H        | H        | Me       | Н        | Н       | Н       | Me      | H               | Н      | H      |
| 13-83            | Me       | Η        | Η        | Me       | Η        | Η       | Η       | Η       | Me              | Н      | H      |
| 13-84            | Me       | Η        | Η        | Me       | Η        | Η       | Η       | Η       | Η               | Me     | H      |
| 13-85            | Me       | H        | H        | Me       | H        | H       | H       | H       | H               | H      | Me     |
| 13-86<br>13-87   | Me<br>Me | H<br>H   | H<br>H   | Me<br>Me | H<br>H   | Ph<br>H | H<br>Ph | H<br>H  | H<br>H          | H<br>H | H<br>H |
| 13-87            | Me       | H        | H        | Me       | Н        | Н       | Н       | Ph      | H               | Н      | Н      |
| 13-89            | Me       | Н        | Н        | Me       | Н        | Н       | Н       | Н       | Ph              | Н      | Н      |
| 13-90            | Me       | H        | H        | Me       | Η        | H       | H       | Η       | H               | Ph     | H      |
| 13-91            | Me       | H        | H        | Me       | Η        | H       | H       | H       | H               | H      | Ph     |
| 13-92            | Ph       | H        | H        | Me       | H        | H       | H       | H       | H               | H      | H      |
| 13-93<br>13-94   | Ph<br>Ph | H<br>H   | H<br>H   | Me<br>Me | H<br>H   | Me<br>H | H<br>Me | H<br>H  | H<br>H          | H<br>H | H<br>H |
| 13-95            | Ph       | H        | H        | Me       | Н        | Н       | Н       | Me      | H               | Н      | H      |
| 13-96            | Ph       | H        | H        | Me       | H        | H       | H       | Н       | Me              | H      | H      |
| 13-97            | Ph       | H        | H        | Me       | Η        | H       | Η       | H       | H               | Me     | H      |
| 13-98            | Ph       | Η        | Η        | Me       | Η        | Η       | Η       | Η       | Η               | Η      | Me     |
| 13-99            | Ph       | H        | H        | Me       | Н        | Ph      | H       | H       | H               | H      | H      |
| 13-100<br>13-101 | Ph<br>Ph | H<br>H   | H<br>H   | Me<br>Me | H<br>H   | H<br>H  | Ph<br>H | H<br>Ph | H<br>H          | H<br>H | H<br>H |
| 13-101           | Ph       | H        | H        | Me       | Н        | H       | Н       | Н       | Ph              | H      | H      |
| 13-103           | Ph       | Н        | Н        | Me       | Н        | Н       | Н       | Н       | Н               | Ph     | Н      |
| 13-104           | Ph       | H        | H        | Me       | Η        | Η       | Η       | Η       | H               | Η      | Ph     |
| 13-105           | Me       | H        | Н        | H        | Me       | Н       | H       | H       | H               | H      | Н      |
| 13-106           | Me       | H        | H        | H        | Me       | Me      | H       | H       | Н               | H      | H      |
| 13-107<br>13-108 | Me<br>Me | H<br>H   | H<br>H   | H<br>H   | Me<br>Me | H<br>H  | Me<br>H | H<br>Me | H<br>H          | H<br>H | H<br>H |
| 13-109           | Me       | H        | H        | Н        | Me       | Н       | Н       | Н       | Me              | Н      | Н      |
| 13-110           | Me       | H        | H        | Η        | Me       | H       | H       | Η       | $_{\mathrm{H}}$ | Me     | H      |
| 13-111           | Me       | H        | H        | Η        | Me       | H       | Η       | Η       | H               | Η      | Me     |
| 13-112           | Me       | H        | H        | Н        | Me       | Ph      | H       | H       | Н               | H      | H      |
| 13-113<br>13-114 | Me<br>Me | H<br>H   | H<br>H   | H<br>H   | Me<br>Me | H<br>H  | Ph<br>H | H<br>Ph | H<br>H          | H<br>H | H<br>H |
| 13-115           | Me       | Н        | H        | Н        | Me       | Н       | Н       | Н       | Ph              | Н      | Н      |
| 13-116           | Me       | H        | H        | Н        | Me       | Н       | H       | H       | H               | Ph     | Н      |
| 13-117           | Me       | H        | H        | Η        | Me       | Η       | Η       | Η       | H               | Η      | Ph     |
| 13-118           | Ph       | H        | H        | H        | Me       | H       | H       | H       | H               | H      | H      |
| 13-119<br>13-120 | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H   | Me<br>Me | Me<br>H | H<br>Me | H<br>H  | H<br>H          | H<br>H | H<br>H |
| 13-120           | Ph       | H        | H        | H        | Me       | Н       | H       | Me      | H               | H      | H      |
| 13-122           | Ph       | Н        | Н        | Н        | Me       | Н       | Н       | Н       | Me              | Н      | Н      |
| 13-123           | Ph       | H        | H        | Η        | Me       | Η       | Η       | H       | H               | Me     | H      |
| 13-124           | Ph       | H        | H        | H        | Me       | H       | H       | H       | H               | H      | Me     |
| 13-125           | Ph       | H        | H        | H        | Me       | Ph      | H       | H       | H               | H      | H      |
| 13-126<br>13-127 | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H   | Me<br>Me | H<br>H  | Ph<br>H | H<br>Ph | H<br>H          | H<br>H | H<br>H |
| 13-128           | Ph       | Н        | Н        | Н        | Me       | Н       | Н       | Н       | Ph              | Н      | Н      |
| 13-129           | Ph       | H        | H        | H        | Me       | Н       | H       | H       | H               | Ph     | Н      |
| 13-130           | Ph       | H        | H        | Η        | Me       | Η       | Η       | Η       | H               | Η      | Ph     |
| 13-131           | Me       | Ph       | H        | Н        | Н        | Н       | Н       | H       | Н               | Н      | H      |
| 13-132<br>13-133 | Me<br>Me | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H   | Me<br>H | H<br>Me | H<br>H  | H<br>H          | H<br>H | H<br>H |
| 13-133           | Me       | Ph       | H        | H        | H        | Н       | H       | Me      | H               | H      | H      |
| 13-135           | Me       | Ph       | H        | H        | H        | Н       | H       | Н       | Me              | Н      | H      |
| 13-136           | Me       | Ph       | Η        | Η        | Η        | Η       | Η       | Η       | Η               | Me     | H      |
| 13-137           | Me       | Ph       | H        | H        | H        | H       | H       | H       | H               | H      | Me     |
| 13-138           | Me       | Ph       | H        | H        | H        | Ph      | H       | H       | H               | H      | H      |
| 13-139<br>13-140 | Me<br>Me | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H   | H<br>H  | Ph<br>H | H<br>Ph | H<br>H          | H<br>H | H<br>H |
| 13-140           | Me       | Ph       | Н        | Н        | Н        | Н       | Н       | Н       | Ph              | Н      | Н      |
| 13-142           | Me       | Ph       | Н        | Н        | Н        | Н       | Н       | Н       | Н               | Ph     | Н      |
| 13-143           | Me       | Ph       | H        | Η        | Н        | Η       | Η       | H       | Η               | Н      | Ph     |
|                  |          |          |          |          |          |         |         |         |                 |        |        |

95
TABLE 13-continued

| Cpd No.          | Ra1      | Ra2      | Ra3      | Ra4      | Ra5      | Rb1     | Rb2     | Rb3     | Rb4     | Rb5     | Rb6     |
|------------------|----------|----------|----------|----------|----------|---------|---------|---------|---------|---------|---------|
| 13-144           | Ph       | Ph       | Н        | Н        | Н        | Н       | Н       | Н       | Н       | Н       | Н       |
| 13-144           | Ph       | Ph       | Н        | Н        | Н        | Мe      | Н       | Н       | Н       | Н       | Н       |
| 13-146           | Ph       | Ph       | H        | H        | Н        | Н       | Me      | H       | H       | H       | H       |
| 13-147           | Ph       | Ph       | Н        | Н        | Н        | Н       | Н       | Me      | Н       | Н       | Н       |
| 13-148           | Ph       | Ph       | H        | H        | Η        | Н       | Н       | H       | Me      | H       | Н       |
| 13-149           | Ph       | Ph       | H        | H        | Η        | Η       | Η       | H       | H       | Me      | H       |
| 13-150           | Ph       | Ph       | Η        | H        | Η        | Н       | Η       | Η       | Η       | Н       | Me      |
| 13-151           | Ph       | Ph       | Η        | Η        | Η        | Ph      | H       | Η       | Η       | Η       | Η       |
| 13-152           | Ph       | Ph       | Η        | Н        | Н        | H       | Ph      | H       | Н       | H       | H       |
| 13-153           | Ph       | Ph       | H        | H        | H        | H       | H       | Ph      | H       | H       | H       |
| 13-154<br>13-155 | Ph<br>Ph | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H   | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  |
| 13-156           | Ph       | Ph       | Н        | Н        | Н        | Н       | Н       | Н       | Н       | Н       | Ph      |
| 13-157           | Me       | Н        | Ph       | H        | Н        | Н       | Н       | H       | H       | Н       | H       |
| 13-158           | Me       | Н        | Ph       | Н        | Н        | Me      | Н       | Н       | Н       | Н       | Н       |
| 13-159           | Me       | H        | Ph       | H        | H        | H       | Me      | H       | H       | H       | Н       |
| 13-160           | Me       | Η        | Ph       | Η        | Η        | Η       | Η       | Me      | Η       | Η       | Η       |
| 13-161           | Me       | H        | Ph       | H        | Η        | H       | Η       | Η       | Me      | Η       | Η       |
| 13-162           | Me       | Η        | Ph       | Η        | Η        | Н       | Η       | Η       | Η       | Me      | Н       |
| 13-163           | Me       | H        | Ph       | H        | H        | H       | H       | H       | H       | H       | Me      |
| 13-164           | Me       | H        | Ph       | H        | H        | Ph      | H       | H       | H       | H       | H       |
| 13-165<br>13-166 | Me<br>Me | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  |
| 13-167           | Me       | Н        | Ph       | Н        | Н        | Н       | Н       | H       | Ph      | Н       | Н       |
| 13-168           | Me       | Н        | Ph       | Н        | Н        | Н       | Н       | H       | Н       | Ph      | Н       |
| 13-169           | Me       | H        | Ph       | Н        | Н        | Н       | H       | H       | Н       | Н       | Ph      |
| 13-170           | Ph       | H        | Ph       | H        | H        | H       | H       | H       | H       | H       | H       |
| 13-171           | Ph       | H        | Ph       | H        | H        | Me      | Η       | H       | H       | H       | Н       |
| 13-172           | Ph       | Η        | Ph       | H        | Η        | H       | Me      | Η       | Η       | Н       | Η       |
| 13-173           | Ph       | H        | Ph       | Η        | Η        | Η       | Η       | Me      | Η       | Η       | Η       |
| 13-174           | Ph       | H        | Ph       | H        | Н        | H       | H       | H       | Me      | Н       | H       |
| 13-175           | Ph       | H        | Ph       | H        | H        | H       | H       | H       | H       | Me      | H       |
| 13-176<br>13-177 | Ph<br>Ph | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H   | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H |
| 13-177           | Ph       | H        | Ph       | H        | H        | Н       | Ph      | H       | H       | H       | H       |
| 13-179           | Ph       | H        | Ph       | Н        | Н        | H       | Н       | Ph      | H       | Н       | Н       |
| 13-180           | Ph       | H        | Ph       | H        | Н        | H       | H       | H       | Ph      | H       | H       |
| 13-181           | Ph       | H        | Ph       | H        | H        | H       | H       | H       | H       | Ph      | H       |
| 13-182           | Ph       | Η        | Ph       | H        | Η        | Η       | Η       | Η       | Η       | Η       | Ph      |
| 13-183           | Me       | H        | H        | Ph       | Н        | Н       | H       | H       | H       | H       | H       |
| 13-184           | Me       | H        | H        | Ph       | Н        | Me      | H       | H       | Н       | H       | H       |
| 13-185<br>13-186 | Me<br>Me | H<br>H   | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  |
| 13-187           | Me       | H        | H        | Ph       | Н        | Н       | Н       | H       | Me      | H       | H       |
| 13-188           | Me       | Н        | H        | Ph       | Н        | Н       | Н       | Н       | Н       | Me      | H       |
| 13-189           | Me       | H        | H        | Ph       | Н        | H       | H       | H       | H       | H       | Me      |
| 13-190           | Me       | H        | H        | Ph       | Η        | Ph      | Η       | H       | H       | H       | Н       |
| 13-191           | Me       | Η        | Η        | Ph       | Η        | Н       | Ph      | Η       | Η       | Н       | Η       |
| 13-192           | Me       | Η        | Η        | Ph       | Η        | Н       | Η       | Ph      | H       | Η       | Н       |
| 13-193           | Me       | H        | H        | Ph       | Н        | Н       | Н       | H       | Ph      | H       | H       |
| 13-194<br>13-195 | Me<br>Me | H<br>H   | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph |
| 13-195           | Ph       | H        | H        | Ph       | H        | Н       | H       | H       | H       | H       | Н       |
| 13-197           | Ph       | Н        | Н        | Ph       | Н        | Me      | Н       | Н       | Н       | Н       | Н       |
| 13-198           | Ph       | H        | H        | Ph       | H        | Н       | Me      | Н       | Н       | Н       | Н       |
| 13-199           | Ph       | Η        | H        | Ph       | Η        | Η       | Η       | Me      | Η       | Η       | Н       |
| 13-200           | Ph       | Η        | H        | Ph       | Η        | Η       | Η       | Η       | Me      | Η       | Η       |
| 13-201           | Ph       | H        | Η        | Ph       | Η        | H       | H       | H       | H       | Me      | Н       |
| 13-202           | Ph       | H        | H        | Ph       | H        | H       | H       | H       | H       | H       | Me      |
| 13-203<br>13-204 | Ph       | H        | H        | Ph       | H        | Ph      | H       | H       | H       | H       | H       |
| 13-204           | Ph<br>Ph | H<br>H   | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  |
| 13-206           | Ph       | H        | H        | Ph       | Н        | Н       | Н       | H       | Ph      | Н       | Н       |
| 13-207           | Ph       | H        | H        | Ph       | H        | H       | H       | H       | H       | Ph      | H       |
| 13-208           | Ph       | Н        | Н        | Ph       | Н        | Н       | Н       | Н       | Н       | Н       | Ph      |
| 13-209           | Me       | H        | H        | Η        | Ph       | Н       | H       | H       | H       | Н       | H       |
| 13-210           | Me       | Η        | Η        | Η        | Ph       | Me      | Η       | Η       | Η       | Н       | Н       |
| 13-211           | Me       | Н        | H        | Η        | Ph       | Н       | Me      | Н       | Н       | Н       | Н       |
| 13-212           | Me       | H        | H        | Н        | Ph       | H       | Н       | Me      | Н       | H       | H       |
| 13-213           | Me       | Н        | H        | Н        | Ph       | Н       | Н       | Н       | Me      | H<br>Ma | Н       |
| 13-214<br>13-215 | Me<br>Me | H<br>H   | H<br>H   | H<br>H   | Ph<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H | H<br>Me |
| 13-215           | Me       | Н        | Н        | Н        | Ph       | Ph      | Н       | Н       | Н       | Н       | H       |
| 13-217           | Me       | H        | H        | H        | Ph       | Н       | Ph      | H       | H       | H       | H       |
| 13-218           | Me       | H        | H        | Н        | Ph       | Н       | Н       | Ph      | H       | H       | H       |
| 13-219           | Me       | H        | H        | Η        | Ph       | H       | H       | H       | Ph      | H       | H       |
| 13-220           | Me       | Η        | Η        | Η        | Ph       | Η       | Η       | Η       | Η       | Ph      | Н       |
| 13-221           | Me       | H        | H        | Η        | Ph       | Η       | Η       | H       | H       | H       | Ph      |
|                  |          |          |          |          |          |         |         |         |         |         |         |

**97**TABLE 13-continued

| Cpd No. | Ra1 | Ra2 | Ra3 | Ra4 | Ra5 | Rb1 | Rb2 | Rb3 | Rb4 | Rb5 | Rb6 |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 13-222  | Ph  | Н   | Н   | Н   | Ph  | Н   | Н   | Н   | Н   | Н   | Н   |
| 13-223  | Ph  | H   | H   | H   | Ph  | Me  | Η   | H   | Η   | Η   | H   |
| 13-224  | Ph  | H   | H   | H   | Ph  | H   | Me  | H   | Η   | Η   | H   |
| 13-225  | Ph  | H   | H   | H   | Ph  | H   | Η   | Me  | Η   | Η   | H   |
| 13-226  | Ph  | H   | Η   | H   | Ph  | H   | H   | H   | Me  | H   | Н   |
| 13-227  | Ph  | H   | Н   | H   | Ph  | H   | H   | Н   | H   | Me  | Н   |
| 13-228  | Ph  | H   | Η   | H   | Ph  | H   | H   | H   | H   | H   | Me  |
| 13-229  | Ph  | H   | H   | H   | Ph  | Ph  | H   | H   | H   | H   | H   |
| 13-230  | Ph  | H   | Η   | Н   | Ph  | H   | Ph  | Η   | Η   | Η   | Н   |
| 13-231  | Ph  | H   | H   | H   | Ph  | H   | H   | Ph  | H   | H   | Н   |
| 13-232  | Ph  | H   | H   | H   | Ph  | H   | H   | Н   | Ph  | Н   | Н   |
| 13-233  | Ph  | H   | H   | H   | Ph  | H   | H   | H   | H   | Ph  | H   |
| 13-234  | Ph  | Η   | Η   | Η   | Ph  | Η   | Η   | Н   | Н   | Н   | Ph  |

TABLE 14

| Cpd No.        | Ra1      | Ra2      | Ra3     | Rb4    | Ra5    | Rb1     | Rb2     | Rb3     | Rb4     | Rb5     | Rb6    | Rb7      |
|----------------|----------|----------|---------|--------|--------|---------|---------|---------|---------|---------|--------|----------|
| 14-1           | Me       | Н        | Н       | Н      | Н      | Н       | Н       | Н       | Н       | Н       | Н      | Me       |
| 14-2           | Me       | Η        | H       | Η      | Η      | Me      | Η       | H       | H       | Η       | Η      | Me       |
| 14-3           | Me       | Η        | Η       | Η      | Η      | Η       | Me      | Η       | Η       | Η       | Η      | Me       |
| 14-4           | Me       | Η        | H       | Η      | Η      | Η       | Н       | Me      | H       | Η       | Н      | Me       |
| 14-5           | Me       | Η        | Η       | Η      | Η      | Η       | Η       | Η       | Me      | Η       | Н      | Me       |
| 14-6           | Me       | H        | Η       | H      | Η      | Η       | H       | H       | H       | Me      | H      | Me       |
| 14-7           | Me       | H        | H       | H      | Η      | H       | H       | H       | H       | Н       | Me     | Me       |
| 14-8           | Me       | H        | H       | Η      | Η      | Ph      | H       | H       | H       | Η       | H      | Me       |
| 14-9           | Me       | H        | H       | H      | H      | H       | Ph      | H       | H       | H       | H      | Me       |
| 14-10          | Me       | H        | H       | H      | Н      | H       | Н       | Ph      | H       | H       | Н      | Me       |
| 14-11          | Me       | H        | H       | H      | H      | H       | H       | H       | Ph      | H       | H      | Me       |
| 14-12          | Me       | H        | H       | H      | H      | H       | H       | H       | H       | Ph      | H      | Me       |
| 14-13          | Me       | H<br>H   | H       | H      | H<br>H | H       | H<br>H  | H<br>H  | H<br>H  | H       | Ph     | Me       |
| 14-14<br>14-15 | Ph<br>Ph | Н        | H<br>H  | H<br>H | Н      | H<br>Me | Н       | Н       | Н       | H<br>H  | H<br>H | Me<br>Me |
| 14-15          | Ph       | Н        | Н       | Н      | Н      | H       | П<br>Ме | Н       | Н       | Н       | Н      | Me       |
| 14-10          | Ph       | Н        | Н       | Н      | Н      | Н       | H       | Me      | Н       | Н       | Н      | Me       |
| 14-17          | Ph       | Н        | Н       | Н      | Н      | Н       | Н       | Н       | Me      | Н       | Н      | Me       |
| 14-18          | Ph       | H        | H       | H      | Н      | H       | Н       | H       | Н       | Me      | Н      | Me       |
| 14-20          | Ph       | H        | H       | Н      | Н      | Н       | Н       | H       | Н       | Н       | Me     | Me       |
| 14-20          | Ph       | H        | H       | H      | H      | Ph      | H       | Н       | Н       | H       | H      | Me       |
| 14-22          | Ph       | H        | Н       | Н      | Н      | Н       | Ph      | Н       | Н       | Н       | Н      | Me       |
| 14-23          | Ph       | H        | H       | H      | Н      | H       | Н       | Ph      | H       | H       | H      | Me       |
| 14-24          | Ph       | Н        | Н       | Н      | Н      | Н       | Н       | Н       | Ph      | Н       | Н      | Me       |
| 14-25          | Ph       | H        | H       | H      | Н      | Н       | Н       | H       | Н       | Ph      | Н      | Me       |
| 14-26          | Ph       | H        | H       | H      | H      | H       | H       | H       | H       | Н       | Ph     | Me       |
| 14-27          | Me       | Me       | Н       | H      | Н      | H       | Н       | Н       | Н       | Н       | H      | Me       |
| 14-28          | Me       | Me       | Н       | H      | Н      | Me      | Н       | Н       | Н       | Н       | Н      | Me       |
| 14-29          | Me       | Me       | Н       | Н      | Н      | Н       | Me      | Н       | Н       | Н       | H      | Me       |
| 14-30          | Me       | Me       | H       | Η      | Н      | Η       | Η       | Me      | H       | Η       | Η      | Me       |
| 14-31          | Me       | Me       | H       | Η      | H      | Η       | Н       | H       | Me      | Н       | Н      | Me       |
| 14-32          | Me       | Me       | H       | H      | H      | Η       | H       | H       | Н       | Me      | H      | Me       |
| 14-33          | Me       | Me       | Η       | Η      | Η      | Η       | Η       | Η       | Η       | Η       | Me     | Me       |
| 14-34          | Me       | Me       | Η       | Η      | Η      | Ph      | Η       | Η       | Η       | Η       | Η      | Me       |
| 14-35          | Me       | Me       | Η       | Η      | Η      | Η       | Ph      | Η       | Η       | Η       | Η      | Me       |
| 14-36          | Me       | Me       | H       | H      | H      | Η       | Η       | Ph      | H       | Η       | Η      | Me       |
| 14-37          | Me       | Me       | Η       | Η      | Η      | Η       | Η       | Η       | Ph      | Η       | Η      | Me       |
| 14-38          | Me       | Me       | Η       | Η      | Η      | Η       | Η       | Η       | H       | Ph      | Η      | Me       |
| 14-39          | Me       | Me       | Η       | Η      | Η      | Η       | Η       | Η       | Η       | Η       | Ph     | Me       |
| 14-40          | Ph       | Me       | H       | Η      | H      | Η       | H       | H       | H       | Н       | H      | Me       |
| 14-41          | Ph       | Me       | H       | H      | Η      | Me      | Н       | H       | H       | Η       | H      | Me       |
| 14-42          | Ph       | Me       | H       | H      | H      | H       | Me      | Н       | H       | Н       | H      | Me       |
| 14-43          | Ph       | Me       | H       | Н      | Н      | Н       | Н       | Me      | Н       | Н       | Н      | Me       |
| 14-44          | Ph       | Me       | H       | Н      | Н      | H       | Н       | Н       | Me      | Н       | Н      | Me       |
| 14-45          | Ph       | Me       | H       | H      | H      | H       | H       | H       | H       | Me      | Н      | Me       |
| 14-46          | Ph       | Me       | H       | H      | H      | H       | H       | H       | H       | H       | Me     | Me       |
| 14-47          | Ph       | Me       | H       | H      | H<br>H | Ph      | H       | H       | H       | H       | H      | Me<br>M- |
| 14-48<br>14-49 | Ph<br>Ph | Me<br>Me | H<br>H  | H<br>H | Н      | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H | Me<br>Me |
| 14-49          | Ph       | Me       | Н       | Н      | Н      | Н       | Н       | Н       | л<br>Ph | Н       | Н      |          |
| 14-50          | Ph       | Me       | Н       | Н      | Н      | Н       | Н       | Н       | Н       | л<br>Ph | Н      | Me<br>Me |
| 14-51          | Ph       | Me       | Н       | Н      | Н      | Н       | Н       | Н       | Н       | Н       | Ph     | Me       |
| 14-52          | Me       | Н        | П<br>Ме | Н      | Н      | Н       | Н       | Н       | Н       | Н       | Н      | Me       |
| 14-53          | Me       | Н        | Me      | Н      | Н      | Me      | Н       | Н       | Н       | Н       | Н      | Me       |
| 14-54          | Me       | Н        | Me      | Н      | Н      | H       | П<br>Ме | Н       | Н       | Н       | Н      | Me       |
| 14-56          | Me       | H        | Me      | H      | H      | H       | H       | Me      | H       | H       | Н      | Me       |
| 14-57          | Me       | H        | Me      | Н      | Н      | Н       | Н       | Н       | Me      | Н       | Н      | Me       |
| /              |          |          |         | ~~     | ~~     |         | ~~      |         |         |         | ~~     |          |

**99**TABLE 14-continued

| Cpd No.          | Ra1      | Ra2      | Ra3      | Rb4      | Ra5      | Rb1     | Rb2     | Rb3     | Rb4     | Rb5    | Rb6     | Rb7      |
|------------------|----------|----------|----------|----------|----------|---------|---------|---------|---------|--------|---------|----------|
|                  |          |          |          |          |          |         |         |         |         |        |         |          |
| 14-58            | Me       | H        | Me       | Н        | H        | H       | H       | Н       | H       | Me     | Н       | Me       |
| 14-59<br>14-60   | Me       | H<br>H   | Me       | H<br>H   | H<br>H   | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H | Me<br>H | Me<br>Me |
| 14-60            | Me<br>Me | Н        | Me<br>Me | Н        | Н        | Н       | Ph      | Н       | Н       | Н      | Н       | Me       |
| 14-62            | Me       | Н        | Me       | Н        | Н        | Н       | Н       | Ph      | Н       | Н      | Н       | Me       |
| 14-63            | Me       | H        | Me       | H        | Н        | Н       | Н       | Н       | Ph      | H      | H       | Me       |
| 14-64            | Me       | H        | Me       | Η        | Η        | Η       | Η       | Η       | Η       | Ph     | Η       | Me       |
| 14-65            | Me       | H        | Me       | H        | Η        | H       | H       | H       | Η       | H      | Ph      | Me       |
| 14-66            | Ph       | H        | Me       | H        | H        | H       | H       | H       | H       | H      | H       | Me       |
| 14-67<br>14-68   | Ph<br>Ph | H<br>H   | Me<br>Me | H<br>H   | H<br>H   | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H | H<br>H  | Me<br>Me |
| 14-69            | Ph       | H        | Me       | Н        | H        | Н       | Н       | Me      | H       | Н      | Н       | Me       |
| 14-70            | Ph       | H        | Me       | Н        | Н        | Н       | H       | H       | Me      | H      | Н       | Me       |
| 14-71            | Ph       | H        | Me       | Η        | Η        | Η       | Η       | Η       | Η       | Me     | Η       | Me       |
| 14-72            | Ph       | H        | Me       | H        | Н        | H       | H       | H       | Η       | H      | Me      | Me       |
| 14-73<br>14-74   | Ph       | H<br>H   | Me       | H<br>H   | H        | Ph<br>H | H       | H<br>H  | H<br>H  | H<br>H | H       | Me       |
| 14-74            | Ph<br>Ph | Н        | Me<br>Me | Н        | H<br>H   | Н       | Ph<br>H | Ph      | Н       | Н      | H<br>H  | Me<br>Me |
| 14-76            | Ph       | Н        | Me       | Н        | Н        | Н       | Н       | Н       | Ph      | H      | Н       | Me       |
| 14-77            | Ph       | H        | Me       | H        | Η        | Η       | Η       | Η       | Η       | Ph     | Η       | Me       |
| 14-78            | Ph       | H        | Me       | H        | Η        | Η       | Η       | H       | Η       | H      | Ph      | Me       |
| 14-79            | Me       | H        | Η        | Me       | Н        | Н       | Η       | H       | Η       | H      | H       | Me       |
| 14-80            | Me       | H        | H        | Me       | H        | Me      | H<br>M- | H       | H       | H      | H       | Me       |
| 14-81<br>14-82   | Me<br>Me | H<br>H   | H<br>H   | Me<br>Me | H<br>H   | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H | H<br>H  | Me<br>Me |
| 14-83            | Me       | H        | H        | Me       | Н        | Н       | Н       | Н       | Me      | Н      | Н       | Me       |
| 14-84            | Me       | H        | H        | Me       | Η        | H       | H       | H       | Η       | Me     | H       | Me       |
| 14-85            | Me       | Η        | Η        | Me       | Η        | Η       | Η       | Η       | Η       | Η      | Me      | Me       |
| 14-86            | Me       | H        | H        | Me       | H        | Ph      | H       | H       | H       | H      | H       | Me       |
| 14-87            | Me       | H        | H        | Me       | H        | H       | Ph      | H       | H       | H      | H       | Me       |
| 14-88<br>14-89   | Me<br>Me | H<br>H   | H<br>H   | Me<br>Me | H<br>H   | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H | H<br>H  | Me<br>Me |
| 14-90            | Me       | H        | Н        | Me       | Н        | Н       | Н       | Н       | H       | Ph     | Н       | Me       |
| 14-91            | Me       | Η        | Η        | Me       | Η        | Η       | Η       | Η       | Η       | Η      | Ph      | Me       |
| 14-92            | Ph       | Η        | H        | Me       | Η        | Η       | Η       | Η       | Η       | H      | Η       | Me       |
| 14-93            | Ph       | H        | H        | Me       | H        | Me      | Н       | H       | H       | H      | H       | Me       |
| 14-94<br>14-95   | Ph<br>Ph | H<br>H   | H<br>H   | Me<br>Me | H<br>H   | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H | H<br>H  | Me<br>Me |
| 14-95            | Ph       | H        | H        | Me       | Н        | Н       | H       | Н       | Me      | H      | H       | Me       |
| 14-97            | Ph       | H        | Н        | Me       | Н        | H       | H       | H       | Н       | Me     | Н       | Me       |
| 14-98            | Ph       | H        | Η        | Me       | Η        | Η       | H       | Η       | Η       | H      | Me      | Me       |
| 14-99            | Ph       | Η        | Η        | Me       | Η        | Ph      | Н       | Η       | Η       | Η      | Η       | Me       |
| 14-100           | Ph       | H        | H        | Me       | H        | H       | Ph      | H       | H       | H      | H       | Me       |
| 14-101<br>14-102 | Ph<br>Ph | H<br>H   | H<br>H   | Me<br>Me | H<br>H   | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H | H<br>H  | Me<br>Me |
| 14-103           | Ph       | Н        | Н        | Me       | Н        | Н       | Н       | Н       | Н       | Ph     | Н       | Me       |
| 14-104           | Ph       | H        | Η        | Me       | Η        | Η       | H       | Η       | Η       | H      | Ph      | Me       |
| 14-105           | Me       | H        | Η        | Η        | Me       | Η       | Η       | H       | Η       | H      | Η       | Me       |
| 14-106           | Me       | H        | H        | Н        | Me       | Me      | Н       | Н       | H       | H      | H       | Me       |
| 14-107<br>14-108 | Me<br>Me | H<br>H   | H<br>H   | H<br>H   | Me<br>Me | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H | H<br>H  | Me<br>Me |
| 14-109           | Me       | Н        | H        | Н        | Me       | Н       | Н       | Н       | Me      | Н      | Н       | Me       |
| 14-110           | Me       | H        | Η        | Н        | Me       | Η       | Η       | H       | Η       | Me     | Н       | Me       |
| 14-111           | Me       | H        | Η        | Н        | Me       | Η       | Η       | Η       | Η       | H      | Me      | Me       |
| 14-112           | Me       | H        | H        | Н        | Me       | Ph      | H       | H       | H       | Н      | H       | Me       |
| 14-113<br>14-114 | Me<br>Me | H<br>H   | H<br>H   | H<br>H   | Me<br>Me | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H | H<br>H  | Me<br>Me |
| 14-115           | Me       | Н        | H        | Н        | Me       | Н       | H       | Н       | Ph      | H      | H       | Me       |
| 14-116           | Me       | H        | Η        | H        | Me       | Н       | H       | H       | Н       | Ph     | H       | Me       |
| 14-117           | Me       | H        | H        | Η        | Me       | Η       | Η       | H       | Η       | H      | Ph      | Me       |
| 14-118           | Ph       | H        | Η        | H        | Me       | H       | H       | H       | Η       | H      | H       | Me       |
| 14-119           | Ph       | H        | H        | H        | Me       | Me      | H<br>M- | H       | H       | H      | H       | Me       |
| 14-120<br>14-121 | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H   | Me<br>Me | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H | H<br>H  | Me<br>Me |
| 14-122           | Ph       | H        | Н        | Н        | Me       | Н       | Н       | Н       | Me      | Н      | Н       | Me       |
| 14-123           | Ph       | H        | H        | H        | Me       | H       | H       | H       | Η       | Me     | H       | Me       |
| 14-124           | Ph       | H        | Η        | Η        | Me       | Н       | Η       | Η       | Η       | H      | Me      | Me       |
| 14-125           | Ph       | H        | H        | H        | Me       | Ph      | H       | H       | H       | H      | H       | Me       |
| 14-126<br>14-127 | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H   | Me<br>Me | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H | H<br>H  | Me<br>Me |
| 14-127           | Pn<br>Ph | Н        | Н        | Н        | Me       | Н       | Н       | Pn<br>H | н<br>Ph | Н      | Н       | Me       |
| 14-129           | Ph       | H        | H        | Н        | Me       | Н       | Н       | H       | Н       | Ph     | Н       | Me       |
| 14-130           | Ph       | Η        | H        | Η        | Me       | Η       | Η       | Η       | Η       | Η      | Ph      | Me       |
| 14-131           | Me       | Ph       | H        | Н        | Н        | Н       | Н       | Н       | Η       | Н      | Η       | Me       |
| 14-132           | Me       | Ph       | H        | H        | H        | Me      | H<br>Mo | H       | H       | H      | H       | Me       |
| 14-133<br>14-134 | Me<br>Me | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H   | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H | H<br>H  | Me<br>Me |
| 14-134           | Me       | Ph       | Н        | Н        | Н        | Н       | Н       | H       | п<br>Ме | Н      | Н       | Me       |
|                  |          |          |          |          | **       |         |         |         |         |        |         |          |

TABLE 14-continued

|                  |          |          |          | 12       | IDLE     | 14-co   | mimue   | :u      |         |         |         |          |
|------------------|----------|----------|----------|----------|----------|---------|---------|---------|---------|---------|---------|----------|
| Cpd No.          | Ra1      | Ra2      | Ra3      | Rb4      | Ra5      | Rb1     | Rb2     | Rb3     | Rb4     | Rb5     | Rb6     | Rb7      |
| 14-136           | Me       | Ph       | Н        | Н        | Н        | Н       | Н       | Н       | Н       | Me      | Н       | Me       |
| 14-137           | Me       | Ph       | Н        | Н        | Н        | Н       | Н       | Н       | Н       | Н       | Me      | Me       |
| 14-138           | Me       | Ph       | Η        | Η        | Η        | Ph      | Η       | Η       | Η       | Η       | Η       | Me       |
| 14-139           | Me       | Ph       | H        | H        | H        | Н       | Ph      | H       | H       | H       | H       | Me       |
| 14-140<br>14-141 | Me<br>Me | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H   | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | Me<br>Me |
| 14-142           | Me       | Ph       | Н        | Н        | Н        | Н       | Н       | Н       | Н       | Ph      | Н       | Me       |
| 14-143           | Me       | Ph       | Η        | Η        | H        | H       | Η       | Η       | Η       | Η       | Ph      | Me       |
| 14-144           | Ph       | Ph       | H        | H        | H        | Н       | H       | H       | H       | H       | H       | Me       |
| 14-145<br>14-146 | Ph<br>Ph | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H   | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>Me |
| 14-147           | Ph       | Ph       | H        | Н        | Н        | Н       | Н       | Me      | H       | H       | Н       | Me       |
| 14-148           | Ph       | Ph       | Η        | Η        | Η        | H       | Η       | Η       | Me      | H       | Η       | Me       |
| 14-149           | Ph       | Ph       | H        | H        | H        | H       | H       | H       | H       | Me      | Н       | Me       |
| 14-150<br>14-151 | Ph<br>Ph | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H   | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H | Me<br>Me |
| 14-152           | Ph       | Ph       | H        | Н        | Н        | Н       | Ph      | H       | Н       | Н       | Н       | Me       |
| 14-153           | Ph       | Ph       | Η        | Η        | Η        | Н       | Η       | Ph      | Η       | Η       | Η       | Me       |
| 14-154           | Ph       | Ph       | Н        | H        | H        | H       | H       | H       | Ph      | H       | Н       | Me       |
| 14-155<br>14-156 | Ph<br>Ph | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H   | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | Me<br>Me |
| 14-157           | Me       | Н        | Ph       | Н        | Н        | Н       | Н       | Н       | Н       | Н       | Н       | Me       |
| 14-158           | Me       | Η        | Ph       | Η        | Η        | Me      | Η       | Η       | Η       | Η       | Η       | Me       |
| 14-159           | Me       | Н        | Ph       | Н        | H        | H       | Me      | Н       | Н       | Н       | Н       | Me       |
| 14-160<br>14-161 | Me<br>Me | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H  | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  | Me<br>Me |
| 14-162           | Me       | Н        | Ph       | Н        | Н        | Н       | Н       | Н       | Н       | Me      | Н       | Me       |
| 14-163           | Me       | Η        | Ph       | Η        | Η        | Η       | Η       | Η       | Η       | Η       | Me      | Me       |
| 14-164           | Me       | H        | Ph       | H        | H        | Ph      | H       | H       | H       | H       | H       | Me       |
| 14-165<br>14-166 | Me<br>Me | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | Me<br>Me |
| 14-167           | Me       | Н        | Ph       | Н        | Н        | Н       | Н       | Н       | Ph      | Н       | Н       | Me       |
| 14-168           | Me       | Η        | Ph       | Η        | Η        | Η       | Η       | Η       | Η       | Ph      | Η       | Me       |
| 14-169           | Me       | H        | Ph       | H        | H        | H       | H       | H       | H       | H       | Ph      | Me       |
| 14-170<br>14-171 | Ph<br>Ph | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H   | H<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>Me |
| 14-172           | Ph       | Н        | Ph       | Н        | Н        | Н       | Me      | Н       | Н       | Н       | Н       | Me       |
| 14-173           | Ph       | Η        | Ph       | Η        | Η        | Η       | Η       | Me      | Η       | Η       | Η       | Me       |
| 14-174           | Ph       | H        | Ph       | H        | H        | H<br>H  | H       | H       | Me      | H<br>M- | Н       | Me<br>M- |
| 14-175<br>14-176 | Ph<br>Ph | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H   | Н       | H<br>H  | H<br>H  | H<br>H  | Me<br>H | H<br>Me | Me<br>Me |
| 14-177           | Ph       | Н        | Ph       | Н        | Н        | Ph      | Н       | Н       | Н       | Н       | Н       | Me       |
| 14-178           | Ph       | Η        | Ph       | Η        | H        | H       | Ph      | Н       | Η       | Η       | Η       | Me       |
| 14-179           | Ph       | Н        | Ph       | H        | H        | Н       | H       | Ph      | H<br>Ph | H       | H       | Me<br>M- |
| 14-180<br>14-181 | Ph<br>Ph | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H   | H<br>H  | H<br>H  | H<br>H  | rn<br>H | H<br>Ph | H<br>H  | Me<br>Me |
| 14-182           | Ph       | Н        | Ph       | Н        | Н        | Н       | Н       | Н       | Н       | Н       | Ph      | Me       |
| 14-183           | Me       | Н        | Н        | Ph       | Η        | Η       | Η       | Η       | Η       | Н       | Η       | Me       |
| 14-184<br>14-185 | Me<br>Me | H<br>H   | H<br>H   | Ph<br>Ph | H<br>H   | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>Me |
| 14-186           | Me       | Н        | Н        | Ph       | Н        | Н       | H       | Me      | Н       | Н       | Н       | Me       |
| 14-187           | Me       | Н        | Н        | Ph       | Н        | Н       | Η       | Н       | Me      | Н       | Н       | Me       |
| 14-188           | Me       | Н        | Н        | Ph       | H        | H       | H       | Н       | Н       | Me      | Н       | Me       |
| 14-189<br>14-190 | Me<br>Me | H<br>H   | H<br>H   | Ph<br>Ph | H<br>H   | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H | Me<br>Me |
| 14-191           | Me       | H        | H        | Ph       | Н        | Н       | Ph      | Н       | H       | H       | Н       | Me       |
| 14-192           | Me       | Η        | Η        | Ph       | H        | Η       | Η       | Ph      | Η       | Η       | Η       | Me       |
| 14-193           | Me       | H        | H        | Ph       | H        | H       | Н       | H       | Ph      | H       | Н       | Me       |
| 14-194<br>14-195 | Me<br>Me | H<br>H   | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | Me<br>Me |
| 14-196           | Ph       | Н        | Н        | Ph       | Н        | Н       | Н       | H       | H       | H       | Н       | Me       |
| 14-197           | Ph       | Η        | Η        | Ph       | H        | Me      | Η       | H       | H       | H       | Η       | Me       |
| 14-198           | Ph       | Н        | Н        | Ph       | H        | H       | Me      | Н       | H       | Н       | Н       | Me       |
| 14-199<br>14-200 | Ph<br>Ph | H<br>H   | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H  | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  | Me<br>Me |
| 14-200           | Ph       | H        | H        | Ph       | Н        | Н       | H       | H       | Н       | Me      | Н       | Me       |
| 14-202           | Ph       | Η        | Η        | Ph       | Η        | Η       | Η       | Η       | Η       | Η       | Me      | Me       |
| 14-203           | Ph       | Н        | H        | Ph       | Н        | Ph      | H       | H       | H       | H       | H       | Me       |
| 14-204<br>14-205 | Ph<br>Ph | H<br>H   | H<br>H   | Ph<br>Ph | H<br>H   | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | Me<br>Me |
| 14-205           | Ph       | Н        | Н        | Ph       | Н        | Н       | Н       | Н       | Ph      | Н       | Н       | Me       |
| 14-207           | Ph       | Η        | Η        | Ph       | Η        | Η       | Η       | Η       | Η       | Ph      | Η       | Me       |
| 14-208           | Ph       | H        | H        | Ph       | H        | H       | H       | H       | H       | H       | Ph      | Me       |
| 14-209<br>14-210 | Me<br>Me | H<br>H   | H<br>H   | H<br>H   | Ph<br>Ph | H<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>Me |
| 14-210           | Me       | Н        | Н        | Н        | Ph       | H       | Me      | Н       | Н       | Н       | Н       | Me       |
| 14-212           | Me       | Н        | Н        | Н        | Ph       | Н       | Н       | Me      | Н       | Н       | Н       | Me       |
| 14-213           | Me       | Η        | Η        | Η        | Ph       | Н       | Η       | Η       | Me      | Η       | Η       | Me       |
|                  |          |          |          |          |          |         |         |         |         |         |         |          |

103
TABLE 14-continued

| Cpd No. | Ra1              | Ra2 | Ra3 | Rb4 | Ra5 | Rb1 | Rb2 | Rb3 | Rb4 | Rb5 | Rb6 | Rb7 |
|---------|------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 14-214  | Me               | Н   | Н   | Н   | Ph  | Н   | Н   | Н   | Н   | Me  | Н   | Me  |
| 14-215  | Me               | Η   | Η   | Η   | Ph  | Η   | Η   | Η   | Η   | Η   | Me  | Me  |
| 14-216  | Me               | Η   | Η   | Η   | Ph  | Ph  | Η   | Η   | Η   | Η   | Η   | Me  |
| 14-217  | Me               | Η   | Η   | Η   | Ph  | Η   | Ph  | Η   | Η   | Η   | Η   | Me  |
| 14-218  | Me               | Η   | Η   | Η   | Ph  | Η   | Η   | Ph  | Η   | Η   | Η   | Me  |
| 14-219  | Me               | Η   | Η   | Η   | Ph  | Η   | Η   | Η   | Ph  | Η   | Η   | Me  |
| 14-220  | Me               | Η   | Η   | Η   | Ph  | Η   | Η   | Η   | Η   | Ph  | Η   | Me  |
| 14-221  | Me               | Η   | Η   | Η   | Ph  | Η   | Η   | Η   | Η   | Η   | Ph  | Me  |
| 14-222  | $_{\mathrm{Ph}}$ | Η   | Η   | Η   | Ph  | Η   | Η   | Η   | Η   | Η   | Η   | Me  |
| 14-223  | Ph               | Η   | H   | Η   | Ph  | Me  | Η   | H   | Η   | Η   | Η   | Me  |
| 14-224  | Ph               | H   | H   | Н   | Ph  | H   | Me  | H   | Н   | Н   | Η   | Me  |
| 14-225  | Ph               | Η   | H   | Н   | Ph  | H   | Н   | Me  | Η   | Η   | Η   | Me  |
| 14-226  | Ph               | Η   | H   | Н   | Ph  | H   | Н   | H   | Me  | Η   | Η   | Me  |
| 14-227  | Ph               | Η   | Η   | Η   | Ph  | Η   | Η   | H   | Η   | Me  | Η   | Me  |
| 14-228  | Ph               | Η   | H   | Н   | Ph  | Н   | Н   | H   | Н   | Н   | Me  | Me  |
| 14-229  | Ph               | H   | H   | H   | Ph  | Ph  | H   | H   | H   | H   | H   | Me  |
| 14-230  | Ph               | Н   | Н   | Н   | Ph  | Н   | Ph  | Н   | Н   | H   | Н   | Me  |
| 14-231  | Ph               | Н   | Н   | Н   | Ph  | Н   | Н   | Ph  | Н   | Н   | Н   | Me  |
| 14-232  | Ph               | H   | Н   | Н   | Ph  | Н   | Н   | Н   | Ph  | Н   | Н   | Me  |
| 14-233  | Ph               | H   | H   | Н   | Ph  | Н   | Н   | H   | Н   | Ph  | Н   | Me  |
| 14-234  | Ph               | Н   | Н   | Н   | Ph  | Н   | Н   | Н   | Н   | Н   | Ph  | Me  |

TABLE 15

| Cpd No.        | Ra1      | Ra2    | Ra3    | Ra4    | Ra5    | Rb1    | Rb2    | Rb3     | Rb4     | Rb5     | Rb6    | Rb7    | Rb8    |
|----------------|----------|--------|--------|--------|--------|--------|--------|---------|---------|---------|--------|--------|--------|
| 15-1           | Me       | Н      | Н      | Н      | Н      | Н      | Н      | Н       | Н       | Н       | Н      | Н      | Н      |
| 15-2           | Me       | Η      | Η      | Η      | H      | Me     | Η      | H       | H       | H       | Η      | Η      | H      |
| 15-3           | Me       | Η      | Η      | Η      | Η      | Η      | Me     | Η       | Η       | Η       | Η      | Η      | Η      |
| 15-4           | Me       | Η      | Η      | Η      | H      | Η      | Н      | Me      | Η       | Η       | Η      | Η      | H      |
| 15-5           | Me       | Η      | Η      | Η      | H      | Η      | H      | H       | Me      | H       | H      | Η      | H      |
| 15-6           | Me       | Η      | Η      | Η      | Η      | Η      | Η      | Η       | Η       | Me      | Η      | Η      | Η      |
| 15-7           | Me       | Н      | H      | Η      | Η      | Η      | H      | Η       | H       | Η       | Me     | Η      | H      |
| 15-8           | Me       | Η      | Η      | Η      | Η      | Η      | Н      | Η       | Η       | Η       | Η      | Me     | H      |
| 15-9           | Me       | H      | H      | H      | H      | H      | Н      | Н       | H       | Н       | Н      | Н      | Me     |
| 15-10          | Me       | H      | H      | H      | Н      | Ph     | H      | Н       | Н       | Н       | Н      | Н      | H      |
| 15-11          | Me       | H      | H      | Η      | Н      | Η      | Ph     | H       | Н       | Η       | H      | H      | H      |
| 15-12          | Me       | H      | H      | H      | H      | H      | H      | Ph      | H       | H       | Н      | Н      | H      |
| 15-13          | Me       | H      | H      | H      | Н      | H      | Н      | Н       | Ph      | H       | Н      | Н      | H      |
| 15-14          | Me       | H      | H      | H      | H      | H      | H      | H       | H       | Ph      | H      | H      | H      |
| 15-15          | Me       | H      | H      | H      | H      | H      | H      | H       | H       | Н       | Ph     | H      | H      |
| 15-16          | Me       | H      | H      | H      | Н      | H      | Н      | Н       | H       | Н       | Н      | Ph     | H      |
| 15-17          | Me       | H      | H      | H      | H      | H      | H      | H       | H       | H       | Н      | H      | Ph     |
| 15-18          | Ph       | H      | H      | Н      | H      | H      | H      | H       | H       | H       | Н      | Н      | H      |
| 15-19          | Ph       | H      | H      | H      | Н      | Me     | Н      | Н       | H       | Н       | Н      | Н      | H      |
| 15-20<br>15-21 | Ph<br>Ph | H<br>H | H<br>H | H<br>H | H<br>H | H<br>H | Me     | H<br>Me | H<br>H  | H<br>H  | H<br>H | H<br>H | H<br>H |
| 15-21          | Ph       | Н      | Н      | Н      |        | Н      | H      | Н       | н<br>Ме | Н       | Н      | Н      | Н      |
| 15-22          | Ph       | Н      | Н      | Н      | H<br>H | Н      | H<br>H | Н       | H       | п<br>Ме | Н      | Н      | Н      |
| 15-23          | Ph       | Н      | Н      | Н      | Н      | Н      | Н      | Н       | Н       | Н       | Mе     | Н      | Н      |
| 15-24          | Ph       | Н      | Н      | Н      | Н      | Н      | Н      | Н       | Н       | Н       | H      | Мe     | Н      |
| 15-25          | Ph       | H      | H      | Н      | Н      | Н      | Н      | H       | H       | Н       | Н      | H      | Me     |
| 15-20          | Ph       | H      | H      | H      | H      | Ph     | Н      | H       | Н       | Н       | Н      | Н      | Н      |
| 15-28          | Ph       | H      | H      | Н      | Н      | Н      | Ph     | Н       | Н       | Н       | Н      | Н      | H      |
| 15-29          | Ph       | H      | H      | Н      | Н      | Н      | Н      | Ph      | Н       | Н       | Н      | H      | H      |
| 15-30          | Ph       | Н      | Н      | Н      | Н      | Н      | Н      | Н       | Ph      | Н       | Н      | Н      | Н      |
| 15-31          | Ph       | H      | H      | H      | H      | H      | H      | H       | Н       | Ph      | H      | H      | H      |
| 15-32          | Ph       | Н      | Н      | Н      | Н      | Н      | Н      | Н       | Н       | Н       | Ph     | Н      | Н      |
| 15-33          | Ph       | H      | H      | Н      | Н      | Н      | Н      | Н       | Н       | Н       | Н      | Ph     | Н      |
| 15-34          | Ph       | H      | H      | H      | H      | H      | H      | H       | H       | H       | H      | Н      | Ph     |
| 15-35          | Me       | Me     | H      | H      | H      | H      | H      | Н       | H       | Н       | H      | H      | H      |
| 15-36          | Me       | Me     | Н      | Н      | Н      | Me     | Н      | Н       | Н       | Н       | Н      | Н      | Н      |
| 15-37          | Me       | Me     | Η      | Н      | Н      | Н      | Me     | Н       | Н       | H       | H      | H      | H      |
| 15-38          | Me       | Me     | H      | H      | H      | H      | H      | Me      | H       | H       | H      | H      | H      |
| 15-39          | Me       | Me     | H      | Н      | H      | H      | Η      | H       | Me      | H       | Η      | H      | H      |
| 15-40          | Me       | Me     | Η      | Η      | Η      | Η      | Η      | Η       | Η       | Me      | Η      | Η      | H      |
| 15-41          | Me       | Me     | Η      | Η      | H      | Η      | Η      | H       | H       | Η       | Me     | H      | H      |
| 15-42          | Me       | Me     | Η      | Η      | Η      | Η      | Η      | Η       | Η       | Η       | Η      | Me     | Η      |
| 15-43          | Me       | Me     | Η      | Η      | H      | Η      | Н      | Н       | Н       | Η       | Н      | H      | Me     |
| 15-44          | Me       | Me     | H      | H      | H      | Ph     | H      | H       | H       | H       | H      | H      | H      |
| 15-45          | Me       | Me     | H      | Η      | H      | Η      | Ph     | Н       | Н       | H       | H      | H      | H      |
| 15-46          | Me       | Me     | H      | H      | H      | H      | H      | Ph      | H       | H       | H      | H      | H      |
| 15-47          | Me       | Me     | H      | H      | H      | H      | H      | H       | Ph      | H       | H      | H      | H      |
| 15-48          | Me       | Me     | H      | H      | H      | H      | Η      | H       | H       | Ph      | Η      | Η      | H      |
| 15-49          | Me       | Me     | Η      | Η      | Η      | Η      | Η      | Η       | Η       | Η       | Ph     | Η      | H      |

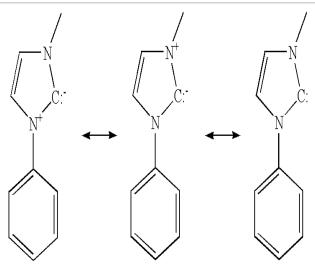
105

TABLE 15-continued

|                  |          |          |          |          | IADI   | JL 13   | -conti  | naca    |         |         |         |         |         |
|------------------|----------|----------|----------|----------|--------|---------|---------|---------|---------|---------|---------|---------|---------|
| Cpd No.          | Ra1      | Ra2      | Ra3      | Ra4      | Ra5    | Rb1     | Rb2     | Rb3     | Rb4     | Rb5     | Rb6     | Rb7     | Rb8     |
| 15-50            | Me       | Me       | Н        | Н        | Н      | Н       | Н       | Н       | Н       | Н       | Н       | Ph      | Н       |
| 15-51            | Me       | Me       | Η        | Η        | Η      | Η       | Η       | Η       | Η       | Η       | Η       | Η       | Ph      |
| 15-52            | Ph       | Me       | H        | H        | H      | Н       | H       | H       | H       | H       | H       | H       | H       |
| 15-53<br>15-54   | Ph<br>Ph | Me<br>Me | H<br>H   | H<br>H   | H<br>H | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 15-55            | Ph       | Me       | H        | Н        | Н      | Н       | Н       | Me      | H       | H       | Н       | Н       | Н       |
| 15-56            | Ph       | Me       | Η        | Η        | Η      | Η       | Η       | Η       | Me      | Η       | Η       | Η       | H       |
| 15-57            | Ph       | Me       | Η        | Η        | Η      | Η       | Η       | Η       | Η       | Me      | Η       | Η       | Η       |
| 15-58            | Ph       | Me       | H        | H        | H      | H       | H       | H       | H       | H       | Me      | H       | H       |
| 15-59<br>15-60   | Ph<br>Ph | Me<br>Me | H<br>H   | H<br>H   | H<br>H | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H | H<br>Me |
| 15-61            | Ph       | Me       | H        | Н        | Н      | Ph      | Н       | H       | Н       | Н       | Н       | H       | Н       |
| 15-62            | Ph       | Me       | Η        | Η        | Η      | Η       | Ph      | Η       | Η       | Η       | H       | Η       | H       |
| 15-63            | Ph       | Me       | H        | H        | H      | H       | H       | Ph      | H       | H       | H       | H       | H       |
| 15-64<br>15-65   | Ph<br>Ph | Me<br>Me | H<br>H   | H<br>H   | H<br>H | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  |
| 15-66            | Ph       | Me       | H        | Н        | Н      | Н       | Н       | Н       | Н       | Н       | Ph      | Н       | H       |
| 15-67            | Ph       | Me       | Н        | Η        | Η      | H       | H       | H       | H       | H       | Η       | Ph      | H       |
| 15-68            | Ph       | Me       | Н        | H        | H      | H       | H       | H       | Н       | Н       | H       | Н       | Ph      |
| 15-69<br>15-70   | Me<br>Me | H<br>H   | Me<br>Me | H<br>H   | H<br>H | H<br>Me | H<br>H  |
| 15-70            | Me       | Н        | Me       | Н        | Н      | Н       | Me      | Н       | Н       | H       | Н       | Н       | H       |
| 15-72            | Me       | Η        | Me       | Η        | Η      | Η       | Η       | Me      | Η       | Η       | Η       | Η       | H       |
| 15-73            | Me       | Η        | Me       | Η        | Η      | Η       | Η       | Η       | Me      | Η       | Η       | Η       | H       |
| 15-74<br>15-75   | Me       | H<br>H   | Me       | H<br>H   | H<br>H | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H | H<br>Mo | H<br>H  | H<br>H  |
| 15-75            | Me<br>Me | Н        | Me<br>Me | Н        | Н      | Н       | Н       | Н       | Н       | Н       | Me<br>H | П<br>Ме | Н       |
| 15-77            | Me       | H        | Me       | H        | H      | Н       | H       | H       | H       | Н       | Н       | Н       | Me      |
| 15-78            | Me       | Η        | Me       | Η        | Η      | Ph      | Η       | Η       | Η       | Η       | Η       | Η       | H       |
| 15-79            | Me       | H        | Me       | H        | H      | H       | Ph      | H       | H       | H       | H       | H       | H       |
| 15-80<br>15-81   | Me<br>Me | H<br>H   | Me<br>Me | H<br>H   | H<br>H | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 15-82            | Me       | Н        | Me       | Н        | Н      | Н       | Н       | Н       | Н       | Ph      | Н       | Н       | H       |
| 15-83            | Me       | Η        | Me       | Η        | Η      | Η       | Η       | Η       | Η       | Η       | Ph      | Η       | H       |
| 15-84            | Me       | Н        | Me       | Н        | H      | Н       | H       | H       | Н       | Н       | Н       | Ph      | H       |
| 15-85<br>15-86   | Me<br>Ph | H<br>H   | Me<br>Me | H<br>H   | H<br>H | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph<br>H |
| 15-80            | Ph       | H        | Me       | H        | H      | Me      | Н       | H       | H       | H       | H       | H       | Н       |
| 15-88            | Ph       | Н        | Me       | Н        | Н      | Н       | Me      | Η       | Н       | Н       | Н       | Н       | H       |
| 15-89            | Ph       | Η        | Me       | Η        | Η      | Н       | Η       | Me      | Η       | Н       | Η       | Η       | H       |
| 15-90<br>15-91   | Ph       | H<br>H   | Me       | Н        | H<br>H | H<br>H  | H<br>H  | Н       | Me<br>H | Н       | H       | H       | H<br>H  |
| 15-91            | Ph<br>Ph | Н        | Me<br>Me | H<br>H   | Н      | Н       | Н       | H<br>H  | Н       | Me<br>H | H<br>Me | H<br>H  | Н       |
| 15-93            | Ph       | Н        | Me       | Н        | Н      | Н       | Н       | Н       | Н       | Н       | Н       | Me      | H       |
| 15-94            | Ph       | Η        | Me       | Η        | Η      | Н       | Η       | Η       | Η       | Η       | Η       | Η       | Me      |
| 15-95            | Ph       | H        | Me       | H        | H      | Ph      | H       | H       | H       | H       | H       | H       | H       |
| 15-96<br>15-97   | Ph<br>Ph | H<br>H   | Me<br>Me | H<br>H   | H<br>H | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 15-98            | Ph       | Н        | Me       | Н        | Н      | Н       | Н       | Н       | Ph      | Н       | Н       | Н       | H       |
| 15-99            | Ph       | Η        | Me       | Η        | Η      | Η       | Η       | Η       | Η       | Ph      | Η       | Η       | H       |
| 15-100           | Ph       | H        | Me       | Н        | H      | Н       | Н       | H       | H       | H       | Ph      | H       | H       |
| 15-101<br>15-102 | Ph<br>Ph | H<br>H   | Me<br>Me | H<br>H   | H<br>H | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph |
| 15-103           | Me       | Н        | Н        | Me       | Н      | Н       | Н       | Н       | Н       | Н       | Н       | Н       | Н       |
| 15-104           | Me       | Η        | Η        | Me       | Η      | Me      | Η       | Η       | Η       | Η       | Η       | Η       | H       |
| 15-105           | Me       | H        | H        | Me       | H      | H       | Me      | H       | H       | H       | H       | H       | H       |
| 15-106<br>15-107 | Me<br>Me | H<br>H   | H<br>H   | Me<br>Me | H<br>H | H<br>H  | H<br>H  | Me<br>H | H<br>Me | H<br>H  | H<br>H  | H<br>H  | H<br>H  |
| 15-108           | Me       | H        | H        | Me       | Н      | Н       | Н       | H       | Н       | Me      | Н       | Н       | H       |
| 15-109           | Me       | Η        | Η        | Me       | Η      | Η       | Η       | Η       | Η       | Η       | Me      | Η       | H       |
| 15-110           | Me       | Н        | Н        | Me       | Н      | Н       | Н       | Н       | Н       | Н       | Н       | Me      | H       |
| 15-111<br>15-112 | Me<br>Me | H<br>H   | H<br>H   | Me<br>Me | H<br>H | H<br>Ph | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Me<br>H |
| 15-112           | Me       | H        | H        | Me       | Н      | Н       | Ph      | H       | H       | H       | Н       | Н       | Н       |
| 15-114           | Me       | Н        | Н        | Me       | Η      | Η       | Η       | Ph      | Н       | Н       | Η       | Н       | H       |
| 15-115           | Me       | Н        | Н        | Me       | Н      | Н       | Н       | Η       | Ph      | H       | H       | Н       | H       |
| 15-116<br>15-117 | Me<br>Me | H<br>H   | H<br>H   | Me<br>Me | H<br>H | H<br>H  | H<br>H  | H<br>H  | H<br>H  | Ph<br>H | H<br>Ph | H<br>H  | H<br>H  |
| 15-117           | Me       | Н        | Н        | Me       | Н      | Н       | Н       | Н       | Н       | Н       | Pn<br>H | н<br>Ph | Н       |
| 15-119           | Me       | H        | H        | Me       | H      | H       | H       | H       | H       | H       | H       | Н       | Ph      |
| 15-120           | Ph       | Н        | H        | Me       | H      | Н       | H       | H       | Н       | Н       | H       | Н       | Н       |
| 15-121           | Ph<br>Ph | H<br>H   | Н        | Me       | Н      | Me      | H<br>Me | Н       | H<br>H  | Н       | H<br>H  | Н       | H<br>H  |
| 15-122<br>15-123 | Pn<br>Ph | Н        | H<br>H   | Me<br>Me | H<br>H | H<br>H  | H<br>H  | H<br>Me | Н       | H<br>H  | Н       | H<br>H  | Н       |
| 15-124           | Ph       | Н        | H        | Me       | Н      | Н       | Н       | Н       | Me      | Н       | Н       | Н       | Н       |
| 15-125           | Ph       | Н        | Η        | Me       | H      | Η       | Η       | Η       | Η       | Me      | H       | Н       | H       |
| 15-126           | Ph       | Н        | Н        | Me       | Н      | Н       | Н       | Η       | Н       | Н       | Me      | Н       | Н       |
| 15-127           | Ph       | Н        | Η        | Me       | Н      | Н       | Н       | Η       | Н       | Н       | Η       | Me      | Η       |

107

TABLE 15-continued


|                  |          |          |           |          | IABI     | LE 13   | -conu   | nuea   |        |        |         |         |         |
|------------------|----------|----------|-----------|----------|----------|---------|---------|--------|--------|--------|---------|---------|---------|
| Cpd No.          | Ra1      | Ra2      | Ra3       | Ra4      | Ra5      | Rb1     | Rb2     | Rb3    | Rb4    | Rb5    | Rb6     | Rb7     | Rb8     |
| 15-128           | Ph       | Н        | Н         | Me       | Н        | Н       | Н       | Н      | Н      | Н      | Н       | Н       | Me      |
| 15-129           | Ph       | Н        | Н         | Me       | Н        | Ph      | Н       | Н      | Н      | Н      | Н       | Н       | Н       |
| 15-130           | Ph       | H        | Η         | Me       | H        | H       | Ph      | H      | H      | H      | Η       | H       | H       |
| 15-131           | Ph       | Η        | Η         | Me       | Η        | Η       | Η       | Ph     | H      | H      | Η       | Η       | H       |
| 15-132           | Ph       | H        | H         | Me       | H        | Η       | Η       | H      | Ph     | H      | H       | Η       | H       |
| 15-133           | Ph       | H        | H         | Me       | H        | H       | H       | H      | H      | Ph     | H       | H       | H       |
| 15-134           | Ph       | H        | H         | Me       | H        | H       | H       | H      | H      | H      | Ph      | H<br>Ph | H       |
| 15-135<br>15-136 | Ph<br>Ph | H<br>H   | $_{ m H}$ | Me<br>Me | H<br>H   | H<br>H  | H<br>H  | H<br>H | H<br>H | H<br>H | H<br>H  | Pn<br>H | H<br>Ph |
| 15-137           | Me       | Н        | H         | Н        | Me       | Н       | Н       | Н      | Н      | Н      | Н       | Н       | Н       |
| 15-138           | Me       | H        | H         | Н        | Me       | Me      | H       | H      | H      | H      | Н       | H       | H       |
| 15-139           | Me       | H        | Η         | H        | Me       | H       | Me      | H      | H      | H      | Η       | H       | H       |
| 15-140           | Me       | H        | Η         | Η        | Me       | Η       | Η       | Me     | H      | H      | Η       | Η       | H       |
| 15-141           | Me       | Η        | Η         | Η        | Me       | Η       | Η       | Η      | Me     | H      | Η       | Η       | H       |
| 15-142           | Me       | H        | H         | H        | Me       | H       | H       | H      | H      | Me     | H       | H       | H       |
| 15-143<br>15-144 | Me<br>Me | H<br>H   | $_{ m H}$ | H<br>H   | Me<br>Me | H<br>H  | H<br>H  | H<br>H | H<br>H | H<br>H | Me<br>H | H<br>Me | H<br>H  |
| 15-145           | Me       | H        | H         | Н        | Me       | Н       | H       | H      | H      | H      | H       | H       | Me      |
| 15-146           | Me       | H        | H         | Н        | Me       | Ph      | Н       | H      | H      | H      | Н       | H       | Н       |
| 15-147           | Me       | Н        | Н         | Н        | Me       | Н       | Ph      | Н      | Н      | H      | Н       | Н       | Н       |
| 15-148           | Me       | H        | H         | H        | Me       | H       | H       | Ph     | H      | H      | H       | H       | H       |
| 15-149           | Me       | Η        | Η         | Η        | Me       | Η       | Η       | Η      | Ph     | H      | Η       | Η       | H       |
| 15-150           | Me       | H        | Η         | H        | Me       | Η       | Η       | H      | H      | Ph     | H       | Η       | H       |
| 15-151           | Me       | Н        | H         | Н        | Me       | Н       | Н       | H      | Н      | Н      | Ph      | H       | H       |
| 15-152<br>15-153 | Me<br>Me | H<br>H   | H<br>H    | H<br>H   | Me<br>Me | H<br>H  | H<br>H  | H<br>H | H<br>H | H<br>H | H<br>H  | Ph<br>H | H<br>Ph |
| 15-154           | Ph       | Н        | Н         | Н        | Me       | Н       | Н       | Н      | Н      | Н      | Н       | Н       | Н       |
| 15-155           | Ph       | Н        | H         | Н        | Me       | Me      | H       | H      | H      | H      | Н       | H       | H       |
| 15-156           | Ph       | H        | Н         | Н        | Me       | Н       | Me      | H      | H      | H      | Н       | H       | Н       |
| 15-157           | Ph       | H        | Η         | H        | Me       | H       | H       | Me     | H      | H      | Η       | H       | H       |
| 15-158           | Ph       | Η        | Η         | Η        | Me       | Η       | Η       | Η      | Me     | H      | Η       | Η       | H       |
| 15-159           | Ph       | H        | H         | Η        | Me       | Η       | Η       | H      | H      | Me     | Η       | Η       | H       |
| 15-160           | Ph       | Н        | H         | Н        | Me       | Н       | Н       | Н      | Н      | Н      | Me      | Н       | Н       |
| 15-161<br>15-162 | Ph<br>Ph | H<br>H   | H<br>H    | H<br>H   | Me       | H<br>H  | H<br>H  | H<br>H | H<br>H | H<br>H | H<br>H  | Me<br>H | H<br>Me |
| 15-162           | Ph       | H        | H         | Н        | Me<br>Me | Ph      | H       | H      | H      | H      | H       | H       | H       |
| 15-164           | Ph       | H        | Н         | Н        | Me       | Н       | Ph      | Н      | Н      | H      | Н       | H       | Н       |
| 15-165           | Ph       | H        | Н         | Н        | Me       | Η       | H       | Ph     | H      | H      | Н       | H       | Н       |
| 15-166           | Ph       | Η        | Η         | H        | Me       | H       | Η       | Η      | Ph     | H      | H       | Η       | H       |
| 15-167           | Ph       | Η        | Η         | H        | Me       | Η       | Η       | Η      | Η      | Ph     | Η       | Η       | H       |
| 15-168           | Ph       | H        | Η         | Н        | Me       | H       | Η       | H      | H      | H      | Ph      | H       | H       |
| 15-169           | Ph       | H        | H         | H        | Me       | Н       | H       | H      | H      | H      | H       | Ph      | H       |
| 15-170<br>15-171 | Ph<br>Me | H<br>Ph  | H<br>H    | H<br>H   | Me<br>H  | H<br>H  | H<br>H  | H<br>H | H<br>H | H<br>H | H<br>H  | H<br>H  | Ph<br>H |
| 15-171           | Me       | Ph       | H         | Н        | Н        | Me      | Н       | Н      | Н      | Н      | H       | Н       | H       |
| 15-173           | Me       | Ph       | Н         | Н        | Н        | Н       | Me      | Н      | Н      | Н      | Н       | Н       | Н       |
| 15-174           | Me       | Ph       | Η         | Н        | Н        | Н       | H       | Me     | Н      | Н      | Η       | Н       | Н       |
| 15-175           | Me       | Ph       | Η         | Η        | Η        | Η       | Η       | H      | Me     | H      | Η       | Η       | H       |
| 15-176           | Me       | Ph       | Η         | Н        | Н        | Η       | Η       | Η      | Η      | Me     | Η       | Η       | H       |
| 15-177           | Me       | Ph       | H         | H        | Н        | Н       | H       | H      | Н      | H      | Me      | Н       | H       |
| 15-178<br>15-179 | Me<br>Me | Ph<br>Ph | H<br>H    | H<br>H   | H<br>H   | H<br>H  | H<br>H  | H<br>H | H<br>H | H<br>H | H<br>H  | Me<br>H | H<br>Me |
| 15-179           | Me       | Ph       | H         | Н        | Н        | Ph      | Н       | H      | H      | H      | H       | H       | H       |
| 15-181           | Me       | Ph       | Н         | Н        | Н        | Н       | Ph      | Н      | Н      | Н      | Н       | Н       | Н       |
| 15-182           | Me       | Ph       | Η         | Н        | Н        | Η       | H       | Ph     | H      | H      | H       | H       | H       |
| 15-183           | Me       | Ph       | Η         | Η        | Η        | Η       | Η       | Η      | Ph     | H      | Η       | Η       | Η       |
| 15-184           | Me       | Ph       | Η         | Η        | Η        | Η       | Η       | Η      | Η      | Ph     | Η       | Η       | H       |
| 15-185           | Me       | Ph       | H         | Н        | H        | H       | H       | H      | H      | Н      | Ph      | H       | H       |
| 15-186           | Me       | Ph       | H         | H        | Н        | H       | H       | H      | H      | H      | H       | Ph      | H       |
| 15-187<br>15-188 | Me<br>Ph | Ph<br>Ph | $_{ m H}$ | H<br>H   | H<br>H   | H<br>H  | H<br>H  | H<br>H | H<br>H | H<br>H | H<br>H  | H<br>H  | Ph<br>H |
| 15-189           | Ph       | Ph       | H         | H        | Н        | Me      | H       | H      | H      | H      | H       | H       | H       |
| 15-190           | Ph       | Ph       | Н         | Н        | Н        | Н       | Me      | Н      | Н      | Н      | Н       | Н       | Н       |
| 15-191           | Ph       | Ph       | H         | Η        | Η        | Η       | H       | Me     | H      | H      | H       | H       | H       |
| 15-192           | Ph       | Ph       | H         | Η        | H        | H       | H       | Η      | Me     | H      | H       | Η       | H       |
| 15-193           | Ph       | Ph       | H         | H        | H        | Η       | Η       | Η      | Η      | Me     | H       | Η       | H       |
| 15-194           | Ph       | Ph       | Η         | H        | H        | H       | H       | H      | H      | H      | Me      | H       | H       |
| 15-195           | Ph       | Ph       | H         | H        | H        | H       | H       | H      | H      | H      | H       | Me      | H<br>Ma |
| 15-196<br>15-197 | Ph<br>Ph | Ph<br>Ph | H<br>H    | H<br>H   | H<br>H   | H<br>Ph | H<br>H  | H<br>H | H<br>H | H<br>H | H<br>H  | H<br>H  | Me<br>H |
| 15-197           | Ph<br>Ph | Ph<br>Ph | Н         | Н        | Н        | Pn<br>H | н<br>Ph | Н      | Н      | Н      | Н       | Н       | Н       |
| 15-199           | Ph       | Ph       | H         | Н        | Н        | Н       | Н       | Ph     | H      | H      | H       | H       | H       |
| 15-200           | Ph       | Ph       | Н         | Н        | Н        | Н       | Н       | Н      | Ph     | Н      | Н       | Н       | Н       |
| 15-201           | Ph       | Ph       | Η         | Н        | Н        | Н       | Н       | Η      | Н      | Ph     | Н       | Н       | Н       |
| 15-202           | Ph       | Ph       | Η         | Η        | Η        | Η       | Η       | Η      | Η      | Η      | Ph      | Η       | H       |
| 15-203           | Ph       | Ph       | Η         | Н        | Н        | Н       | H       | Η      | Η      | Н      | Н       | Ph      | H       |
| 15-204           | Ph       | Ph       | H         | H        | H        | H       | H       | H      | H      | H      | H       | H       | Ph      |
| 15-205           | Me       | Η        | Ph        | Η        | Η        | Η       | Η       | Η      | Η      | Η      | Η       | Η       | H       |



| 专利名称(译)        | 具有卡宾配体的发光化合物                                                                                                               |                            |                            |
|----------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|
| 公开(公告)号        | <u>US8007926</u>                                                                                                           | 公开(公告)日                    | 2011-08-30                 |
| 申请号            | US12/131458                                                                                                                | 申请日                        | 2008-06-02                 |
| [标]申请(专利权)人(译) | THOMPSON标志着e<br>塔马约ARNOLD<br>DJUROVICH PETER<br>SAJOTO TISSA                                                               |                            |                            |
| 申请(专利权)人(译)    | THOMPSON标志着e<br>塔马约ARNOLD<br>DJUROVICH PETER<br>SAJOTO TISSA                                                               |                            |                            |
| 当前申请(专利权)人(译)  | 南加州大学                                                                                                                      |                            |                            |
| [标]发明人         | THOMPSON MARK E TAMAYO ARNOLD DJUROVICH PETER SAJOTO TISSA                                                                 |                            |                            |
| 发明人            | THOMPSON, MARK E. TAMAYO, ARNOLD DJUROVICH, PETER SAJOTO, TISSA                                                            |                            |                            |
| IPC分类号         | H01L51/54 C09K11/06 C07F15/00                                                                                              | H01L51/00 H01L51/50 H05B3  | 33/14                      |
| CPC分类号         | C07F15/0033 C07F15/0086 C09K2<br>H05B33/14 C09K2211/1011 C09K3<br>C09K2211/1059 C09K2211/1074 C<br>H01L51/5016 Y10S428/917 | 2211/1029 C09K2211/1044 C0 | 09K2211/1048 C09K2211/1051 |
| 其他公开文献         | US20090140640A1                                                                                                            |                            |                            |
| 外部链接           | Espacenet USPTO                                                                                                            |                            |                            |

## 摘要(译)

提供一种有机发光器件。该器件具有阳极,阴极和设置在阳极和阴极之间的有机层。有机层包含化合物,该化合物还包含与金属中心配位的一种或多种卡宾配体。

